Type Theory Tutorial

John Altidor

Logic Seminar Lecture
Brief Motivation for Type Systems.

Example Type System/Programming Language (PL).
 ▶ Presenting *MiniLang*: A simple programming language of numbers and strings.
 ▶ Syntax
 ▶ Static Semantics (Type Checking)
 ▶ Dynamic (Operational) Semantics (Evaluation)
 ▶ Safety Theorems: Preservation + Progress

Twelf Tutorial
 ▶ Mechanization of *Minilang*
Create Language vs Create Library

Library Pros:
- Library allows using existing language infrastructure
- Smaller learning curve - Don’t need to learn new language constructs.

Library Cons:
- Errors difficult to detect and debug w/o a compiler.
- Programs can enter undefined states (e.g. segmentation fault from reading a non-existing field).
- Requirements not checked in the language of the library.
- Leaking confidential information to unauthorized users.
Create Language vs Create Library

- Library Pros:
 - Library allows using existing language **infrastructure**

- Library Cons:
 - Errors difficult to detect and debug w/o a compiler.
 - Programs can enter undefined states (e.g. segmentation fault from reading a non-existing field).
 - Requirements not checked in the language of the library.
 - Leaking confidential information to unauthorized users.
Library Pros:

- Library allows using existing language **infrastructure**
- Smaller learning curve
 - Don’t need to learn new language constructs.

Library Cons:

- Errors difficult to detect and debug without a compiler.
- Programs can enter undefined states (e.g., segmentation fault from reading a non-existing field).
- Requirements not checked in the language of the library.

Leaking confidential information to unauthorized users.
Library Pros:
 - Library allows using existing language **infrastructure**
 - Smaller learning curve
 - Don’t need to learn new language constructs.

Library Cons:
 - Errors difficult to **detect and debug** w/o a compiler.
 - Programs can enter undefined states
 (e.g. segmentation fault from reading a non-existing field).
Library Pros:
- Library allows using existing language **infrastructure**
- Smaller learning curve
 - Don’t need to learn new language constructs.

Library Cons:
- Errors difficult to **detect and debug** w/o a compiler.
 - Programs can enter undefined states
 (e.g. segmentation fault from reading a non-existing field).
- Requirements **not checked** in the language of the library.
 - Leaking confidential information to unauthorized users.
Type Systems

- **Type System** = *Formally defined* language (calculus) with types.
- **Types** = Properties/classification over terms (syntax) of a language.

- Precisely defining what a language means
 - Which programs are allowed in a language?
 - How does a program execute?
 - . . .

 Enables proving properties about a language.

 - Program is always in a well-defined state throughout execution (no segmentation fault).
 - Can prove properties related to software requirements (e.g. information flow).

- Compiler informs programmers of errors at compile-time.

 Best explained with an example: MiniLang
Type Systems

- Type System = **Formally defined** language (calculus) with types.
- **Types** = Properties/classification over terms (syntax) of a language.
- Precisely defining what a language means
 - Which programs are allowed in a language?
 - How does a program execute?
 - ...
Type Systems

- Type System = **Formally defined** language (calculus) with types.
- **Types** = Properties/classification over terms (syntax) of a language.
- Precisely defining what a language means
 - Which programs are allowed in a language?
 - How does a program execute?
 - ...
- Enables **proving properties** about a language.
 - Program is always in a well-defined state throughout execution (no segmentation fault).
 - Can prove properties related to software requirements (e.g. information flow).
Type Systems

- Type System = **Formally defined** language (calculus) with **types**.
- **Types** = Properties/classification over terms (syntax) of a language.
- Precisely defining what a language means
 - Which programs are allowed in a language?
 - How does a program execute?
 - ...
- Enables **proving properties** about a language.
 - Program is always in a well-defined state throughout execution (no segmentation fault).
 - Can prove properties related to software requirements (e.g. information flow).
- Compiler **informs** programmers of errors at compile-time.
Type Systems

- **Type System** = *Formally defined* language (calculus) with types.
- **Types** = Properties/classification over terms (syntax) of a language.

Precisely defining what a language means
- Which programs are allowed in a language?
- How does a program execute?
- ...

- Enables **proving properties** about a language.
 - Program is always in a well-defined state throughout execution (no segmentation fault).
 - Can prove properties related to software requirements (e.g. information flow).

- Compiler **informs** programmers of errors at compile-time.

- Best explained with an example: **MiniLang**
- **Concrete syntax** is what humans write.
- **Abstract syntax** is what computers reason over.

<table>
<thead>
<tr>
<th>Category</th>
<th>Item</th>
<th>Abstract</th>
<th>Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expression</td>
<td>e</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\text{num}[n]$</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\text{str}[s]$</td>
<td>’s’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$+(e_1; e_2)$</td>
<td>$e_1 + e_2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\text{^}(e_1; e_2)$</td>
<td>$e_1 ^ e_2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\text{let}(x; e_1; e_2)$</td>
<td>let x be e_1 in e_2</td>
</tr>
</tbody>
</table>
Example Expressions

<table>
<thead>
<tr>
<th>Abstract</th>
<th>Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>+(num[5]; +(num[4]; num[3]))</code></td>
<td><code>5 + 4 + 3</code></td>
</tr>
<tr>
<td><code>^(str[john]; ^(x; str[doe]))</code></td>
<td><code>'john' ^ x ^ 'doe'</code></td>
</tr>
<tr>
<td><code>let(hours; num[24];</code></td>
<td>let hours be 24 in hours+24</td>
</tr>
<tr>
<td><code> +(hours; num[3])</code></td>
<td></td>
</tr>
</tbody>
</table>
Semantics of terms (ASTs) defined with inference rules. Rules have the following form.

No premises means axiom.
Static Semantics (Type Checking Rules)

\[\Gamma \vdash \text{num}[n] : \text{num} \quad T.1 \]
\[\Gamma \vdash \text{str}[s] : \text{str} \quad T.2 \]
\[\frac{\Gamma \vdash (x, \tau) \in \Gamma}{\Gamma \vdash x : \tau} \quad T.3 \]

\[\frac{\Gamma \vdash e_1 : \text{num} \quad \Gamma \vdash e_2 : \text{num}}{\Gamma \vdash + (e_1; e_2) : \text{num}} \quad T.4 \]
\[\frac{\Gamma \vdash e_1 : \text{str} \quad \Gamma \vdash e_2 : \text{str}}{\Gamma \vdash ^\wedge (e_1; e_2) : \text{str}} \quad T.5 \]

\[\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma, x : \tau_1 \vdash e_2 : \tau_2}{\Gamma \vdash \text{let}(x; e_1; e_2) : \tau_2} \quad T.6 \]
Example Type Derivation

⊢ num[24]: num

⊢ hrs: num ⊢ hrs: num

⊢ hrs: num ⊢ num[3]: num

⊢ +(hrs; num[3]): num

⊢ let(hrs; num[24]; +(hrs; num[3])): num

⊢ num[24]: num

⊢ hrs: num ⊢ hrs: num

⊢ hrs: num ⊢ num[3]: num

⊢ +(hrs; num[3]): num

⊢ let(hrs; num[24]; +(hrs; num[3])): num
Example Type Check Failure

⊢ num[24]: num \quad T.1

⊢ hours: num \quad T.3

⊢ str[abc]: str \quad T.1

⊢ +(hours; str[abc]): Fail

⊢ let(hrs; num[24]; +(hrs; str[abc]))
Defining how to “execute” expressions in MiniLang.

Specifically, defining a transition system/relation \rightarrow between expressions to evaluate them to values.

First, need to define values:

- $\text{num}[n]$ value
- $\text{str}[s]$ value
Dynamic Semantics – Numerical Addition

\[
\begin{align*}
\text{D.1} \quad e_1 & \mapsto e'_1 \\
\quad + (e_1; e_2) & \mapsto + (e'_1; e_2)
\end{align*}
\]

\[
\begin{align*}
\text{D.2} \quad e_2 & \mapsto e'_2 \\
\quad + (\text{num}[n_1]; e_2) & \mapsto + (\text{num}[n_1]; e'_2)
\end{align*}
\]

\[
\begin{align*}
\text{D.3} \quad n_1 + n_2 & = n_3 \\
\quad + (\text{num}[n_1]; \text{num}[n_2]) & \mapsto \text{num}[n_3]
\end{align*}
\]
Dynamic Semantics – String Concatenation

\[
\begin{align*}
 e_1 &\mapsto e'_1 \\
 \text{^}(e_1; e_2) &\mapsto \text{^}(e'_1; e_2) \quad \text{D.4} \\
 e_2 &\mapsto e'_2 \\
 \text{^}(\text{str}[s_1]; e_2) &\mapsto \text{^}(\text{str}[s_1]; e'_2) \quad \text{D.5} \\
 s_1\text{^}s_2 = s_3 \\
 \text{^}(\text{str}[s_1]; \text{str}[s_2]) &\mapsto \text{str}[s_3] \quad \text{D.6}
\end{align*}
\]
Dynamic Semantics – Let Expressions

\[
\begin{align*}
\text{let}(x; e_1; e_2) & \rightsquigarrow \text{let}(x; e_1'; e_2) & \text{D.7} \\
\frac{e_1 \leftrightarrow e_1'}{\text{let}(x; e_1; e_2) \rightsquigarrow \text{let}(x; e_1'; e_2)} \\
\frac{e_1 \text{ value}}{\text{let}(x; e_1; e_2) \rightsquigarrow [e_1/x]e_2} & \text{D.8}
\end{align*}
\]
If e is a well-typed expression that is not a value, then performing an evaluation step on e does not change its type.

Formally, if $e : \tau$ and $e \mapsto e'$, then $e' : \tau$.
Safety Theorem – Preservation

If e is a well-typed expression that is not a value, then performing an evaluation step on e does not change its type.

Formally, if $e : \tau$ and $e \mapsto e'$, then $e' : \tau$.

Relates the compile-time analysis (type checking rules) with the run-time behavior (evaluation rules).

Important property for real programming languages.
What if Java did not preserve types during evaluation?

```java
int x;     // 4 bytes in Java
double y;  // 8 bytes in Java
```

What if this evaluated to a double?
Preservation Proof – Addition Case 1

Proof by induction on the possible typing and evaluation combinations.

Case: (T.4, D.3)

\[
\begin{align*}
\text{num}[n_1]: \text{num} & \quad \text{num}[n_2]: \text{num} \\
+ (\text{num}[n_1]; \text{num}[n_2]): \text{num} & \quad \text{T.4}
\end{align*}
\]

\[
\begin{align*}
n_1 + n_2 &= n_3 \\
+ (\text{num}[n_1]; \text{num}[n_2]) &\rightarrow \text{num}[n_3] \quad \text{D.3}
\end{align*}
\]

Using rule T.1:

\[
\begin{align*}
\text{num}[n_3]: \text{num} & \quad \text{T.1}
\end{align*}
\]
Case: (T.4, D.1)

\[
\frac{e_1: \text{num} \quad e_2: \text{num}}{+(e_1; e_2): \text{num}} \quad \text{T.4}
\]

\[
\frac{e_1 \mapsto e_1'}{+(e_1; e_2) \mapsto +(e_1'; e_2)} \quad \text{D.1}
\]

We assume preservation holds for subexpressions. Hence, by the \textbf{inductive hypothesis}, \(e_1: \text{num}\) and \(e_1 \mapsto e_1'\) implies \(e_1': \text{num}\). Rule T.4 gives us:

\[
\frac{e_1': \text{num} \quad e_2: \text{num}}{+(e_1'; e_2): \text{num}} \quad \text{T.4}
\]

\[
\triangle
\]
Preservation Proof – Addition Case 3

Case: \((T.4, D.2)\)

\[
\begin{align*}
\text{num} [n_1] & : \text{num} & e_2 & : \text{num} \\
\frac{\text{num} [n_1] + (\text{num} [n_1]; e_2) : \text{num}}{T.4} \\
\text{e}_2 & \mapsto e'_2 \\
\frac{+ (\text{num} [n_1]; e_2) \mapsto + (\text{num} [n_1]; e'_2)}{D.2}
\end{align*}
\]

Since \(e_2 : \text{num} \) and \(e_2 \mapsto e'_2\), by the inductive hypothesis, \(e'_2 : \text{num}\).

Rule \(T.4\) gives us:

\[
\begin{align*}
\text{num} [n_1] & : \text{num} & e'_2 & : \text{num} \\
\frac{\text{num} [n_1] + (\text{num} [n_1]; e'_2) : \text{num}}{T.1} & \frac{T.4}{\text{num} [n_1] : \text{num} + (\text{num} [n_1]; e'_2) : \text{num}}
\end{align*}
\]
Remaining cases in preservation proof apply similar reasoning.

We show one more case involving a common lemma.
For a case in the preservation proof, we need the **Substitution Lemma**:

In words, we can substitute subexpressions that are of the same type in an expression e without changing the type of e.

Formally:

If $\Gamma \vdash e' : \tau'$ and $\Gamma, y : \tau' \vdash e : \tau$, then $\Gamma \vdash [e' \, / \, y]e : \tau$.

Proof of this lemma by induction on the structure of e.

Substitution Lemma
For a case in the preservation proof, we need the **Substitution Lemma**:

In words, we can substitute subexpressions that are of the same type in an expression e without changing the type of e.

Formally:
If $\Gamma \vdash e' : \tau'$ and $\Gamma, y : \tau' \vdash e : \tau$, then $\Gamma \vdash [e'/y]e : \tau$.

Proof of this lemma by induction on the structure of e.
Preservation Proof – Let Case

Case: (T.6, D.8)

\[
\frac{e_1 : \tau_1 \quad x : \tau_1 \vdash e_2 : \tau_2}{\text{let}(x; e_1; e_2) : \tau_2} \quad \text{T.6}
\]

\[
\frac{\text{e_1 value}}{\text{let}(x; e_1; e_2) \mapsto [e_1/x]e_2} \quad \text{D.8}
\]

Since \(e_1 : \tau_1\) and \(x : \tau_1 \vdash e_2 : \tau_2\), by substitution lemma, we have \([e_1/x]e_2 : \tau_2\). □

We have completed the proof of preservation!
Preservation + Progress = Type Safety

- Progress theorem and proof presented in the paper.
Type Safety

- Preservation + Progress = Type Safety
 - Progress theorem and proof presented in them paper.
- Type safety ensure program behavior is well-defined throughout its execution.

Proving language properties are important (e.g. ruling out certain errors, publishing).
But proofs are long, error prone, and difficult to validate.
Automated support for deriving proofs and checking proofs of language properties.

John Altidor
Type Safety

- Preservation + Progress = Type Safety
 - Progress theorem and proof presented in them paper.
- Type safety ensure program behavior is well-defined throughout its execution.
- Proving language properties are important (e.g. ruling out certain errors, publishing).
Type Safety

- Preservation + Progress = Type Safety
 - Progress theorem and proof presented in the paper.

- Type safety ensure program behavior is well-defined throughout its execution.

- Proving language properties are important (e.g. ruling out certain errors, publishing).

- But proofs are long, error prone, and difficult to validate.

- Automated support for deriving proofs and checking proofs of language properties.
 - Twelf, Coq, Isabelle, Agda, ...
Programming languages can be defined using formal mathematical specification.

- Which programs are allowed.
- How a program executes.

Formal specification enables proving language properties.

Type system = formally defined language with types.

Type safety theorems (e.g. preservation) establish relationship between compile-time analysis and run-time behavior.