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Abstract

The principles for designing and building shared dis-
tributed computing environments are still evolving: to-
day, there exist a myriad of environments targeting dif-
ferent applications serving different user communities.
NSF’s GENI initiative proposes a new shared environ-
ment to serve as an open testbed for designing and build-
ing a Future Internet. The design of GENI, along with
other distributed computing environments, must confront
core OS issues of isolation, coordinated multiplexing of
hardware resources, and abstractions for distributed com-
puting. This paper draws parallels to the extensible OS
“kernel wars” of the past, and considers how architec-
tural lessons from that time apply to an Internet OS. Our
view echoes, in key respects, the principles of Exokernel
a decade ago: the common core of an Internet OS should
concern itself narrowly with physical resource manage-
ment. We refer to this common core asunderware to
emphasize that it runsunderneath existing programming
environments for distributed computing.

1 Introduction
NSF’s GENI initiative1 envisions an international net-
work testbed facility with a software framework to multi-
plex network resources—including clusters, storage, and
other edge resources—among experimental prototypes
for a new generation of network applications and ser-
vices. GENI is both a shared testbed and a software
architecture that confronts core OS issues of isolation,
coordinated multiplexing of hardware resources, and ab-
stractions for distributed computing. GENI calls for a
fresh look at how well-studied OS principles apply to
this new environment: how do we architect an OS for the
future Internet? It must provide a platform for planetary-
scale applications not yet imagined, absorb technologies
not yet invented, and sustain decades of growth and “dis-
ruptive innovation” without fracturing or collapsing un-
der its own weight. It is crucial that we get it right.

In this paper, we draw parallels to the extensible OS
“kernel wars” that played out in the 1980s and 1990s (and
yet lives on). We consider how architectural lessons from
that time may apply to an Internet OS. The landscape

1http://www.geni.net
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Figure 1: Distributed computing environments, such as Planet-
Lab and Globus Grids, are built above machine-level resource
abstractions obtained from infrastructure providers through the
underware control plane.

of Internet computing today is analogous in key ways.
There are multiple existing platforms for resource shar-
ing and distributed computing with large user communi-
ties (e.g., PlanetLab [5] and grid systems [13]). We are
again searching for an evolutionary path that preserves
and enhances existing programming environments, ac-
commodates innovation in key system functions, and
preserves the unity and coherence of a common hardware
platform. Finding the elemental common abstractions or
“wasp waist” of the architecture that supports all of its
moving parts remains an elusive goal.

Our thinking leads us to a view that echoes, in key
respects, the principles of Exokernel [11] a decade ago:
the common core of an Internet OS should concern itself
narrowly with physical resource management. An Inter-
net OS must host multiple programming environments
(application OSes) built above machine-level resource
abstractions, and multiplex hardware resources among
those environments, as shown in Figure 1. We contend
that an extensible, abstraction-free resource management
layer is a cornerstone of Internet OSes. We refer to this
layer asunderware to emphasize that it runsunderneath
the programming environments for distributed comput-
ing, which are implemented in node OSes, application-
level servers, and “middleware” layers that mediate be-
tween applications and the node OS.

We are experimenting with an underware control plane
architecture to allocate shared networked resources con-
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Figure 2: Policies for allocating hardware resources are out-
side the underware resource control plane. Resource providers
control the policies by which resources are used.

tributed by autonomous providers, and a prototype called
Shirako [17]. Shirako reflects core principles also present
in Exokernel: in particular, resource allocation and revo-
cation are explicit and visible to allow hosted environ-
ments to control their allocations and adapt to changing
resources. In previous work we have illustrated how to
use the Shirako control plane to host multiple indepen-
dent Globus grid instances on shared networked clusters,
with adaptive, dynamic resource control [25]. For this
paper we have used Shirako to donate nodes to Planet-
Lab and to host independent instances of PlanetLab (My-
PLC). We summarize what it took to do this, why it is
important, and some issues it raises.

Underware should support extensible policies for re-
source allocation: this flexibility is more important for
an Internet OS than it was for a node OS, where the fo-
cus on extensible resource management was feared to be
“leading us astray” [10]. An Internet OS coordinates re-
sources from multiple autonomous resource owners who
must have a means to specify, implement, and harmonize
policies for local resource management, and control the
terms by which they contribute resources and the ways
those resources are used. Figure 2 shows that policies
reside outside the underware control plane and within
the resource owners. This policy control is essential
for the system to be sustainable: it must provide incen-
tives to contribute and adequate protection for contribu-
tors. In addition, effective resource control is required
for mission-critical applications (e.g., Internet 911 and
disaster response). At the same time, resource manage-
ment is coarser-grained, so the overhead concerns that
made the problem so difficult for extensible kernels are
not as daunting.

Shirako is designed to work with different technolo-
gies for virtualization of underlying resources, e.g., vir-
tual machines. We may consider these “underware” as
well, but in this paper we focus on the control plane ar-
chitecture, and leave as an open question how these prin-
ciples might apply to virtualization technologies.

2 A Brief History of the Kernel Wars
Operating systems serve at least two purposes: they man-
age physical resources, and they support programming
abstractions (e.g., processes, threads, files) that are the
building blocks of applications. These functions are
closely intertwined. In hindsight, the sweep of research
on microkernels and extensible kernels can be seen as an
effort to separate them to the maximum extent possible.

Early microkernel research (e.g., [1]) decoupled the
programming API from the kernel, which was limited to
a set of low-level, neutral abstractions suitable for imple-
menting multiple OS APIs or “personalities” in servers
running in user mode. Among the claimed benefits of this
approach were a minimal (and hence more secure and re-
liable) trusted core and support for multiple replaceable
OS personalities on a common hardware base.

Some microkernel systems extended the kernel API to
allow OS subsystems more control over resource man-
agement. For example, Mach supported upcall inter-
faces from the kernel to user-level subsystems, enabling
them to interpose on basic OS functions such as paging.
Despite the problem of liability inversion [16], external
pagers were used to build several advanced application
environments. However, they fell short of allowing con-
trol over physical resource allocation (e.g., victim selec-
tion for page replacement).

With the kernel interface liberated from the need to
support an easily usable API, several projects devised
interfaces that would allow OS subsystems—or at least
libraries—full control over the physical resources allo-
cated to them by the kernel, e.g., Scheduler Activa-
tions [4] and Exokernel [11]. The approach was to ex-
pose machine-level abstractions (e.g., processors) at the
kernel interface, and leave the guest to implement pro-
gramming abstractions (e.g., threads) above them. Exok-
ernel proposed to “exterminate OS abstractions” within
the kernel. A key principle of these systems wasvis-
ible allocation and revocation: the core should expose
resource allocation decisions to the OS instances so they
can adapt and notify any affected applications.

A further step was to allow user-level components
to extend low-level physical resource arbitration across
multiple competing applications. The frequent interac-
tions between the kernel and its extensions introduced
difficult safety and performance concerns. One solu-
tion was to inject extensions into the kernel, with various
mechanisms to verify and sandbox them (e.g., SPIN [7]).
These ideas were never widely deployed for a number of
reasons [10]. In retrospect, one reason is that interposing
on fine-grained resource management is expensive, and
node resources became cheap enough to be dedicated or
partitioned at a coarse grain.

Recently, virtual machines have become popular for
partitioning resources at a coarser grain. Multiplexing



entire OS instances with little or no modification, and al-
locating resources between them using a machine-level
abstraction (VMs bound to slivers), significantly reduces
the overhead required to interpose on resource manage-
ment compared with multiplexing at the process-level.
In fact, Hand et al. [16] argue that virtual machine hy-
pervisors are simply a point in the microkernel design
space that avoid many of the problems inherent to micro-
kernels (e.g., liability inversion, poor IPC performance)
because they multiplex entire OS instances that do not
depend on each other and communicate sparingly along
narrow well-defined interfaces.

Hypervisors and virtualization are key building blocks
for resource-controlled underware. We adopt the Exok-
ernel principles—physical resource management based
on machine-level abstractions with visible allocation and
revocation of resources—-as a basis for managing re-
sources at a coarser grain (e.g., VM slivers) in large in-
frastructures.

3 Internet Operating Systems
As with node kernels, the architecture of Internet oper-
ating systems involves two different but intertwined is-
sues: resource allocation and programming model. We
contend that any viable architecture for an Internet OS
should be free of resource allocation policy. There is
much discussion about allocation policy (e.g., economic
models and virtual currencies?), but there is no one-size-
fits-all policy. Thus it must be possible to change these
policies or use different allocation approaches in differ-
ent parts of the infrastructure.

The architecture should also avoid constraining the
programming model. Researchers have put forward sev-
eral competing systems; we may view them as “OS
personalities” for distributed computing on shared re-
sources, with models and abstractions that differ sub-
tly. We want to run multiple environments over com-
mon hardware, in such a way that resource owners can
redeploy hardware easily from one environment to an-
other. This “pluralist” approach has a familiar justi-
fication (e.g., [8, 12]). Given the wide diversity of
needs among users, it is useless to wait for one environ-
ment to “win”. Also, pluralism enables innovation and
customization—we want a thousand flowers to bloom,
not just one.

These goals are similar to the goals for microkernels
and extensible kernels. They are more significant now
because the resources are networked, so there must be
a common set of protocols to enable resource sharing
across the system, subject to policy control. The policies
are now defined by multiple stakeholders who operate or
manage different parts of the infrastructure, and not just
by an OS kernel and guest.

In our approach, resource control planeunderware al-

locates resources to different platform “flavors” or “per-
sonalities”. In contrast to middleware, underware is soft-
ware that resides, conceptually, underneath the operat-
ing systems. Its primary role is to coordinate and con-
trol all software, including the operating system as well
as any middleware, that runs on the hardware allocated
to the different environments (slices). As with exoker-
nel (and hypervisors), the guest environments are free to
implement their own higher-level abstractions and ser-
vices (Figure 1) above machine-level resource abstrac-
tions provided by the underware.

3.1 Examples: Globus and PlanetLab
We consider two well-known examples of distributed
computing systems: grid computing with Globus and
PlanetLab. These platforms are “moving targets” that
are evolving to incorporate new technology and new ca-
pabilities. Among the key architectural issues are: who
controls the hardware allocation, how is it exposed, and
what components are replaceable.

Globus grids support familiar abstractions: they al-
low users to run their jobs and workflows on somebody
else’s operating system. Distribution is seen as a nec-
essary evil to use remote resources. Globus is middle-
ware that runs above operating systems installed by the
resource owners; Globus sacrifices control over the OS to
enable some degree of heterogeneity. It derives from the
“metacomputing” idea, which introduces standard pro-
tocols and API libraries to weld these diverse resources
and diverse operating systems into a uniform execution
platform. Globus also provides services to establish a
common notion of identity, a common distributed mid-
dleware for routing jobs and scheduling them on local
resources.

PlanetLab is designed to support large-scale network
services. They run continously, but on varying resource
allotments, and they need to adapt. PlanetLab mandates
uniformity of operating systems and physical node con-
figurations across the system. It provides abstractions
and system services (e.g., distributed virtualization, re-
source discovery, monitoring) to enable deployment of
widely distributed applications that control their own
communication patterns and overlay topology.

3.2 Architectural Choices
Our concern is not with the programming models and
features, but with the core architectural choices for man-
aging physical resources and trust.

Globus provides a uniform programming model, but
because it is middleware, and does not control operat-
ing systems or hardware resources, it has limited control
over resource management. QoS, reservations, and flexi-
ble site control are important for grid computing, but they
have been elusive in the practice. The problem is that



Globus can only control when to submit jobs to queues
or operating systems; it cannot predict or control what re-
sources are allocated by the lower layer, unless the lower
layer provides those hooks (in our proposal those func-
tions are provided by the underware).

In contrast, PlanetLab is a distributed operating sys-
tem designed to control a set of dedicated hardware re-
sources, which it controls and images centrally. Much
of the common API is provided by a Linux kernel flavor
mandated by PlanetLab. The abstractions are OS abstrac-
tions: local file name space, processes, and a Unix/ssh se-
curity model with keys controlled by PlanetLab Central
(PLC). Much of the research focus has been on extending
the OS to virtualize these abstractions to isolate multiple
virtual servers running on the same physical server [5].

Architecturally, PlanetLab has made similar choices to
Mach. Since it exports OS-level abstractions, PlanetLab
can also support a wide range of hosted environments,
including rich middleware environments such as Globus.
PlanetLab has taken the first step of extensibility from the
microkernel progression with its emphasis on “unbun-
dled management” of infrastructure services. Unbundled
management defines key system interfaces to enable al-
ternative implementations of foundational infrastructure
services outside of the system’s trusted core. That en-
ables evolution, and a competitive market for extensions.

But like Mach, PlanetLab retains basic resource man-
agement in the core and does not expose its resource
allocation choices or allow significant control over pol-
icy. It unbundles some resource management functions
to subsystems, but only with the consent of the central
point of trust (PLC). For example, a contributing re-
source provider site cannot change the resource alloca-
tion policy for its own resources without the consent of
PLC.

PlanetLab established a “best effort” resource manage-
ment model as a fundamental architectural choice. At the
earliest meetings it was observed that any stronger model
requires admission control, which is a barrier to use.
PlanetLab papers have also argued that it is a good choice
for PlanetLab because it is underprovisioned, claiming
that conservative resource allocation is undesirable be-
cause it wastes resources, and exposing machine abstrac-
tions or multiple OS instances (e.g., using Xen instead
of vservers) consumes too much memory. It has also
been stated that the best-effort model mirrors the reality
of the current Internet, in which edge resources and tran-
sit are unreliable. A best-effort model forces applications
to evolve the means to adapt reactively to whatever con-
fronts them, which is a good skill for any long-running
network service to have in a dangerous world.

This philosophy is in keeping with Butler Lampson’s
hints to keep it simple and keep secrets, i.e., don’t make
promises to applications that you might not keep. But

at the same time PlanetLab users do have expectations
about stability, which was presented as a goal and quan-
tified in the recent PlanetLab paper [24]. As one exam-
ple, it is considered bad manners to withdraw a node
from PlanetLab without warning, but PlanetLab’s ab-
stractions do not provide a means to deliver such a warn-
ing other than to broadcast on an e-mail list. In addition
to complicating maintenance, this limitation discourages
cluster sites from contributing resources to PlanetLab on
a temporary basis. PlanetLab has recently added pro-
grammatic APIs to contribute and withdraw machines,
but warn against their casual use. More importantly,
although best-effort is a reasonable policy choice and
should not be excluded, it is too limiting as a basis for
an Internet operating system. Some applications require
predictable service quality, which must be supported “at
the bottom or not at all” [9].

4 Shirako: Clean Underware
The Shirako control plane [17] runs as a collection of
servers on behalf of resource providers, hosted envi-
ronments (e.g., guests such as Globus or PlanetLab),
and brokers that encapsulate resource arbitration policy.
Guests interact with resource servers to obtainlease con-
tracts for resources with a specified type, attributes, and
duration. Shirako does not constrain the nature of the re-
sources or contracts—however, we have focused our ef-
forts on allocating cluster resources instantiated as blocks
of physical or virtual machines. Users are free to select
kernels or install software on the nodes to integrate them
into the guest environment. Shirako is compatible with
self-certifying secure tickets and accountable delegation
following the SHARP framework [14].

Leases are a form of visible resource allocation and
revocation advocated with Exokernel. The Shirako leas-
ing core upcalls prologue/epilogue actions in the guest
on lease state transitions to notify it of changes to the
resource allotment. The upcalls provide a hook for mid-
dleware environments or other guest platforms to manage
their resources. We have used Shirako to host dynamic
instances of several systems:

PlanetLab. MyPLC is a downloadable PlanetLab for
creating and managing new PlanetLab instances. We
completed the integration to run PlanetLab kernels on
Xen virtual machines; this required minor modifications
to the PlanetLab boot process along with a recent patch
to enablekexec in Xen-capable kernels. We wrote a small
wrapper that leases resources from a Shirako broker and
instantiates a MyPLC central server and one or more PL
hosts. It uses the new PLC API to add and remove nodes
from the MyPLC instance. This system could be used to
add and remove local machines from the public Planet-
Lab.

Globus grids. In recent work we showed how Globus-
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Figure 3: MyPLC and Jaws obtaining Xen virtual machines
from the Shirako underware. The underware manages sharing
of hardware resources between MyPLC and Jaws with a simple
policy: MyPLC gets any resources not used by Jaws.

based grids can lease resources from networked clusters
through Shirako [25]. The underware layer makes it pos-
sible for a controller to support dynamic provisioning,
advance reservations, and site control over resource shar-
ing without modifying Globus itself.

Jaws. Jaws is a new batch scheduler that uses Shi-
rako to run batch jobs in their own resource-isolated Xen
virtual machines; it uses the resource isolation provided
by Xen to actively learn models mapping performance
(e.g., job runtime) to resource profiles [26]. Jaws is an
example of a novel service that requires explicit resource
allocation/revocation and strict resource isolation.

4.1 Illustration
To illustrate the role of underware we crafted a simple
demonstration using instances of MyPLC and Jaws on
a shared cluster. PlanetLab is not sufficient as a foun-
dation for Jaws: resources can neither be isolated nor
scheduled—Jaws requires strong resource isolation to
learn accurate performance models.

Figure 3 depicts the number of VMs allocated to
Shirako-enabled MyPLC and Jaws in the days leading
up to this deadline. Jaws users submitted a few bursts
of jobs to collect data for another impending paper dead-
line, and received priority to reclaim nodes from MyPLC
as their leases expire, according to local policy.

The key points from this demonstration are that
(1) PlanetLab is not a sufficient platform for all
environments—especially those requiring strict resource
isolation (see also recent work on VINI [6])—and (2) we
were able to, relatively easily, port PlanetLab’s platform
to use the Shirako underware to share hardware resources
with a different platform.

While simple, this illustration raises several issues.
The next subsection discusses the impact of a dynamic
PlanetLab that provisions servers on-demand to meet ex-

cess load.

4.2 Discussion

An underware-enabled PlanetLab requires new logic to
determinewhen to request new resources,how much to
request, and forhow long. The request policy may derive
from monitoring the testbed (i.e., using CoMon [23]) to
detect when resources are scarce, as often occurs around
conference deadlines, and pro-actively adding resources
to satisfy users. Monitoring resource usage is a good
first-order approximation of resource demands, but as re-
source utilization nears 100% it is impossible to quantify
the need for additional capacity.

PlanetLab differs from grid environments that can use
queue size, along with data from previously executed
jobs, to determine the need for additional capacity. As
an initial solution PlanetLab may provide an interface
for users or applications to log their desire for more re-
sources in order to provide hints about application re-
source requirements to better guide request policy. In
either case, for PlanetLab applications to take advantage
of new capacity they must adapt to incorporate the re-
sources not available at startup.

Adding resources to PlanetLab pro-actively may pre-
vent periods of high resource contention without re-
quiring PlanetLab to be unnecessarily over-provisioned.
PlanetLab applications and services will benefit, indi-
rectly, if they can adapt to use less loaded resources as
they are added. It remains to be seen how robust cur-
rent, long-lived PlanetLab services are to an increased
level of node-churn that would occur if nodes are added
and removed on-demand. As an initial solution we pro-
pose adding lease times to PlanetLab’sAdmGetNodes
function: applications may use an XML-RPC interface
to determine when a node is currently scheduled for re-
moval from PlanetLab. Note that even today nodes leave
PlanetLab for maintenance or due to failures—warnings
about removal are broadcast to users over email.

PlanetLab claims that applications must be robust to
inherent wide-area failures (i.e., “bad tracks make for
good trains”); the idea being that network failures and
occasional node failures will occur (and, in the past, have
occured frequently on PlanetLab) and that long-lived ap-
plications and services must adapt to survive. That said,
PlanetLab’s stability has continually increased over time
making node failures much less likely. In any case, Plan-
etLab’s best-effort model prevents sufficiently adaptive
applications from receiving any guarantee of their level
of resource allotment preventing an application from sup-
porting any higher-level service level agreements.

In the next section we discuss how to support adaptive,
un-modified applications on PlanetLab and the implica-
tions for the underware control plane.



Component Description

Application Applications may be jobs (as often executed on the Grid) or long-lived distributed services. Ap-
plications have resource requirements that must be satisfied as they execute—most applications
do not contain logic for adapting their resource allotment based on prevailing conditions.

Plush Plush controls a distributed application’s lifecycle: it deploys the application, monitors its sta-
tus, and adapts to new conditions. Most importantly, it requires no changes to the application
itself. Plush requires resources to deploy an application:it may use PlanetLab resources or may
obtain them from the underware control plane (Shirako) directly.

PlanetLab Provides a shared pool of resources available for applications; PlanetLab provides no resource
guarantees, but does provide a consistent software stack for development and a world-wide re-
source presence. PlanetLab may obtain resources from an underware control plane that focuses
solely on physical resource management.

Shirako An example of the underware control plane. Shirako focuses narrowly on physical resource
management: currently it allows middleware environments to obtain virtual machines on which
they can control the entire software stack, including the OS. Shirako is federated: resource
owners control how they donate resources to other environments.

Table 1: A description of the components discussed in Section 4, and their relation to one another.

4.3 Plush
To provide application adaptivity we use Plush [2]: a dis-
tributed execution environment originally developed to
ease application and service deployment on PlanetLab.
Plush allows unmodified applications under its control to
adapt to PlanetLab’s volatile environment. It uses a re-
source discovery service (SWORD [21]) to match (and
re-match) an application to a suitable set of resources,
and abstract application deployment and execution us-
ing an XML-specification that describes software instal-
lation, process execution workflows (i.e., the process ex-
ecution order), and failure modes (i.e., what should I do
if something fails). Plush exports an XML-RPC inter-
face that allows control software to add or remove re-
source instances from a running application at any time;
although, applications must include support for using re-
sources once added.

Table 1 provides a description of the key software ar-
tifacts. To start, an application is written by an end user
and deployed on a set of resources. The application may
be a job that computes for some period of time and ter-
minates, or it may be a long-lived service with its own
user-base such as Coral or OpenDHT. Plush is responsi-
ble for deploying, monitoring, and adjusting the applica-
tion’s resource allotment over time to contend with de-
mands from competing applications or workload surges.
PlanetLab is an available pool of resources, with con-
sistent per-node operating system, disk image, and user
identity, that may be used by Plush to execute the ap-
plication. Shirako is an example of the underware con-
trol plane from which PlanetLab may obtain “raw” hard-
ware resources and boot PlanetLab-specific kernels and
software. Note that Plush may obtain resources from
the underware control plane directly, but either Plush, or
the application, assumes the responsibility of providing
the software stack. Figure 4 depicts Plush obtaining re-
sources for an application from the underware and also

from PlanetLab; Plush is bound to the application, but
may obtain resources from a variety of sources.

Applications that use Plush can adapt to the current
conditions on PlanetLab. For example, since PlanetLab
provides only best-effort resource guarantees the avail-
ability of CPU, memory, or disk on any node may de-
crease dramatically at any time; Plush is able to recog-
nize this and transfer (or migrate) application instances to
new, less-loaded nodes. As described in [22], distributed
PlanetLab applications often may “migrate” nodes by
stopping processes on one node and starting processes
on another; the applications have support for handling
the departure of one instance and the arrival of another.
While Plush-enabled PlanetLab applications can migrate
to the “best” set of resources they can do nothing if Plan-
etLab has little or no available resources. An underware-
enabled PlanetLab may request more resources to pro-
vide excess capacity; likewise, an over-provisioned Plan-
etLab may release resources for other uses instead of
wasting them.

Even if PlanetLab adds additional capacity on-demand
to meet load spikes applications have no guarantees: ad-
ditional resources will be time-shared equally between
competing applications. To support applications that re-
quire guarantees, we extended Plush to interface with
the Shirako underware API and request resource-isolated
virtual machines. Plush hides the underlying complex-
ity of Shirako and presents to the user the same simple
shell interface that a PlanetLab Plush user sees—in some
sense, Plush acts like a minimalist OS that abstracts the
underlying set of resources whether they be from Planet-
Lab or Shirako.

Interfacing Plush with Shirako allows easy experimen-
tation with many existing applications, originally pack-
aged by Plush users for PlanetLab, on Shirako. In par-
ticular, we have experimented with Bullet [19], a typi-
cal PlanetLab application, to see if it can benefit from
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Figure 4: Plush controls an application’s lifecycle: it deploys
an application on a set of resources, monitors its progress,and
adapts its resource allotment in response to competition, fail-
ures, or flash-crowds. Plush can obtain resources from differ-
ent sources: in this figure, Plush deploys an application on re-
sources available on PlanetLab where it is provided a consis-
tent software stack (i.e. OS and disk image) and also obtains
resources the underware control plane directly (potentially pro-
viding its own application-specific software stack).

the increased resource control and isolation provided by
Shirako. Our results, thus far, have been mixed: clearly
changing resource allotments can improve performance,
however, we have found that working knowledge of the
distributed application is required to know on what ma-
chine to adjust resources, what resource to adjust, when
to adjust the resources, and by how much. Effectively us-
ing explicit resource allocation and revocation for most
PlanetLab applications is a research challenge in its own
right—as a result underware, itself, is not sufficient as a
platform for quickly deploying and testing experimental
overlay networks.

5 Related

Underware enables a range of capabilities with respect to
virtualization and resource isolation, Internet Infrastruc-
tures, federation, and autonomic computing.

Related Systems There are other systems that broadly
fit our notion of underware; for instance, the XenoServer
platform for global computing [20] is similar in that
it offers virtual machines for use by applications.
XenoServer applications use a resource discovery service
to locate available resources at cluster sites. Once appli-
cations have been approved to use resources at a cluster
site they are free to load any environment (including the
OS) on the virtual machine.

Virtualization and Isolation As virtualization tech-
nologies become more prevalent it becomes increasingly
more important to provide the hooks to leverage virtu-
alization. Virtual machines have been a driving force in
recent years, and in the future, storage virtualization and

network virtualization will become more prevalent. Re-
cent work [15] shows that resource isolation issues still
must be addressed, although we believe the technology is
sufficiently mature to partition resources at coarse gran-
ularities. Underware principles, particularly visible allo-
cation/revocation, may also be applied to virtualization
technology like Xen, however, as with previous work on
extensible operating systems, partitioning at such a fine
grain may not prove beneficial.

Internet Infrastructure Cabo [12] and Plutarch [8]
share our vision of a pluralist Internet that is able to sup-
port multiple Internet architectures. We believe under-
ware is a cornerstone for such an architecture and that
PlanetLab and GENI should adopt a pluralist stance.

A recent paper [3] has recommended nine PlanetLab
design choices to revisit (e.g., for GENI). Seven of them
deal with resource control and flexible management pol-
icy, and could be addressed directly in an underware
layer, as an alternative to adding “barnacles” to the Plan-
etLab architecture. The others deal with new program-
ming abstractions; again, running independent PlanetLab
instances (in provisioned containers) would foster inno-
vation by enabling multiple alternative designs for the
new features in its programming model and APIs. Plan-
etLab is a complex and important system with a large and
growing base of users and software. Resource manage-
ment underware would also enable very different models
for programming applications, without placing so much
pressure on PlanetLab to support the full diversity of ex-
periments envisioned for GENI.

Underware would mitigate the “chaos” that Anderson
and Roscoe [3] claim would ensue if resource owners
were able to decide who manages their nodes, what runs
on them, and the number of resources that are donated.
Note that Anderson and Roscoe advocate more flexible
management despite any short-term chaos it may cause;
underware allows more flexible trust and increased inno-
vation with limited chaos and a clear evolutionary path
for new architectures. In fact, since underware is de-
signed explictly as a dynamic artifact new underware ar-
chitecures can be developed, deployed, and tested using
an existing underware control plane.

Federation We advocate federation at the underware
layer: resource owners export virtualized resources for
use by other middleware environments. Federation at
the underware layer does not preclude federating mid-
dleware, which typically involves extending the middle-
ware environment across multiple resource owners. For
instance, Grids federate by allowing remote users to sub-
mit jobs to local queues. PlanetLab appears to be taking
this approach by extending the distributed virtualization
abstraction across multiple PlanetLab instances [24], al-
though PlanetLab’s federation model is not yet complete.

Autonomic Computing There has been ongoing work



that adapts application and service resource usage to gain
better performance. Oppenheimer et al [22] examine the
benefits of altering placement on PlanetLab to gain ser-
vice performance improvements. Applications on Plan-
etLab can only adjust their placement because the pool
of resources is static.

For environments where resource pools are not static
feedback control can be used to adjust resource usage to
meet higher-level service agreements [18]. Active learn-
ing of application profiles has also been used recently
to build models that map application performance to re-
source allotment [26]. Both of these techniques require
stronger guarantees than currently provided by Planet-
Lab, and are a foundation for autonomic computing.

6 Conclusion

This paper advocates a new underware layer as a cor-
nerstone for an Internet operating system. Underware
focuses narrowly on physical resource management—
allowing hosted environments, such as the Grid or Plan-
etLab, to acquire virtual machines from resources do-
nated by cluster sites. Like exokernel, underware does
not attempt to provide abstractions; instead applications
must provide their own abstractions or use existing mid-
dleware environments that provide abstractions.
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