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Abstract

We prove that tree isomorphism is not expressible in the language �FO � TC �
COUNT�� This is surprising since in the presence of ordering the language captures
NL� whereas tree isomorphism and canonization are in L ��Lin����� Our proof uses an
Ehrenfeucht	Fra
�ss�e game for transitive closure logic with counting �Gr
a�
� IL����

As a corresponding upper bound� we show that tree canonization is expressible in
�FO�COUNT��logn�� The best previous upper bound had been �FO�COUNT��nO����
��DM����� The lower bound remains true for bounded	degree trees� and we show that
for bounded	degree trees counting is not needed in the upper bound� These results are
the �rst separations of the unordered versions of the logical languages for NL� AC�� and
ThC��

Our results were motivated by our conjecture in �EI��� that �FO�TC�COUNT�

LO� � NL� i�e�� that a one	way local ordering su�ced to capture NL� We disprove this
conjecture� but we prove that a two�way local ordering does su�ce� i�e�� �FO � TC �
COUNT� �LO� � NL�

� Introduction

It has been known for some time that for �rst�order logics with ordering� a transitive closure
operator �TC� gives the power of nondeterministic log�space �NL�� Similarly� a deterministic
restriction of transitive closure �DTC� captures deterministic log�space �L��

Fact � ��Imm��� Imm����

�FO � TC� �� � NL � �FO �DTC� �� � L

The ordering is necessary� Indeed without the ordering the parity of the number of vertices
in a graph is not expressible in �FO� TC��

In 	EI
�� we introduced local orderings in graphs as an intermediate step between ordered
and unordered graphs� We showed that the language �FO � DTC � 
LO� extends the
Jumping Automata on Graphs �JAG� model 	CR��� to a more robust complexity class that
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still permits interesting lower bounds on graph reachability� On the other hand� we showed
that the language �FO�TC�
LO� is strong enough to express a total ordering on the set
of vertices reachable from a given vertex� This work had led us to conjecture in 	EI
�� that�
when we add counting� all NL properties are expressible in this logic�

Conjecture ��� ��EI	
�� �FO� TC�COUNT� 
LO� � NL

In the present paper we prove that this conjecture is false� We do so by showing

Theorem ��� �Bounded Degree� Tree Isomorphism is not expressible in �FO � TC �
COUNT��

Theorem 
�� is quite surprising because tree isomorphism is so simple� and order indepen�
dent� and it seemed to require little more than counting plus a limited use of TC� Tree
Isomorphism and even Tree Canonization� are known to be in L 	Lin
��� A Corollary of
Theorem 
�� is that Conjecture 
�
 is false� This is because a 
LO on a tree gives no new
information when edges are directed from the leaves to the root� On the other hand we
prove�

Theorem ��� �FO � TC� COUNT � �LO� � NL

That is� a two�way local ordering plus the ability to count is enough for �FO � TC� to
recognize any NL graph property� The proof of Theorem 
�� involves �rst computing a
canonical ordering on each weakly connected component of the input graph� Next� using
these ordered components� we de�ne an isomorphic graph on the �ordered� number domain�

Coming back to Theorem 
��� we asked� how much descriptive power is needed to express
tree isomorphism in the absence of ordering� We prove the following�

Theorem ��
 Tree Isomorphism and Tree Canonization are expressible in

�FO� COUNT�	logn�

Thus� �rst�order formulas with counting quanti�ers iterated logn times can express canon�
ical forms for any unordered input tree� This improves the previous best upper bound
of �FO � LFP � COUNT� � �FO � COUNT�	nO���� �	DM
���� The proof of Theorem

�� produces an inductive de�nition of the canonical form using counting and a ��� re�
duction argument on trees� Combining Theorems 
�� and 
��� we separate the languages
�FO � TC�COUNT� and �FO� COUNT�	logn��

Corollary ��
 Tree Isomorphism � �FO � COUNT�	logn�� �FO � TC� COUNT�

�Here� by �tree canonization� we mean a function f that� given a tree T � outputs an isomorphic tree T �

on an ordered domain such that for all trees T �� isomorphic to T the same ordered 	canonical
 tree T � is the
output of f �
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Recall that �FO� COUNT� ��	logn� is equal to ThC�� the set of problems recognized by
uniform sequences of polynomial�size� log�depth threshold circuits� 	BIS
��� Furthermore�
for the transitive closure logic� in the presence of ordering� counting quanti�ers give no extra
power� i�e��

�FO � TC�COUNT� �� � �FO � TC� �� � NL

Thus� Corollary 
�� separates the unordered versions of the languages for NL and ThC��
Interestingly� the lower bound of Theorem 
�� is proved for bounded degree trees� For
bounded degree trees we don�t need counting�

Theorem ��� Bounded Degree Tree Isomorphism and Canonization are expressible in �FO�	logn��

Corollary ��� Bounded Degree Tree Isomorphism � �FO�	logn�� �FO� TC�COUNT��

Corollary 
�� tells us that bounded degree tree isomorphism separates the unordered versions
of the languages for NL and AC�� An easy Ehrenfeucht�Fra��ss�e game argument shows that
general tree isomorphism is not expressible in �FO�	logn�� thus general tree isomorphism
separates the unordered versions of the logics for AC� and ThC��

Our results thus give us much new information about the power of ordering and local
ordering in logics for classes low in the NC hierarchy� L� NL� AC�� ThC�� To prove
Theorem 
��� we use an Ehrenfeucht�Fra��ss�e game for the language �FO � TC� COUNT�
�	Gr�a

� IL
���� The lower bound constructs a new kind of winning strategy in which whole
paths are played�

In section �� we provide some background� In section �� we describe the E�F Game and its
correspondence to TC logic with counting� In section �� we prove Theorem 
��� our main
lower bound� In section � we show that two�way locally ordered transitive closure logic
corresponds precisely to NL� In section �� we prove Theorems 
�� and 
���

� Background

In this paper our notation follows the conventions of Descriptive Complexity 	Imm
��� See
	Imm��� for a survey� 	CFI
�� for discussion of numbers� counting quanti�ers and their
associated Ehrenfeucht�Fra��ss�e games �hereafter called E�F games�� and 	EI
�� for needed
background and results concerning local orderings�

As usual� an ordered logical structure of type � � hR�� � � � � Rk� c�� � � � � cti is a tuple A �
hf
� � � � � ng� RA

� � � � � � R
A
k � c

A
� � � � � � c

A
t i� The �rst�order language with ordering� denoted ex�

plicitly as �FO� ��� has a numeric predicate �� denoting the usual total ordering on the
universe jAj � f
� � � � � ng� When ordering is not present� we will assume in this paper that
we have a second domain of numbers�

A � hf
� � � � � ng� fv�� � � � � vng� R
A
� � � � � � R

A
k � c

A
� � � � � � c

A
t i

The symbols of � are restricted to the domain fv�� � � � � vng� and � is de�ned on numbers
f
� � � � � ng� For such structures with numbers we can add counting quanti�ers� Let the
meaning of the formula�

��i x���x�
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be that there exist at least i distinct points x such that ��x�� where i here is a free variable
that ranges over the number domain� and x is bound� The �rst�order language with counting
quanti�ers is denoted �FO � COUNT��

We also consider transitive closure operators TC and DTC� �TCx����xkx
�
�
���x�

k
�� denotes the

re�exive� transitive closure of the binary relation ���x� �x��� Let �FO � TC� be the closure
of �rst�order logic with arbitrary occurrences of TC� DTC is the deterministic transitive
closure in which all multiple outgoing edges are deleted�

�DTC�x��y��
def
� �TC�x��y�d�

�d��x� �y�
def
� ���x� �y�� ���z�����x� �z�� �y � �z�

Recall that �FO � DTC� �� and �FO � TC� �� capture classes L and NL� respectively
�Fact 
��

In our study of graph structures there are intermediate forms of ordering that one could
augment a structure with besides a total ordering� Two of these� One�Way Local Ordering
�denoted 
LO� and Two�way Local Ordering �denoted �LO� were studied in 	EI
���

De�nition ��� One�Way Local Ordering� Consider a graph

G � hf
� �� � � � � ng� fv�� v�� � � � � vng��� ��n� E� F� s� ti

in which F is a ternary relation on vertices� Suppose that for each vertex� v� F �v� �� ��
is a total ordering on the vertices w for which there is an edge from v to w� Then F is
called a one�way local ordering on �the outgoing edges of� G� and G is called a one�way
locally ordered graph� We denote logics over graph structures augmented with one�way local
ordering with the abbreviation 
LO�

A two�way local ordering �denoted �LO� is just a one�way local ordering� H � on the incoming
edges to each vertex� in addition to the one�way local ordering� F � on the outgoing edges�
There is no assumption about consistency between F and H �

In 	EI
�� it was shown that �FO � DTC � 
LO� is related to� but strictly more powerful
than a well known structured model for space bounded computation called JAGs 	CR����
It was there also shown that with �FO � TC � 
LO� one can express a total ordering on
all vertices reachable from a particular vertex� It was then conjectured that �FO � TC �

LO�COUNT� � NL� It will follow from our lower bound in section � that this conjecture
is false� However� we shall prove in section � that �FO � TC � �LO � COUNT� � NL�
a�rming a slightly modi�ed version of our original conjecture�

We will be considering expressibility via �rst�order formulas of non�constant size� Recall
that FO	t�n�� denotes the set of properties expressible by �rst�order formulas iterated t�n�
times 	Imm�
�� by a quanti�er block� denoted �QB�� we mean a sequence

�Q�z��M���Q�z��M�� � � ��Qrzr�Mr�

where each Qi is a quanti�er and each Mi is a quanti�er free formula�

De�nition ��� FO�t�n�� denotes the set of propertiesK for which there exists a quantifier
block 	QB� and a quanti�er�free formula M� such that

A � K �	 A j� 	QB�t�jAj�M�
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� Ehrenfeucht�Fra��ss�e Game for TC logic with Counting

In this section we describe an E�F game for the logic �FO�TC�COUNT� �	Gr�a

� IL
���
see also 	CM
�� for a di�erent E�F game for TC�� We will use it in section � to prove a
lower bound on tree�isomorphism� We �rst recall some notation for similar games such as
the Ck�game from 	IL
�� CFI
���

For a formula � � �FO � TC � COUNT�� let nd��� denote the nesting depth� the
combination of quanti�er depth and TC depth for �� de�ned inductively by�

nd���


�����
����

� if � is atomic
nd��� if � � ��
max�nd���� nd���� if � � � � �
nd��� � 
 if � � �TC�� or � � ��i x��

For t a term �we only deal with relational vocabularies with constants� thus t is either a
constant ck or a variable xj�� let var�t� denote the set of variables that occur in t� The set
of free variables of a formula �� denoted free���� is de�ned inductively by�

free���


������������
�����������

var�t�� 
 var�t�� if � � �t� � t��
var�t�� 
 � � �
 var�tr� if � � R�t�� � � � � tr�
free��� if � � ��
free��� 
 free��� if � � � � �
�free��� n xi� 
 j if � � ��j xi��

�free��� n fx�� � � � � x�kg� 

S�k
i�� var�ti�

if � � �TCx������xk�xk�������x�k ���t�� � � � � t�k�

We use var��� to denote the set of all variables that occur in �� We use A or jAj to
denote the universe of a structure A� For a structure A� we want to de�ne tuples of
elements from A and associate them with variables in our logical language� Our logic has
variables X � fx�� x�� � � �g� We de�ne an assignment for A�  a � X � A to be a partial
function with domain Dom��a� and range Rng��a�� We will say that �A�  a� interprets �
if Dom� a� � free���� For convenience later on� we want the assignment  a to also evaluate
the constants of A� so we extend our de�nition to �a � �X � fc�� � � � � ctg� � A� with
 a�ci� � cAi � Thus� we alway have Dom� a� � fc�� � � � � ctg� We will say that � a� b� is a
p�con�guration if Dom� a� � Dom� b� and jDom� a�j � p� t��

De�nition ��� De�ne �A� �a� �m�p �B��b� to mean� for every formula � interpreted by  a
and  b� with nd��� � m and jvar���j � p� �A�  a� and �B� b� agree on �� i�e��

�A�  a� j� � �	 �B� b� j� �

When  a is empty� i�e�� it evaluates nothing but the constants� we abbreviate �A�  a� by A�
Thus A �m�p B� means A and B agree on all sentences � with nd��� � m and jvar���j � p�

�The additive t is to account for the constants fc�� � � � � ctg in the domain�
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De�nition ��� Partial Isomorphism� Given structures A � hA�RA
� � � � � � R

A
r � c

A
� � � � �c

A
t i

and B � hB�RB
� � � � � � R

B
r � c

B
� � � � � c

B
t i� over the same vocabulary � � and given assignments  a

and  b� de�ne� �a ��PA�B
�b to mean that the induced substructures of A and B generated by

Rng� a� and Rng� b�� respectively� are isomorphic under the mapping induced by  a�xi� ��
 b�xi�� for xi � Dom� a�� In particular� it is necessary that  a�xi� �  a�xj� i�  b�xi� �  b�xj��
for xi� xj � Dom� a��

For  a� an assignment for a structure A� and for a� � A� let �aa�

xi
be the assignment for A

that agrees with  a everywhere except it maps xi to a��

De�nition ��� E�F Game for TC�COUNT� The m round� p pebble E�F game for TC
logic with Counting� denoted� Gm�p��A� �a�� �B��b��� is played between two players called I
and II� and consists of m consecutive rounds� such that at the start and after each round
� a� b� is a p�con�guration� At the start and after each round PLAYER I WINS if  a ���PA�B

 b�
Each round consists of the following�

PLAYER I chooses either�
THE COUNTING MOVE�
Player I chooses a variable xi and
a subset A� of A �or B� of B�

Player II chooses a subset B� of B �A� of A�
such that jA�j � jB�j

Player I picks b� � B� �a� � A��

and sets  b
  b b
�

xi
� a
  a a�

xi
�

Player II responds with a� � A� �b� � B��

and sets  a
  a a�

xi
� b
  b b

�

xi
�

OR
THE TRANSITIVE CLOSURE MOVE�
Player I chooses a constant c � p�� and
�c variables xl� � � � � � xl�c and then chooses
c�tuples a�� � � � � ad in A

�or b�� � � � � bd� in B�� such that
a�� and ad �b� and bd� are already in

Rng� a� �Rng� b���
d �d�� may be arbitrarily large�

Player II chooses c�tuples b�� � � � � bd� in B

�a�� � � � � ad in A� so that  b���b�j� �  a���a�j�

and  b���bd�
j
� �  a���adj � for j � f
� � � � � cg

Player I chooses tuples bj � bj�� �ai � ai���
j � f
� � � � � d� � 
g �i � f
� � � �d� 
g�

and sets  b
  b
bj � bj��
xl� �����xl�c

�or similarly for ai and ai���
Player II responds by choosing ai and ai��
�bj and bj���� for some i � j �

and setting  a
  a ai � ai��
xl� �����xl�c

�similarly for bj � bj���

�



PLAYER II WINS if PLAYER I does not win on any of the m rounds�

We write �A� �a� �m�p �B��b�� to denote the fact that PLAYER II has a winning strategy
in Gm�p��A�  a���B� b��� meaning it can win regardless of the moves made by PLAYER I�

The Counting Move in the above game comes straight from 	IL
�� CFI
��� and essentially
the same TC Move was presented in 	Gr�a

�� The idea behind the TC move is as follows�
Player I� in order to reveal that the two structures disagree on the transitive closure of some
�k�ary formula �� will choose a ��path of k�tuples in one structure� In response� Player II
will answer with a ��path of k�tuples in the other structure� Player I then challenges Player
II by choosing a pair of consecutive tuples on the path chosen by Player II� Player II then
responds to the challenge by choosing a consecutive pair of tuples in the path chosen by
Player I� claiming in essence that any property that Player I could have in mind for the
tuple pair it chose is also satis�ed by the pair chosen by Player II� The game then proceeds
with one less round left to play� The key fact about Gm�p is�

Lemma ��
 For any pair of structures A� B of the same �nite relational vocabulary � � and
for any p�con�guration � a� b��

�A�  a� �m�p �B� b� �	 �A�  a� �m�p �B� b�

Proof 	 We proceed by induction on m�
For the base case� when m � �� clearly� if the substructures induced by  a and  b are isomor�
phic� then no quanti�er�free formula will distinguish them�

For the inductive case� suppose the theorem is true for m� i�e�� that �A�  a� �m�p �B� b� �	
�A�  a� �m�p �B� b�� We want to prove it is true for m� 
�

Suppose �A�  a� �m���p �B� b�� and let � be a depth m� 
 formula�

Case �i�� � � �ixj��

Suppose� without loss of generality� that �A�  a� j� �� Then let PLAYER I pick xj and a

subset A� of A of size i such that� for each a� � A�� �A�  a a�

xj
� j� �� PLAYER II answers

according to its winning strategy with a subset B� of B such that i � jA�j � jB�j� Now� for
any arbitrary b� � B� that PLAYER I chooses� there is an a� � A� such that �A�  a a�

xj
� �m�p

�B� b b�

xj
�� Thus� by induction� �A�  a a�

xj
� j� � � �B� b b�

xj
� j� �� Thus� since for each a� � A��

�A�  a a�

xj
� j� �� we have� for each b� � B�� �B� b b�

xj
� j� �� Hence �B� b� j� �� Thus �A�  a� j�

� �	 �B� b� j� ��

Case �ii�� � � �TC�x� �x� ����
� �n��

Suppose� w�l�o�g�� that �A�  a� j� �� Then let PLAYER I choose �x� �x� and a set of tuples
�
� a�� � � � � ad��� �n� such that �A�  aai�ai��

�x� �x�
� j� �� for i � f
� � � � � d� 
g� PLAYER II answers

�The reason the implication only goes one way in Lemma ��� is that we made the counting move slightly
stronger than the counting quanti
ers� Note that this just makes our lower bound slightly stronger� An
equivalence can be proved if we either 	�
 Increase the power of the language by adding constants for all the
numbers �� � � � � n� or 	�
 Decrease the power of the counting move as follows� Let Player I choose a set A� of
cardinality �a	xi
� a previously chosen number� and force Player II to reply with a set B� of cardinality �b	xi
�
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according to its winning strategy with tuples �
� b�� � � � � �n� Now for any arbitrary bj � bj�� that

PLAYER I chooses there is a pair ai� ai��� such that �A�  aai�ai��
�x� �x�

� �m�p �B� b
bj �bj��

�x� �x�
�� Thus�

by the induction hypothesis� �A�  aai�ai��
�x� �x�

� �m�p �B� b
bj�bj��

�x� �x�
�� Hence� for all j� there is an i

such that �A�  aai�ai��
�x� �x�

� j� � � �B� b
bj�bj��

�x� �x�
� j� �� Hence� since for all i� �A�  aai�ai��

�x� �x�
� j� ��

for all j� �B� b
bj �bj��

�x� �x�
� j� �� Thus� �A�  a� j� � �	 �B� b� j� ��

Case �iii�� � is a boolean combination of forms �i� and �ii�� we only need note that the
!�	 " at the end of the proofs for �i� and �ii� is preserved under boolean combination�

Thus �A�  a� �m���p �B� b��

Observe that for � � �FO � TC � COUNT�� nd��� and jvar���j are �xed with respect
to n� Hence for every such formula �� there is an equivalent formula �� � �FO � TC �
COUNT� such that no variable is ever re�quanti�ed and� moreover� variables are quanti�ed
in successive order� i�e�� the �rst variable quanti�ed in the scope of x�� � � � � xi is xi��� Thus�
in our E�F game Gm�p for �xed m and p� we may restrict PLAYER I�s strategy so that it
always chooses to map� in sequence� the lowest variables that are not already in Dom� a��
We can now alternatively think of  a � �X 
 fc�� � � � ctg� � A as simply a k�tuple �a� where
a� � cA� � � � � � at � cAt and at�� �  a�x��� at�� �  a�x��� � � �� These observations allow us
to simplify the presentation of the lower bound� since we are only concerned with � �
�FO � TC � COUNT�� from now on� we use tuples �a� with the format described
above� to denote �a� and we consider only the formulas and game strategies that

are restricted accordingly�

� Lower Bound for �FO � TC � COUNT�

Let Tree�isomorphism be the set of structures hV� V �� E� E�i such that the relations E and
E� describe isomorphic directed trees on domains V and V �� respectively� Let ��bounded�
Tree�isomorphism be the subset of Tree�isomorphism� where the out�degree on each vertex
is bounded by �� In this section we prove Tree�isomorphism is not expressible in �FO�TC�
COUNT�� More precisely� we prove the stronger result that ��bounded�Tree�isomorphism
is not expressible in �FO� TC� COUNT��

For each i and p� we shall construct trees Al and Bl with the following property� Al and
Bl are not isomorphic but Al �i�p Bl� It will follow from our proof of Theorem ��� that
PLAYER II wins the game between the tree pair hAl� Bli and the tree pair hAl� Ali �where
hA�Bi denotes a structure withA and B de�ned over disjoint domains�� Her strategy will be
to answer each move involving the left component of either pair with the identical element
of the other left component� Moves in the right component are answered according to the
winning strategy for the game on Al and Bl� As we will see� in her winning strategy for Al

and Bl� Player II always matches sets by sets of exactly the same cardinality� and paths by
paths of the same length� Furthermore� in the second half of the transitive closure move�
when Player I chooses tuples bj� bj��� Player II always answers with the same numbered
tuples� aj � aj��� It thus follows that Player II�s combined strategy wins the game on hAl� Bli
and hAl� Ali� Since the �rst pair are not isomorphic and the second pair are isomorphic�
the result follows by Lemma ����
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Figure 
� The Trees Ai and Bi�

We recursively de�ne the directed trees Ai and Bi �Please see Figure 
�� A� and B� are a
vertex and a pair of vertices connected by an edge� respectively� For i � �� Ai is a tree with
a root vertex having as children � Ci� � Di trees� and � Ei trees� Bi is a tree with a root
vertex having as children � Ci� � Di� and � Ei trees� A Ci tree has a root with children� �
Ai�� and � Bi�� trees� A Di tree has a root with� � Ai�� and � Bi�� children� An Ei tree
has a root with � Ai�� and � Bi�� children� It is clear� by induction� that for all i� Ai and
Bi are non�isomorphic�

Note 
�� There are exactly the same number of Ai���s that are descendants� two levels
below� of Ai as there are descending from Bi� Likewise for the number of Bi���s�

Theorem 
�� Aip�� �i�p Bip���

Proof The idea of the game is that at the bottom� Player II must answer A� with A�

but at the top Player II must answer the root Aip�� with Bip��� Player I will try to push
the distinction down the tree toward the leaves� but we will show that Player II can keep
distinctions from moving down more than p levels
 per round�

Let dist�v�w� denote the distance between a pair of vertices� Let depth�v� denote the
depth of a vertex v in a tree� the root being at depth �� Let st�v� denote the subtree rooted
at a vertex v� For a given vertex v in Aip�� �or in Bip���� let the path name of v� denoted
pn�v�� be the string of symbols that denotes the subtrees leading up from v to the root
of the tree� For example� the path name for a vertex at depth � that is at an A subtree
in the tree Bip�� might be ACAEB� For a given path name� pn� let pni denote the path
name with the ��i� 
� right most symbols truncated� Thus� for example� for a path name

�By level we mean those depths in the trees at which A and B subtrees occur�






pn � ACBDBCAEB� pn� � ACB� For vertices v and w in a tree� let lca�v�w� denote
the lowest common ancestor of v and w�

De�nition 
�� �e�t�s�j�� Given a pair of vertices v�� v� in Aip�� and w�� w� in Bip��� we
will say that v� and v� are in exactly the same juxtaposition �e�t�s�j� to each other as
w� and w�� and we denote this by e�t�s�j��v�� v��� �w�� w���� if

dist�lca�v�� v��� v�� � dist�lca�w�� w��� w��

�

dist�lca�v�� v��� v�� � dist�lca�w�� w��� w��

De�nition 
�
 �j�Similar� Given a k�tuple of vertices and numbers �a in Aip�� and a
k�tuple �b in Bip��� we say �a and �b are j�similar if they satisfy the following equivalence
relation�

�a �j
�b � For each l � f
� � � � � kg�

If al is a number then bl is the same number�
Else �i�e�� for vertices��
depth�al� � depth�bl�
pn�al�j � pn�bl�j
For each r � f
� � � � � kg� such that ar and br are vertices�
e�t�s�j���al� ar�� �bl� br��

Note that the equivalence relation is more restrictive for small j� i�e��

 a �j
 b 	  a �j��

 b

Lemma 
�
 In an i round game� given that �a and �b are k�tuples in Aip��

and Bip��� respectively� with i � j� and p � k�

�a �ip�jp
�b �	 �Aip��� �a� �j�p �Bip����b�

Proof The proof proceeds by induction on j� Player II�s winning strategy will be such
that� for both the Counting Move and the TC move� if �a �ip�jp�p

�b before a round� then
�a �ip�jp

�b after the round� where �a and �b have been modi�ed according to the round�

For j � �� we have that �a �ip
�b� Thus� since the vertices in �a have e�t�s�j� to each other as

the vertices in �b� �Aip��� �a� ���p �Bip����b�� Note that this holds regardless of what k is�

Suppose true for j� we will prove it is true for j�
� There are two cases to consider� either
�� PLAYER I�s �rst move is a counting move� or �� PLAYER I�s �rst move is a transitive
closure move�
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�� Counting Move� In the counting move case� we only need the weaker hypothesis
�a �pi�pj��

�b� A one�to�one correspondence� f � is constructed between the vertices of Aip��

and Bip��� such that �a gets mapped to �b� and such that vertices with a given juxtaposition
to �a get mapped to vertices with the same juxtaposition to �b� and moreover� such that the
mapping preserves path names up to level ip� jp� 
� The key feature of Aip�� and Bip��

used to achieve this is mentioned in Note ��
�

The mapping f then determines Player II�s response in the counting move� Player II
responds to a chosen set A� by choosing f�A��� and thereafter when Player I chooses b �
f�A��� Player II responds with f���b�� The following claim establishes f �

Claim 
�� Given k�tuples �a and �b� such that �a �ip�jp��
�b� there exists a one�to�one corre�

spondence f � Aip�� �� Bip��� with the following properties�

	� �l � f
� � � � � kg f�al� � bl


� �x � Aip���l � f
� � � � � kg
e�t�s�j���x� al�� �f�x�� bl��

�� �x � Aip�� pn�x�ip�jp � pn�f�x��ip�jp

Proof Here is how f is de�ned� For each vertex x in Aip��� look at the path from x to
the root of the tree� and �nd the �rst vertex� x�� going up from x to the root� which has a
descendant chosen already� i�e�� one of its descendants is in �a� say al� Thus x� � lca�x� al�
�if k � �� i�e�� there are no chosen points yet� let x� be the root��

If this vertex x� is at or below level ip � jp� then we know that the path name of al and
bl agree up to x� �we�ll say� y� for bl�� thus x

� is the root of a subtree isomorphic� even in
labels� to the subtree rooted at y� in Bip��� and we will construct the mapping� f � so that
it maps the subtree at x� to that at y� using the isomorphism �including the labels��

If� the vertex x� is above level ip � jp� then we can no longer guarantee that the labels at
x� and y� are identical� however� we know that x� and y� have exactly the same number of
children whose subtree contains no chosen point �i�e�� points in �a and �b� respectively�� and
among one of these subtrees of children of x� is x� The mapping f � will map the empty
subtree that x is in to one of the empty subtrees rooted at a child of y�� such that every
vertex at level ip� jp� 
 or below is mapped to a vertex with the same path name up to
level ip� jp� 
� We know this can be achieved since x� and y� are above level ip� jp� and
thus their children each have the same number of A descendants and B descendants at level
ip� jp� 
�

We have thus de�ned a one�to�one correspondence between Aip�� and Bip��� such that path
names at or below level ip� jp� 
 are preserved� i�e�� pn�x�ip�jp � pn�f�x��ip�jp�

Thus� w�l�o�g�� regardless of the set A� that Player I chooses� and of the point b� � f�A�� that
it chooses� f���b�� and b� have identical juxtapositions to �a and �b respectively� and f���b��
and b� have path names that agree up to level ip � jp � 
� i�e�� �Aip��� �a� f

���b��� �ip�jp

�Bip����b� b�� and hence �Aip��� �a� f���b��� �j�p �Bip����b� b��� Thus� �Aip��� �a� �j���p �Bip����b��

�� TC move� For the TC move� we need the full hypothesis �a �ip�jp�p
�b�







Recall the situation� Player I plays c�tuples a�� � � � � ad� and we must reply with b�� � � � � bd��
We will think of the moves proceeding in time� so Player I plays a� and Player II answers
with b�� Player I plays a� and Player II answers with b�� etc� except that Player II can look
ahead at Player I�s future moves� Furthermore� we only have to remember points in the
last c�tuple and the current c�tuple�

Just when Player I is pebbling the vertex al�m� we will call currently pebbled those ver�
tices pebbled prior to this TC move� call them �a� plus al����� � � � � al���c and al��� � � � � al�m���

De�nition 
�� Sound Response� When PLAYER I pebbles a point al�m� we will say
that a response pebbling of a vertex bl�m by PLAYER II is sound if for all currently pebbled
pairs a� and b��

e�t�s�j���a�� al�m�� �b
�� bl�m��

Thus� with a sound response the juxtapositions to currently pebbled points are the same�
PLAYER II will always make sound responses�

Player II�s Strategy� We are going to describe Player II�s response when Player I peb�
bles al�m for some l and m� If al�m is a number� then Player II�s response bl�m will be
the same number� Otherwise� a vertex al�m at some depth r in Aip�� de�nes a path
p�� p�� � � � � pr � al�m from the root� p�� to al�m� Player II�s strategy will inductively de�
termine a corresponding path q�� q�� � � � � qr� in Bip��� Initially� q� is the root of Bip��� qr
will determine bl�m� the actual response to al�m�

Inductively� suppose that thus far q�� � � � � qj have been determined� There are several pos�
sible cases�


� If some point as in st�pj��� is currently pebbled� i�e�� pj�� is as�s ancestor� Player II
should respond by picking qj�� to be the child of qj which is bs�s ancestor��

�� If st�pj��� is currently an empty subtree�

a If no sibling subtree st�w� of st�pj��� is currently pebbled� then Player II responds
with a child qj�� of qj such that qj�� and pj�� have the same label �this is always
possible because there are at least two children of qj with the same label as pj����

b If just one sibling subtree st�w�� of st�pj��� is currently pebbled�

Look Ahead in Player I�s moves for the �rst time l� � l that al����� � ��al��c� al������� � ��al����c�
and �a pebble at most one of the subtrees rooted at pj �s children�

Either exactly one subtree st�w�� is pebbled� or none of the siblings are pebbled� or
l� � d � 
� i�e�� the entire rest of the c�tuple sequence has more than one subtree
pebbled� In either of the latter cases we arbitrarily pick one of the pebbled subtrees
st�w�� at time l� � 
�

Construct a BIJECTION� f � between the children of pj and the children of qj with
the following properties�

�Inductively� this response is always consistent because responses are always sound�
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�i� Map w� to the child w�
� of qj which contains the responses to the pebbles currently

present in st�w���

�ii� If pj and qj have identical labels� then construct f so that it preserves labels�

�iii� Construct f so that w� gets mapped to a w�
� with the same label� �This is possible

because whatever w��s label is� there are at least two vertices among qj �s children with
the same label� and at most one of these is already occupied by w�

���

Now� let qj�� � f�pj����

c If more than one sibling subtree of st�w�� is currently pebbled� then� if there is already
a constructed bijection� f � play according to that bijection� i�e�� let qj�� � f�pj����

If there is no constructed bijection� then if there is an empty child of qj with the same
label as pj��� let qj�� be that child� Otherwise�� let qj�� be any empty child of qj �

The following claim is the key to why Player II will win with this strategy�

Claim 
�� For r � ip� jp� p�
� if for some l and some m� as � fal�m� al���mg pebbles a
subtree st�w�
 at level r such that no sibling subtree of st�w� is pebbled by al����� � � � � al���c� al��� � � � � al�c
and �a� then the path name of the response bs will be identical to that of as up to level r� i�e��

pn�as�r�� � pn�bs�r��

Proof This follows immediately from Player II�s strategy� The lookahead in the strategy
is designed speci�cally to force this condition�

To �nish the lemma� we need to prove�

Claim 
�	 If �a �ip�jp�p
�b� then for all l� �a� al� al�� �ip�jp

�b� bl� bl���

Proof We say that a level d is established when a pebble pair� al�m and bl�m� disagree
in their path names at that level or below� In other words� pn�al�m�d�� �� pn�bl�m�d���

First� note that in order for a new level �i�e� lower than any level established before it� to
be established� it must be the case that a pebble al�m has moved into an empty subtree
st�w� at that level� for when moving into a non�empty subtree� say one that contains as�
PLAYER II�s response guarantees that if bl�m and al�m disagree in their path name at the
level of w� then so did as and bs� But� note that since we assume that �a �ip�jp�p

�b to begin
with� p new levels need to be established with this transitive closure move in order for the
conclusion not to hold� We will show that at least p� 
 pebbles are needed to do this�

Suppose the conclusion doesn�t hold� Look at the time when level ip� jp�
 is established�
It must be the case that PLAYER II just moved a pebble bl�m into an empty subtree st�v���
at level ip � jp � 
� It must also be the case that the path name of v�� disagrees with its
correspondent v� in Aip�� on every level from ip� jp� 
 up to ip� jp� p� 
� for if they
agree on some level t in between� the subtrees at level t containing al�m and bl�m would be

�Note that this case can only arise if pj�� is above level ip� jp� p� � in the tree�
�as might not be the only pebble in st	w
 among al����� � � � � al���c� al��� � � � � al�c and �a�
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isomorphic even in labels� and thus Player II�s strategy would guarantee that no level below
t is established by al�m and bl�m�

But then� by Claim ���� for each r such that ip� jp� 
 � r � ip� jp� p� 
� the subtree
containing al�m at level r must have a sibling subtree also pebbled� But this is impossible
since there are only p pebbles in the game and this would require p� 
�

Thus� by the induction hypothesis� �Aip��� �a� �j���p �Bip����b�� This concludes case �� and
that concludes the lemma�

Observe that in the case where �a and �b are empty tuples� the lemma yields the theorem�

Corollary 
��� hAip��� Bip��i �i�p hAip��� Aip��i

Proof The winning strategy for Player II is to copy the above winning strategy for the
game on Aip��� Bip��� whenever Player I plays in the right�hand component� and to copy the
identical element of Aip�� whenever Player I plays in the left�hand component� Notice that
this is still a winning strategy because �
� in counting moves� sets are still matched by sets
of exactly the the same size� and ��� in the TC move� Player II�s original strategy matches
a path a�� � � � � ad with a path of the same length� b�� � � � � bd� such that any consecutive pair�
�bi� bi��� is indistinguishable in the remaining moves from the pair� �ai� ai���� It follows
that it is no advantage to Player I to choose vertices from the left�hand component in such
a path� Any such vertex will be answered by the identical vertex�

� Local Orderings

As noted in the Introduction� Theorem 
�� refutes Conjecture 
�
�� We now prove Theorem

��� namely� that the graph properties expressible with the logic �FO�TC�COUNT��LO�
are exactly those in NL�

Proof of Theorem ���� The key lemma is the following�

Lemma 
�� Let G � hN� V�E� cG� � � � � � c
G
k i� where V � fv�� � � � � vng and N � f
� �� � � � � ng�

Then� there is a formula E��i� j�� expressible in �FO�TC�COUNT��LO�� that de�nes a
graph G� �over numbers� isomorphic to the input graph �over vertices�� For each constant
c of the vocabulary� there is a formula Vc�i� which holds true for a unique ic� and such that
the isomorphism between G and G� maps ic to c

G�

Proof The idea for expressing E� is to


� Totally order each �weakly� connected component of E� using the method of 	EI
��
�speci�cally� see Theorem ��

 of that paper�� which is based on distinguishing vertices
by the lexicographically least shortest path that leads to them from a given vertex�
To do so view all incoming edges as greater in the ordering than the outgoing edges�

�A refutation of Conjecture ��� can also be obtained as a corollary of the results of �CFI���� A slight
modi
cation of the gadgets used there� from undirected gadgets to directed ones� yields this result�


�



�� Note that there is one ordering for each vertex in a component� For each connected
component� choose the minimal one with respect to the lexicographic order of the
adjacency sub�matrix�

�� Now order these components based on the following criteria �in decreasing order of
signi�cance��

�a� Size of the component �non�decreasing order��

�b� Lexicographic value of the minimal adjacency sub�matrix �non�decreasing order��

�c� Containment of the constants c�� c�� � � � � ck in the component �in increasing order�
from c� to ck and lastly none of them��

We have thus partitioned the graph into an ordered sequence of sets of components� S�� S�� � � � � Sr�
where each Sj � fC�� � � � � Cijg is a set of one or more ordered� isomorphic components� We
now de�ne E� which puts an edge relation on the set of numbers N � depending on where
that number sits in the ordering of all n vertices in S�� � � � � Sr� Note that even though the
components in each Sj are not ordered� it doesn�t matter� The point is that we have ij
identical copies of the relevant component� The unique place Counting is essential is in
determining the numbers ij � Now we provide the expression of E��

E��i� j�� �x� y�E�x� y� �
�l�m���#l x� � �x�� x�� �#m y� � �y�� y�� �

�b ��componentsize�x� b�� componentsize�y� b�� �
�r ��incomparable�x� r�� incomparable�y� r�� �

�q �r � q � b �
��d �� � d � q���i � l � d � b � j � m� d � b���

The formula � �x� y� will be the partial order we obtain from the criteria outlined above� It
is described below� incomparable�x� r� means !There are exactly r vertices incomparable
to x according to the partial ordering de�ned by �"� and it is expressed by�

incomparable�x� r�� ��#r y� � � �x� y�� � � �y� x�

The only vertices which remain incomparable to x and y in this ordering are vertices in
disjoint components isomorphic to the component x and y are in �clearly� if x and y have
an edge to each other they are in the same component�� Thus� counting the number of
such incomparable vertices� the formula assures that i and j are in one component and are
positioned where there is an edge� according to the possible orderings of the isomorphic
components�

� �x� y� � �b�� b� ��componentsize�x� b�� � componentsize�y� b����
�b� � b� � �b� � b� �mincomp � �x� y����

componentsize�x� b� � �#b y undirectedpath�x� y�

Here mincomp � �x� y� means !the minimal adjacency matrix �minimal among the choices
of ordering we have for the component� of the component of x is less than or equal to that of
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the component of y �lexicographically and in terms of containment of constants��" We leave
it to the reader to verify that this formula is expressible using TC� counting quanti�ers� and
the component orderings constructible� via the 	EI
�� method from the available two�way
local ordering�

Since each cG is in a singleton component� its position is determined uniquely� and the
formula Vc�i� is easy to derive from the above construction�

Thus� given an input graph with a two�way local ordering� we can de�ne an isomorphic
graph on an ordered set of numbers� Theorem 
�� follows�

	 Tree Canonization � �FO � COUNT��logn�

We obtain a �FO � COUNT�	logn� formula for tree canonization� This improves on the
previous best upper bound of �FO�LFP�COUNT� 	DM
�� for tree canonization without
ordering� Note that �FO�LFP�COUNT� � �FO�COUNT�	nO����� We also show that for
bounded�degree tree isomorphism a �FO�	logn� formula is su�cient� i�e�� without counting�

Let jvj denote the number of nodes in st�v�� We use the following simple fact about trees�

Lemma ��� For any tree T with root s� there is a unique node s�� such that js�j � d�	 jsje
and such that for all children v of s�� jvj � d�	 jsje�

Proof of Theorem ��
� To �nd out whether trees rooted at a and b are isomorphic� we
�nd the unique nodes a� and b� in st�a� and st�b�� respectively� with the property of the
lemma �this is done by existentially quantifying a� and b� and checking that they and their
children satisfy the required subtree size properties��

We existentially quantify d and assert that d is equal to the distance between a and a� and
and b and b� �d could be �� i�e� a could equal a��� Otherwise� we will immediately know
that the graphs are non�isomorphic�

Now� we recursively check that for each � � r � d for each vertex v which is a child o�
the path a � a� �i�e�� it is not itself on the path� at level r� st�v� has exactly the same
number of siblings subtrees �including itself� that are isomorphic to it as it has isomorphic
copies of child subtrees o� the path from b � b� at level r� The only subtlety is that we
need to do exact counting� whereas we only have the regular counting quanti�ers available�
In order to augment exact counting we will simultaneously build inductive de�nitions for
tree�isomorphism and tree�non�isomorphism� For tree�non�isomorphism we use exactly the
same ����decomposition and look for a discrepancy� Exact counting can then be done by
counting how many siblings are isomorphic and how many are non�isomorphic and making
sure the sum adds up to the degree coming o� the a� a� path at the given level�

Recursively� this assures that the two original trees rooted at a and b are isomorphic�
Furthermore� the recursive checks are all done on subtrees with less than ��� the size of the
original tree� thus the logn bound on the depth of the formula�

We now give the formal expression of the �FO� COUNT�	logn� formula�
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We will give an inductive de�nition for a formula iso�a� b�� which determines whether the
trees rooted at a and b are isomorphic� iso�� will use a relation SpecialNode�a� a�� which
determines that a� is the unique node in the subtree of a with the property of Lemma ��
�
We will use Lemma ��
 to conclude that the inductive de�nition will close after O�logn�
iterations� establishing the theorem�

iso�a� b� � �i ��TreeSize�a� i�� TreeSize�b� i�� �
�i � 
 �
�a�� b� �SpecialNode�a� a��� SpecialNode�b� b�� �
�d� �Dist�a� a�� d�� �Dist�b� b�� d��� �

�d� a��� b�� ��Dist�a� a��� d��Dist�b� b��� d��
Ances�a��� a�� � Ances�b��� b�� ��
�z ��Child�a��� z�� �Ances�z� a����

�j��#jx�Child�a��� x�� �Ances�x� a��� iso�x� z�� �
�#jy�Child�b��� y�� �Ances�y� b�� � iso�y� z��������

SpecialNode�a� a�� � path�a� a�� � ja�j � d���ejaj �

�c�Child�a�� c�� jcj � d���ejaj�

TreeSize�x� i� � �#i x path�a� x�

The Dist�x� y� d� predicate means� !The distance from x to y is d"� and the Ances�x� y�
predicate means� !x is an ancestor of y"� and Child�x� y� means !y is a child of x"� These
simple predicates can very easily be expressed in FO	logn��

Note that in the above expressions we use exact counting in several places� i�e�� expressions of
the form �#x ��x�� As was mentioned� we can augment these inductive de�nitions using only
the usual counting quanti�ers� To do so� we will simultaneously build inductive de�nitions
for tree�isomorphism and tree�non�isomorphism� We then determine the exact number j of
edges leaving a vertex and check that there are counts i and i� such that

��i x���x� � ��i� x����x� � i� i� � j

As mentioned� for tree�non�isomorphism we use exactly the same ����decomposition and
look for a discrepancy� The simultaneous inductive de�nition for "non�iso" is the negation
of the inductive de�nition for iso� where of course �iso�x� y� is replaced by "non�iso�x�y�"
and �non � iso�x� y� is replaced by iso�x� y�� The same sort of simultaneous inductive
de�nition allows us to de�ne path�x�y� and no�path�x�y��

Note that all our uses of the relation iso in the de�nition of iso are on vertices whose
subtrees are at most ��� the size of the original subtrees rooted at a and b� Thus� since
Lemma ��
 guarantees the existence of the a� and b� claimed in the formula� we know that
the inductive de�nition will close after at most O�logn� iterations� and we are done�

To express a canonical label for a tree we modify the above idea to express a canonical
ordering relation �� �a� b� on the vertices of a tree� Intuitively� the !canonical ordering" will
consist of the following criteria �in decreasing order of signi�cance��
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� Size�st�a�� � Size�st�b��

�� depth�a�� � depth�b��� for a� and b� the vertices in the subtree of a and b� respectively�
determined by Lemma ��


�� Walking down the path from a and b to a� and b�� respectively� let depth d be the �rst
place where there is any !di�erence"� Then some smallest child z o� the path from
a to a� or b to b� has c isomorphic siblings as children of a��� but it has k isomorphic
siblings as children of b��� and c � k�

Once we have the formal expression for ��� we use it to express a relation E��i� j� on
numbers� which� like Lemma ��
� will de�ne a canonical tree isomorphic to the input tree
E�

More formally� here is the expression� for ��� note the similarity to iso�a� b��

�� �a� b�� �i� j��TreeSize�a� i�� TreeSize�b� j�� i � j��
�a�� b� ��SpecialNode�a� a�� � SpecialNode�b� b���

Dist��a� a�� � Dist��b� b��� �
�Dist��a� a�� � Dist��b� b��� �d� a��� b�� �Dist�a� a��� d��
Dist�b� b��� d� � Ances�a��� a�� � Ances�b��� b�� �
�z ���Child�a��� z� � �Ances�z� a��� � �Child�b��� z�� Ances�z� b�����

�c��#c u�Child�a��� u�� �Ances�u� a�� � iso�u� z�� �
�#k w�Child�b��� w�� �Ances�w� b�� � iso�w� z�� c � k����

�and for smaller children at the level of z� or for higher children
at depth less than d� there are the same number
of isomorphic subtrees on both sides�� ��

�� �x� y� linearly orders trees� We can use �� �x� y� to canonize a tree as follows� as in
Lemma ��
� we will express a relation E��i� j� on number variables i and j such that E�

de�nes a canonical tree isomorphic to the input tree E� E� will be de�ned so that there is
an edge from i to j i� the following conditions hold�


� The i�th vertex in the canonical ordering has an edge to a vertex of the same isomor�
phism type as the j�th vertex�

�� There are m vertices of a type less than the i�th in the canonical ordering� There are
m� numbers d less than i but such that the d�th vertex is of the same type as the i�th�

�� There are b vertices of the same type as the j�th which have an edge coming into them
from a vertex of type less than the i�th vertex�

�� There are l vertices of the same type as the j�th to which a vertex of the same type
as the i�th has an edge to�

�� The following bounds on j hold� m� b� l�m�� � j � m� b� l�m�� 
�� The bounds
garantee that the j�th vertex is among those vertices of the same type as the j�th
which has an incoming edge from the i�th vertex�

�The Dist�	x�y
 function in the expression is an abbreviation for use of the Dist	x�y� d
 relation�


�



We now give the formal de�nition of E�� The de�nition will contain the subformula�
Type�i� v�� !The i�th vertex in the canonical ordering has a subtree isomorphic to that of
vertex v"� which we subsequently de�ne�

E��i� j�� �u� v�Type�i� u�� Type�j� v��E�u� v���
�m�#m x �x �� v��

�b�#by�z�z �� u � E�z� y�� iso�y� v���
�m��#m�k�k � i � Type�k� u���

�l�#lw�E�u� w�� iso�w� v���
m� b� l�m�� � j � j � m� b� l�m�� 
�

Type�i� v�� �m�#m u �u �� v�
�r��#r w iso�r� w��m � i � i � m� r��

Theorem 
�� together with Theorem 
��� yields Corollary 
��� We �nally show that for
bounded degree trees� counting is not needed �from which Corollary 
�� follows immedi�
ately��

Proof of Theorem ��� In order to convert the proof of Theorem 
�� to this case it su�ces
to show that we can count the size of bounded degree subtrees in FO	logn�� For once this is
done� the !level�by�level" counting of the number of isomorphic subtrees just o� the critical
path from a to a� and b to b� can be done !by hand"� i�e�� quantifying the bounded number
of possible vertices and checking that one of the various counting scenarios holds�

To count the size of a bounded degree subtree in FO	logn� we use the same ����
�� technique
used by Ruzzo 	Ruz��� to prove CFL�s are recognizable by tree�size bounded alternating
Turing machines� and� in the logical setting� used in 	Imm��� �speci�cally� Theorem B�
� to
prove a related result� Of course� when the degree bound is k� instead of a ����
�� lemma
we have a k

k�� �
�

k�� lemma� but this is all that is required to get a logn bound on the depth
of the required formula�

What is needed is to de�ne kBoundedTreeSize�x� y�� y�� � � � � yk� i�� meaning !the size of the
k�bounded degree tree rooted at x� excluding the subtrees rooted at y�� � � � � yk in the tree�
is i�" To de�ne this we quantify a vertex ynew and check� recursively� that its subtree size is

��jxj � l � ���jxj� and� again recursively� we check that kBoundedTreeSize�x� y�� y�� � � � � yk� ynew � l��
holds� and we also check that l � l� � i� Of course� we can not just keep increasing the
arity of our relation like that� so whenever our list of removed nodes exceeds k� we look
for a vertex y� that is an ancestor of exactly m of the k � 
 vertices � � m � k� Such a
vertex must exist by induction �walk down from the root of the tree and use the pigeon�hole
principle�� We then recursively �nd the size of the tree rooted at y� and add it to the size of
the tree that also excludes y� �but we no longer need to exclude the other y�s that descend
from y� thus we always only keep track of k excluded vertices��

Bounded�degree tree canonization can also be expressed in FO	logn� using a variant of the
canonization technique in Theorem 
��� The following claim provides what is needed�







Claim ��� Given a formula ��x� expressible in FO	logn� over k�bounded degree �directed�
trees� there is a formula ��i� expressible in FO	logn� such that

��i� �	 �#ix��x�

Proof The proof is another application of Ruzzo�s technique 	Ruz���� We quantify the root
of the tree and count the number of nodes in its subtree �all vertices� satisfy the property
�� The only di�erence between this and the previous case is that we are counting only the
vertices that satisfy property � which is itself an FO	logn� formula� so our inductive depth
can increase by �at most� a factor of ��

Once we have the claim� note that the expression forE��i� j� in Theorem 
�� can be converted
to an FO	logn� expression on k�bounded degree trees by inductively eliminating all the
counting quanti�ers� Note however that� whereas Theorem 
�� works for both trees and
forests� the proofs here work only for trees because counting is not available when all vertices
do not belong to the same subtree�


 Conclusion

We have separated the unordered versions of the logics for ThC�� AC�� and NL using
very natural problems� tree�isomorphism and bounded�degree tree�isomorphism� We have
observed that these separations also hold in the presence of one�way local ordering� Recently�
L� Hella and H� Imhof 	Hel
�� have extended our results to show that tree isomorphism is
not expressible in some even stronger logics� in particular in the logic augmented with the
alternating transitive closure �ATC� operator �	Imm�����

The key remaining open problems deal with two�way local ordering and they take on in�
creased signi�cance due to Theorem 
���


� Separate �FO� DTC� COUNT� �LO� from �FO � TC�COUNT � �LO��

�� Are there any Logspace graph properties not in �FO� DTC� COUNT� �LO��	

�� Tree isomorphism is a natural and order�independent property� What natural prop�
erties can we add to �FO � TC � COUNT� in order to express properties like tree
isomorphism� and what does the addition buy us in expressive power� In particu�
lar� what do we gain by adding an operator for tree canonization� Do we get much
closer to the order�independent complexity class� We would conjecture that proper�
ties derived from the results of 	CFI
�� would still not be expressible in this extended
logic�

Note that a polynomial length universal traversal sequence� which exists by the results of
	AKL��
�� gives the logic �FO � DTC � COUNT � �LO� a systematic way to reach each
node� and thus a way to construct a total ordering of all weakly connected components
�based on when a vertex is �rst hit�� and thus a canonization algorithm� It follows that a
non�uniform version of �FO�DTC�COUNT��LO� includes all of L� Thus a lower bound

�Tree�isomorphism�like properties are not a candidate for this� because Lindell�s result �Lin��� goes
through with �LO regardless of the edge directions�

��



on the uniform language �FO � DTC � COUNT � �LO� will be very interesting and will
likely be quite di�cult�

As yet� there are no non�trivial lower bounds for transitive closure logics with two�way local
ordering and numbers� even without counting� The best that is known is a separation of
�FO � COUNT� �LO� from �FO� DTC� �LO�� implicit in the lower bound of 	Ete
���
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