Tree Canonization and Transitive Closure *

Kousha Etessami Neil Immerman
etessami@dimacs.rutgers.edu immerman@cs.umass.edu
DIMACS Computer Science Department
P.O. Box 1179, Rutgers University University of Massachusetts
Piscataway, NJ 08855-1179 Ambherst, MA 01003
Abstract

We prove that tree isomorphism is not expressible in the language (FO + TC +
COUNT). This is surprising since in the presence of ordering the language captures
NL, whereas tree isomorphism and canonization are in L ([Lin92]). Our proof uses an
Ehrenfeucht-Fraissé game for transitive closure logic with counting [Gra91, IL90].

As a corresponding upper bound, we show that tree canonization is expressible in
(FO+COUNT)[logn]. The best previous upper bound had been (FO4COUNT)[n°(1)]
([DM90]). The lower bound remains true for bounded-degree trees, and we show that
for bounded-degree trees counting is not needed in the upper bound. These results are
the first separations of the unordered versions of the logical languages for NL, AC!, and
ThC!.

Our results were motivated by our conjecture in [EI95] that (FO + TC+ COUNT +
1LO) = NL, i.e., that a one-way local ordering sufficed to capture NL. We disprove this
conjecture, but we prove that a two-way local ordering does suffice, i.e., (FO + TC +

COUNT + 2LO) = NL.

1 Introduction

It has been known for some time that for first-order logics with ordering, a transitive closure
operator (TC) gives the power of nondeterministic log-space (NL). Similarly, a deterministic
restriction of transitive closure (DTC) captures deterministic log-space (L).

Fact 1 ([Imm87, Imma88|)
(FO+TC+ <)=NL; (FO+DTC+ <)=L

The ordering is necessary. Indeed without the ordering the parity of the number of vertices
in a graph is not expressible in (FO 4 TC).

In [EI95] we introduced local orderings in graphs as an intermediate step between ordered
and unordered graphs. We showed that the language (FO 4+ DTC + 1LO) extends the
Jumping Automata on Graphs (JAG) model [CR80] to a more robust complexity class that

*This research was supported by NSF grant CCR-9207797.

still permits interesting lower bounds on graph reachability. On the other hand, we showed
that the language (FO + TC + 1LO) is strong enough to express a total ordering on the set
of vertices reachable from a given vertex. This work had led us to conjecture in [EI95] that,
when we add counting, all NL properties are expressible in this logic:

Conjecture 1.1 ([EI95]) (FO+ TC+ COUNT + 1LO) = NL

In the present paper we prove that this conjecture is false. We do so by showing

Theorem 1.2 (Bounded Degree) Tree Isomorphism is not expressible in (FO + TC +
COUNT).

Theorem 1.2 is quite surprising because tree isomorphism is so simple, and order indepen-
dent, and it seemed to require little more than counting plus a limited use of TC. Tree
Isomorphism and even Tree Canonization! are known to be in L [Lin92]. A Corollary of
Theorem 1.2 is that Conjecture 1.1 is false. This is because a 1LO on a tree gives no new
information when edges are directed from the leaves to the root. On the other hand we
prove:

Theorem 1.3 (FO 4+ TC+ COUNT +2L0O) = NL

That is, a two-way local ordering plus the ability to count is enough for (FO + TC) to
recognize any NL graph property. The proof of Theorem 1.3 involves first computing a
canonical ordering on each weakly connected component of the input graph. Next, using
these ordered components, we define an isomorphic graph on the (ordered) number domain.

Coming back to Theorem 1.2, we asked, how much descriptive power is needed to express
tree isomorphism in the absence of ordering? We prove the following:

Theorem 1.4 Tree Isomorphism and Tree Canonization are erpressible in

(FO 4+ COUNT)[logn|

Thus, first-order formulas with counting quantifiers iterated log n times can express canon-
ical forms for any unordered input tree. This improves the previous best upper bound
of (FO + LFP + COUNT) = (FO + COUNT)[2°(")] ([DM90]). The proof of Theorem
1.4 produces an inductive definition of the canonical form using counting and a 2/3 re-
duction argument on trees. Combining Theorems 1.2 and 1.4, we separate the languages

(FO + TC + COUNT) and (FO + COUNT)[logn|:

Corollary 1.5 Tree Isomorphism € (FO + COUNT)[logn] — (FO 4+ TC + COUNT)

!Here, by “tree canonization” we mean a function f that, given a tree T, outputs an isomorphic tree T'
on an ordered domain such that for all trees 7" isomorphic to T the same ordered (canonical) tree T" is the
output of f.

Recall that (FO + COUNT+ <)[logn] is equal to ThC?, the set of problems recognized by
uniform sequences of polynomial-size, log-depth threshold circuits, [BIS90]. Furthermore,
for the transitive closure logic, in the presence of ordering, counting quantifiers give no extra
power, i.e.,

(FO 4+ TC + COUNT+ <) = (FO + TC+ <) =NL

Thus, Corollary 1.5 separates the unordered versions of the languages for NL and ThC®.
Interestingly, the lower bound of Theorem 1.2 is proved for bounded degree trees. For
bounded degree trees we don’t need counting:

Theorem 1.6 Bounded Degree Tree Isomorphism and Canonization are expressible in (FO)[logn].
Corollary 1.7 Bounded Degree Tree Isomorphism € (FO)[logn] — (FO 4+ TC + COUNT).

Corollary 1.7 tells us that bounded degree tree isomorphism separates the unordered versions
of the languages for NL and AC'. An easy Ehrenfeucht-Fraissé game argument shows that
general tree isomorphism is not expressible in (FO)[logn|, thus general tree isomorphism
separates the unordered versions of the logics for AC! and ThC®.

Our results thus give us much new information about the power of ordering and local
ordering in logics for classes low in the NC hierarchy: L, NL, AC!, ThC!. To prove
Theorem 1.2, we use an Ehrenfeucht-Fraissé game for the language (FO + TC + COUNT)
([Gragl, IL90]). The lower bound constructs a new kind of winning strategy in which whole
paths are played.

In section 2, we provide some background. In section 3, we describe the E-F Game and its
correspondence to TC logic with counting. In section 4, we prove Theorem 1.2, our main
lower bound. In section 5 we show that two-way locally ordered transitive closure logic
corresponds precisely to N L. In section 6, we prove Theorems 1.4 and 1.6.

2 Background

In this paper our notation follows the conventions of Descriptive Complexity [Imm96]. See
[Imm87] for a survey, [CFI92] for discussion of numbers, counting quantifiers and their
associated Ehrenfeucht-Fraissé games (hereafter called E-F games), and [EI95] for needed
background and results concerning local orderings.

As usual, an ordered logical structure of type 7 = (R1,..., R, c1,...,¢) is a tuple A =
({1,...,n}, R}, .. .,RkA, ef, ... efY). The first-order language with ordering, denoted ex-
plicitly as (FO+ <), has a numeric predicate <, denoting the usual total ordering on the
universe |A| = {1,...,n}. When ordering is not present, we will assume in this paper that
we have a second domain of numbers:

A= <{1,...,n},{vl,...,vn},Rf‘,...,RkA,cf‘,...,cf‘>

The symbols of 7 are restricted to the domain {vq,...,v,}, and < is defined on numbers
{1,...,n}. For such structures with numbers we can add counting quantifiers. Let the
meaning of the formula:

(3iz)p(z)

be that there exist at least ¢ distinct points « such that ¢(z), where 7 here is a free variable
that ranges over the number domain, and z is bound. The first-order language with counting

quantifiers is denoted (FO + COUNT).

We also consider transitive closure operators TC and DTC. (Tcwl...wkwi...w; ¢) denotes the
reflexive, transitive closure of the binary relation ¢(Z,z’). Let (FO + TC) be the closure
of first-order logic with arbitrary occurrences of TC. DTC is the deterministic transitive
closure in which all multiple outgoing edges are deleted:
def
(DTCzg¢) = (TCzgpa)
_\ def _ _ _ _ _
pa(,9) = ¢(2,9) A (V2)(p(2,2) = § = 2)

Recall that (FO + DTC+ <) and (FO + TC+ <) capture classes L and NL, respectively
(Fact 1).

In our study of graph structures there are intermediate forms of ordering that one could
augment a structure with besides a total ordering. Two of these, One-Way Local Ordering
(denoted 1LO) and Two-way Local Ordering (denoted 2LO) were studied in [EI95]:

8

Definition 2.1 One-Way Local Ordering. Consider a graph
G = <{1727"'7n}7{v17v27'"7vn}7§717n7E7F787t>

in which F is a ternary relation on vertices. Suppose that for each vertex, v, F(v,-,-)
is a total ordering on the vertices w for which there is an edge from v to w. Then F is
called a one-way local ordering on (the outgoing edges of) G, and G is called a one-way
locally ordered graph. We denote logics over graph structures augmented with one-way local
ordering with the abbreviation 1LO.

A two-way local ordering (denoted 2LO) is just a one-way local ordering, H, on the incoming
edges to each vertex, in addition to the one-way local ordering, F', on the outgoing edges.
There is no assumption about consistency between F and H. |

In [EI95] it was shown that (FO + DTC + 1LO) is related to, but strictly more powerful
than a well known structured model for space bounded computation called JAGs [CR80].
It was there also shown that with (FO 4+ TC + 1LO) one can express a total ordering on
all vertices reachable from a particular verter. It was then conjectured that (FO + TC +
1LO 4+ COUNT) = NL. It will follow from our lower bound in section 4 that this conjecture
is false. However, we shall prove in section 5 that (FO + TC + 2LO + COUNT) = NL,
affirming a slightly modified version of our original conjecture.

We will be considering expressibility via first-order formulas of non-constant size. Recall
that FO[t(n)] denotes the set of properties expressible by first-order formulas iterated ¢(n)
times [Imm89]: by a quantifier block, denoted [Q B], we mean a sequence

(Q121.M1)(Q222. M) .. .(Qr 2. M,)

where each @; is a quantifier and each M; is a quantifier free formula.

Definition 2.2 FO[t(n)] denotes the set of properties K for which there ezrists a quantifier
block [Q B] and a quantifier-free formula My such that

Ae K <« AE[QB!4) M,

3 Ehrenfeucht-Fraissé Game for TC logic with Counting

In this section we describe an E-F game for the logic (FO + TC + COUNT) ([Gra9l, IL90],
see also [CM92] for a different E-F game for TC). We will use it in section 4 to prove a
lower bound on tree-isomorphism. We first recall some notation for similar games such as
the Ck-game from [IL90, CFI92].

For a formula ¢ € (FO + TC + COUNT), let nd(¢) denote the nesting depth, the
combination of quantifier depth and TC depth for ¢, defined inductively by:

0 if ¢ is atomic
nd(¢) if o= -1
nd(®) = max(nd($),nd(7)) if o=V
nd(¢)+ 1 if o = (TCy) or ¢ = (Fi 2)y

For ¢t a term (we only deal with relational vocabularies with constants, thus ¢ is either a
constant cj or a variable z;), let var(t) denote the set of variables that occur in ¢. The set
of free variables of a formula ¢, denoted free(y), is defined inductively by:

var(ty) Uwvar(ts) if o = (t1 =t2)
var(ty) U...Uvar(t,) if o = R(t1,...,t)
free(s) if o =
free(p) «— < free(¢)U free(y) ifo=9yVvy
(free(d) \z;)Uj if o = (37 2:)¢
(free()\ {z1, ..., zat}) UUZ, var(t;)
if Y= (Tle,...,mk;mk+1,...,m2k ’l;b)(tl’ ceey t2k)

We use var(yp) to denote the set of all variables that occur in ¢. We use A or |A| to
denote the universe of a structure A. For a structure A, we want to define tuples of
elements from A and associate them with variables in our logical language. Our logic has
variables X = {#,2,,...}. We define an assignment for A, @ : X — A to be a partial
function with domain Dom(a) and range Rng(a). We will say that (4, @) interprets ¢
if Dom(a) O free(p). For convenience later on, we want the assignment & to also evaluate
the constants of 4, so we extend our definition to @ : (X U {c1,...,¢¢}) — A, with
d(c;) = cf*. Thus, we alway have Dom(d) D {ci,...,¢;}. We will say that (&) is a
p-configuration if Dom(a) = Dom() and |Dom(a)| < p + t.2

Definition 3.1 Define (A,a) =m,p (B, i)) to mean: for every formula ¢ interpreted by @
and b, with nd(p) < m and |var(p)| < p, (A,a) and (B,b) agree on ¢, i.e.:

(A a) F e — (sz) %

When @ is empty, i.e., it evaluates nothing but the constants, we abbreviate (A, @) by A.
Thus A =,, , B, means .4 and B agree on all sentences ¢ with nd(¢) < m and |var(yp)| < p.

2The additive £ is to account for the constants {c1,...,¢:} in the domain.

Definition 3.2 Partial Isomorphism. Given structures A = (A, R{*,... R, eft, .. .Y
and B = (B,RB,... R? c1 ,...cB), over the same vocabulary T, and given asszgnments a
and b, define: @ =p A5 b to mean that the induced substructures of A and B generated by
Rng(a) and Rng(i)), respectively, are isomorphic under the mapping induced by a(z;) —
b(z;), for ¢; € Dom(a). In particular, it is necessary that a(z;) = a(z;) iff b(z;) = b(z;),
for z;,z; € Dom(a). i

For @, an assignment for a structure A, and for a’ € A, let &;—I, be the assignment for A4
that agrees with @ everywhere except it maps z; to a’.

Definition 3.3 E-F Game for TCH+COUNT. The m round, p pebble E-F game for TC
logic with Counting, denoted: G p((A,a), (B, l;)), 1s played between two players called T
and II, and consists of m consecutive rounds, such that at the start and after each round
(a, i)) is a p-configuration. At the start and after each round PLAYER I WINS if & #p, , b
Each round consists of the following:

PLAYER I chooses either:

THE COUNTING MOVE:

Player I chooses a variable z; and
a subset A’ of A (or B' of B)

Player II chooses a subset B' of B (A’ of A)
such that |A’| = | B’|

Player I picks b’ € B’ (a' € A')
and sets b — b— (a—a /)

Player IT responds witha’ € A’ (b € B')
and sets @ «— am—i (b — bmi)

OR

THE TRANSITIVE CLOSURE MOVE:

Player I chooses a constant ¢ < p/2 and
2¢ variables zy,,. .., 21, and then chooses
c-tuples ay,...,ag in A
(or by,...,by in B), such that
@y, and @g (b; and by) are already in
Rng(a) (Rng(b)).

d (d') may be arbitrarily large.

Player II chooses c-tuples by, ..., by in B
(a1,...,aq in A) so that i)_l(blj) =a"(ay;)
and b_l(bd;) =a Yay;) forje{l,...,c}

Player I chooses tuples b; , bjt1 (@ , Gix1)
Jef @ (e (1, - 1))

i bjt1
mh’ Plye

(or similarly for a; and @;y1)

Player II responds by choosing a; and @;31

(b; and b;11), for some i (j)

T =
and setting @ «— a-——+L

and sets b — b

:1711 ,...,:1712c

(similarly for b;,b;41)

PLAYER II WINS if PLAYER I does not win on any of the m rounds.
We write (A, @) ~m,p (B, i)), to denote the fact that PLAYER II has a winning strategy

in G p((A,a),(B, b)), meaning it can win regardless of the moves made by PLAYER I. Il

The Counting Move in the above game comes straight from [IL90, CFI92], and essentially
the same TC Move was presented in [Grd91]. The idea behind the TC move is as follows:
Player I, in order to reveal that the two structures disagree on the transitive closure of some
2k-ary formula ¢, will choose a ¢-path of k-tuples in one structure. In response, Player 11
will answer with a -path of k-tuples in the other structure. Player I then challenges Player
II by choosing a pair of consecutive tuples on the path chosen by Player II. Player II then
responds to the challenge by choosing a consecutive pair of tuples in the path chosen by
Player I, claiming in essence that any property that Player I could have in mind for the
tuple pair it chose is also satisfied by the pair chosen by Player II. The game then proceeds
with one less round left to play. The key fact about G,, , is:

Lemma 3.4 For any pair of structures A, B of the same finite relational vocabulary T, and
for any p-configuration (&,b):

(A,8) ~mp (B,D) = (A,&) =, (B,b)

Proof 3 We proceed by induction on m:
For the base case, when m = 0, clearly, if the substructures induced by @ and b are isomor-
phic, then no quantifier-free formula will distinguish them.

For the inductive case, suppose the theorem is true for m, i.e., that (A4,a) ~,, (B,b) =
(A,a) = p (B,b). We want to prove it is true for m + 1.

Suppose (A, @) ~pmi1, (B, i)), and let ¢ be a depth m + 1 formula:
Case (i): ¢ = Jiz;¢:

Suppose, without loss of generality, that (\4,a) |= ¢. Then let PLAYER I pick z; and a
subset A’ of A of size ¢ such that, for each o’ € A, (A, &%) = ¢. PLAYER II answers
J

according to its winning strategy with a subset B’ of B such that i = |A’| = |B’|. Now, for
any arbitrary b’ € B’ that PLAYER I chooses, there is an a’ € A’ such that (A, Zz;—;) ~rmp

(B,i);’—;). Thus, by induction, (A, Zz;—;) Ev s (B,i);’—;) = . Thus, since for each a’ € A’,
(A, Zz;—;) = 1, we have, for each ¥’ € B’, (B,i);’—;) = . Hence (B,b) = ¢. Thus (A, a) =
p = (B,

Case (ii): ¢ = (TC, 5 ¢)(I,7):

Suppose, w.l.o.g., that (A, &) = ¢. Then let PLAYER I choose Z,z' and a set of tuples
1,as,...,84_1, 7, such that (A, &%) E 4, fori e {l,...,d—1}. PLAYER II answers

3The reason the implication only goes one way in Lemma 3.4 is that we made the counting move slightly
stronger than the counting quantifiers. Note that this just makes our lower bound slightly stronger. An
equivalence can be proved if we either (1) Increase the power of the language by adding constants for all the
numbers 1,...,n; or (2) Decrease the power of the counting move as follows: Let Player I choose a set A’ of
cardinality @(z;), a previously chosen number, and force Player II to reply with a set B’ of cardinality l;(m,)

according to its winning strategy with tuples 1,b,, ..., 7. Now for any arbltrary bJ, bJ_|_1 that
PLAYER I chooses there is a pair @;, @;11, such that (a’ia—;“) » (B, b ”1) Thus,

by the induction hypothesis, (A, Zzai’—‘l’l'*'—l) =myp (B, bl ”1) Hence, for all j, there is an %
such that (A, &M"—) E ¢ < (B, bl ”1) = ¢. Hence, since for all 7, (A, &%) E v,

z,x’

for all j, (B, b bi ”1) = 4. Thus, (A,8) E ¢ < (B,b) e

Case (iii): ¢ is a boolean combination of forms () and (4): we only need note that the
“ <= 7 at the end of the proofs for (¢) and (%) is preserved under boolean combination.

Thus (A, &) =41, (B,5). |

Observe that for ¢ € (FO + TC + COUNT), nd(y) and |var(p)| are fixed with respect
to n. Hence for every such formula ¢, there is an equivalent formula ¢’ € (FO + TC +
COUNT) such that no variable is ever re-quantified and, moreover, variables are quantified
in successive order, i.e., the first variable quantified in the scope of 21,...,2; is ;1. Thus,
in our E-F game G, , for fixed m and p, we may restrict PLAYER I’s strategy so that it
always chooses to map, in sequence, the lowest variables that are not already in Dom(a).
We can now alternatively think of @ : (X U {¢1,...¢c:}) — A as simply a k-tuple @, where
a; = cf‘,...,at = c;“ and aty1 = a(@1),at42 = a(e2),.... These observations allow us
to simplify the presentation of the lower bound: since we are only concerned with ¢ €
(FO 4+ TC + COUNT), from now on, we use tuples @, with the format described
above, to denote @, and we consider only the formulas and game strategies that

are restricted accordingly.

4 Lower Bound for (FO 4+ TC 4+ COUNT)

Let Tree-isomorphism be the set of structures (V, V', E, E’) such that the relations £ and
E’ describe isomorphic directed trees on domains V and V', respectively. Let 8-bounded-
Tree-isomorphism be the subset of Tree-isomorphism, where the out-degree on each vertex
is bounded by 8. In this section we prove Tree-isomorphism is not expressible in (FO4+TC+
COUNT). More precisely, we prove the stronger result that 8-bounded-Tree-isomorphism
is not expressible in (FO + TC 4+ COUNT).

For each i and p, we shall construct trees A; and B; with the following property: A; and
B; are not isomorphic but 4; ~;, B;. It will follow from our proof of Theorem 4.2 that
PLAYER II wins the game between the tree pair (4;, B;) and the tree pair (A4;, 4;) (where
(A, B) denotes a structure with A and B defined over disjoint domains). Her strategy will be
to answer each move involving the left component of either pair with the identical element
of the other left component. Moves in the right component are answered according to the
winning strategy for the game on A; and B;. As we will see, in her winning strategy for A;
and By, Player II always matches sets by sets of exactly the same cardinality, and paths by
paths of the same length. Furthermore, in the second half of the transitive closure move,
when Player I chooses tuples b_j, bj?, Player II always answers with the same numbered
tuples: @;,a@;;7. It thus follows that Player II’s combined strategy wins the game on (A, By)
and (A;, 4;). Since the first pair are not isomorphic and the second pair are isomorphic,
the result follows by Lemma 3.4.

%N%N

E : DDDD
AAAA(Il) (ll) AA (ll) (ll) AA (i-1) BBBB(Il)
Ao Bo

Figure 1: The Trees A; and B;.

We recursively define the directed trees A; and B; (Please see Figure 1). Ap and By are a
vertex and a pair of vertices connected by an edge, respectively. For ¢ > 0, A; is a tree with
a root vertex having as children 3 C;, 2 D; trees, and 3 FE; trees. B; is a tree with a root
vertex having as children 2 C;, 4 D;, and 2 E; trees. A C; tree has a root with children: 4
A;_q and 2 B;_q trees. A D; tree has a root with: 3 A;,_; and 3 B;_1 children. An E; tree
has a root with 2 A;_; and 4 B;_; children. It is clear, by induction, that for all ¢, A; and
B; are non-isomorphic.

Note 4.1 There are exactly the same number of A;_1’s that are descendants, two levels
below, of A; as there are descending from B;. Likewise for the number of B;_1’s.

Theorem 4.2 A1 ~;p Bipta.

Proof The idea of the game is that at the bottom, Player II must answer Ay with Ag
but at the top Player II must answer the root A;,,1 with B;,.;. Player I will try to push
the distinction down the tree toward the leaves, but we will show that Player II can keep
distinctions from moving down more than p levels* per round.

Let dist(v,w) denote the distance between a pair of vertices. Let depth(v) denote the
depth of a vertex v in a tree, the root being at depth 0. Let st(v) denote the subtree rooted
at a vertex v. For a given vertex v in A1 (or in Bj,11), let the path name of v, denoted
pn(v), be the string of symbols that denotes the subtrees leading up from v to the root
of the tree. For example, the path name for a vertex at depth 4 that is at an A subtree
in the tree B;, 1 might be ACAEB. For a given path name, pn, let pn; denote the path
name with the 2(¢ 4+ 1) right most symbols truncated. Thus, for example, for a path name

“By level we mean those depths in the trees at which 4 and B subtrees occur.

pn = ACBDBCAEB, pny, = ACB. For vertices v and w in a tree, let lca(v, w) denote
the lowest common ancestor of v and w.

Definition 4.3 (e.t.s.j.) Given a pair of vertices vi,vs in Aijpr1 and wy,wy n Bipi1, we
will say that v1 and ve are in exactly the same juxtaposition (e.t.s.j) to each other as
w1 and wsy, and we denote this by e.t.s.j((vy1,v2), (w1, w2)), if

dist(lca(vy,vse),v1) = dist(lca(wq, ws), wq)
&

dist(lca(vy,vs),vs) = dist(lca(wy, ws), ws)

Definition 4.4 (j-Similar) Given a k-tuple of vertices and numbers @ in A;yq1 and a
k-tuple b in Bipi1, we say a and b are j-similar if they satisfy the following equivalence
relation:
ar~;b<s Foreachle{l,... k}:
If a; is a number then by is the same number.
FElse (i.e., for vertices):
depth(a;) = depth(b;)
pn(ar)j = pn(bi);
For eachr € {1,...,k}, such that a, and b, are vertices:

e.t.s.j.((ar, a,), (b1, b))

Note that the equivalence relation is more restrictive for small j, i.e.:

Z'l%jb = a%j-l-lb

Lemma 4.5 In an i round game, given that @ and b are k-tuples in Aipta
and B;py1, respectively, with i > j, and p > k:

@ Nip—jp b = (Aip+1,8) ~jp (Bip+1,b)

Proof The proof proceeds by induction on j. Player II’s winning strategy will be such
that, for both the Counting Move and the TC move, if @ ;,_jp—p b before a round, then
@ ~p—jp b after the round, where @ and b have been modified according to the round.

For j = 0, we have that a ~;, b. Thus, since the vertices in @ have e.t.s.j. to each other as
the vertices in b, (Ajpy1,a) ~0p (Bip+1,b). Note that this holds regardless of what k is.

Suppose true for j, we will prove it is true for 5 4+ 1. There are two cases to consider: either
1) PLAYER D’s first move is a counting move, or 2) PLAYER I’s first move is a transitive
closure move.

10

1) Counting Move: In the counting move case, we only need the weaker hypothesis
a Rpi—pi—1 b. A one-to-one correspondence, f, is constructed between the vertices of Aipta
and B;,41, such that @ gets mapped to b, and such that vertices with a given juxtaposition
to @ get mapped to vertices with the same juxtaposition to b, and moreover, such that the
mapping preserves path names up to level ip — jp + 1. The key feature of A;, 1 and B;,11
used to achieve this is mentioned in Note 4.1.

The mapping f then determines Player II’s response in the counting move. Player II
responds to a chosen set A’ by choosing f(A’), and thereafter when Player I chooses b €
f(A"), Player II responds with f~!(b). The following claim establishes f:

Claim 4.6 Given k-tuples @ and b, such that @ ~ip—jp—1 b, there exists a one-to-one corre-
spondence f : Ajpiq1 — Bipia, with the following properties:

1. vie{l,... k} f(al) =

2. Ve € Ap Ve {1,...,k}
e.t.s.j.((z,ar), (f(z), b))

3. Ve € Ajpr1 pr(@)ip—jp = pn(f(2))ip—ip

Proof Here is how f is defined. For each vertex z in A;, 1, look at the path from z to
the root of the tree, and find the first vertex, «’, going up from # to the root, which has a
descendant chosen already, i.e., one of its descendants is in @, say a;. Thus 2’ = lca(z, a;)
(if k = 0, i.e., there are no chosen points yet, let 2’ be the root).

If this vertex z’ is at or below level ip — jp, then we know that the path name of a; and
b; agree up to 2’ (we'll say, y’ for b;), thus 2’ is the root of a subtree isomorphic, even in
labels, to the subtree rooted at ' in B;,41, and we will construct the mapping, f, so that
it maps the subtree at 2’ to that at y’ using the isomorphism (including the labels).

If, the vertex z’ is above level ip — jp, then we can no longer guarantee that the labels at
2’ and y' are identical, however, we know that ' and 3’ have exactly the same number of
children whose subtree contains no chosen point (i.e., points in @ and b, respectively), and
among one of these subtrees of children of ' is z. The mapping f, will map the empty
subtree that « is in to one of the empty subtrees rooted at a child of y’, such that every
vertex at level ip — jp + 1 or below is mapped to a vertex with the same path name up to
level ip — jp + 1. We know this can be achieved since ' and 3’ are above level ip — jp, and
thus their children each have the same number of A descendants and B descendants at level
wp—jp+ 1

We have thus defined a one-to-one correspondence between A4;,,, and B;,;1, such that path
names at or below level ip — jp + 1 are preserved, i.e., pn(z)ip—;p = pPn(f(2))ip—ip- |

Thus, w.l.o.g., regardless of the set A’ that Player I chooses, and of the point &’ € f(A’) that
it chooses, f~1(b’) and b’ have identical juxtapositions to @ and b respectively, and f~1(5’)
and &' have path names that agree up to level ip — jp + 1, i.e., (Aipt1,@, £ (b)) Nip—jp
(Bip-l-lv b, b/) and hence (Aip-l-lv a, f_l(b/)) ~ip (Bip-l-lv b, b/)' Thus, (Aip-l-lv L_l) ~it+lp (Bip-l-l ? b)'

2) TC move: For the TC move, we need the full hypothesis a ~;,_;p—, b.

11

Recall the situation: Player I plays c-tuples @, ..., aq, and we must reply with by,...,by.
We will think of the moves proceeding in time, so Player I plays @y and Player II answers
with by, Player I plays @3 and Player II answers with b, etc, except that Player IT can look
ahead at Player I’s future moves. Furthermore, we only have to remember points in the
last c-tuple and the current c-tuple.

Just when Player I is pebbling the vertex a; ,,, we will call currently pebbled those ver-
tices pebbled prior to this TC move, call them @, plus a;_11,...,a1-1.and a;1,...,0;m—1.

Definition 4.7 Sound Response. When PLAYER I pebbles a point a;,,, we will say
that a response pebbling of a vertez by ,, by PLAYER II is sound if for all currently pebbled
pairs @' and b':

et.s.j.((a;arm), (b, brm))

Thus, with a sound response the juxtapositions to currently pebbled points are the same.
PLAYER II will always make sound responses.

Player II’s Strategy: We are going to describe Player II’s response when Player I peb-
bles a;,, for some [and m. If a;,, is a number, then Player II's response b;,, will be
the same number. Otherwise, a vertex a;,, at some depth r» in A;,;, defines a path
P0,P1,---,Pr = G from the root, py, to a;,,. Player II's strategy will inductively de-
termine a corresponding path ¢, q1,...,¢,, in B;py1. Initially, go is the root of B;,11. ¢,
will determine b; ,,, the actual response to a; .

Inductively, suppose that thus far go, ..., g; have been determined. There are several pos-
sible cases:

1. If some point a, in st(p;41) is currently pebbled, i.e., pj+1 is a,’s ancestor: Player II
should respond by picking g;+1 to be the child of ¢; which is b,’s ancestor®.

2. If st(p;41) is currently an empty subtree:

a If no sibling subtree st(w) of st(p;41) is currently pebbled, then Player II responds
with a child g;41 of g; such that ¢;41 and p;1; have the same label (this is always
possible because there are at least two children of ¢; with the same label as p;11).

b If just one sibling subtree st(wq) of st(pj;+1) is currently pebbled:

Look Ahead in Player I's moves for the first timel’ > [that ap 1,. . .,a1 ¢, Q4115 - QU 41.¢5
and a pebble at most one of the subtrees rooted at p;’s children.

Either exactly one subtree st(ws) is pebbled, or none of the siblings are pebbled, or
I! = d+ 1, i.e., the entire rest of the c-tuple sequence has more than one subtree

pebbled. In either of the latter cases we arbitrarily pick one of the pebbled subtrees
st(ws) at time I’ — 1.

Construct a BIJECTION, f, between the children of p; and the children of ¢; with
the following properties:

®Inductively, this response is always consistent because responses are always sound.

12

(1) Map w; to the child w] of ¢; which contains the responses to the pebbles currently
present in st(w1).

(#) If p; and ¢; have identical labels, then construct f so that it preserves labels.

(#i) Construct f so that wy gets mapped to a w), with the same label. (This is possible
because whatever ws’s label is, there are at least two vertices among g;’s children with
the same label, and at most one of these is already occupied by wj.)

Now, let gj+1 = f(pj+1)-

¢ If more than one sibling subtree of st(w;) is currently pebbled, then, if there is already
a constructed bijection, f, play according to that bijection, i.e., let g;41 = f(pj+1).

If there is no constructed bijection, then if there is an empty child of ¢; with the same
label as p;i1, let gj4+1 be that child. Otherwise®, let g;;1 be any empty child of g;.

The following claim is the key to why Player II will win with this strategy:

Claim 4.8 Forr > ip—jp—p+1, if for somel and some m, a; € {a1m,a1—1,m} pebbles a
subtree st(w)” at level r such that no sibling subtree of st(w) is pebbled by aj_11, ..., Q1—1.6,a11,---, Al c
and a, then the path name of the response b, will be identical to that of a, up to level r, 1.e.:

pn(as)r—l = pn(bs)r—l

Proof This follows immediately from Player II’s strategy. The lookahead in the strategy
is designed specifically to force this condition. |

To finish the lemma, we need to prove:

Claim 4.9 Ifa ~;p_jp—p b, then for all l, @, @, i3y Rip—jp b, b1, biy1.

Proof We say that a level d is established when a pebble pair, a;,, and b;,,, disagree
in their path names at that level or below. In other words, pn(a;m)i—1 7# pn(bim)d—1-

First, note that in order for a new level (i.e. lower than any level established before it) to
be established, it must be the case that a pebble a;,, has moved into an empty subtree
st(w) at that level, for when moving into a non-empty subtree, say one that contains a,,
PLAYER II's response guarantees that if b; ,, and a;,, disagree in their path name at the
level of w, then so did a, and b,. But, note that since we assume that a ~;,_;,_, b to begin
with, p new levels need to be established with this transitive closure move in order for the
conclusion not to hold. We will show that at least p + 1 pebbles are needed to do this.

Suppose the conclusion doesn’t hold. Look at the time when level ip — jp+ 1 is established.
It must be the case that PLAYER II just moved a pebble b;,, into an empty subtree st(v])
at level ip — jp + 1. It must also be the case that the path name of v disagrees with its
correspondent v; in A;, 41 on every level from ip — jp+ 1 up to ip — jp — p+ 1, for if they
agree on some level ¢ in between, the subtrees at level ¢ containing a; ,,, and b;,, would be

®Note that this case can only arise if pj11 is above level ip — jp — p + 1 in the tree.
Tas might not be the only pebble in st('w) AMONE Q11,15+ Gl—1,c,Ql1,+++,06]c and G.

13

isomorphic even in labels, and thus Player II’s strategy would guarantee that no level below
t is established by a;,, and by ,.

But then, by Claim 4.8, for each » such that ip — jp+ 1> r > ip— jp— p + 1, the subtree
containing a; ., at level » must have a sibling subtree also pebbled. But this is impossible
since there are only p pebbles in the game and this would require p 4 1. |

Thus, by the induction hypothesis, (Aipt1,@) ~j41,p (Bip+1,b). This concludes case 2, and
that concludes the lemma. |

Observe that in the case where @ and b are empty tuples, the lemma yields the theorem. l
Corollary 4.10 (A;pt1, Bipt1) ~ip (Aipt1, Aipt1)

Proof The winning strategy for Player II is to copy the above winning strategy for the
game on A;,11, Bipy1, whenever Player I plays in the right-hand component, and to copy the
identical element of A;,; whenever Player I plays in the left-hand component. Notice that
this is still a winning strategy because (1) in counting moves, sets are still matched by sets
of exactly the the same size; and (2) in the TC move, Player II’s original strategy matches
a path @, ..., dg with a path of the same length, b1, ..., b4, such that any consecutive pair,
(b;,b;11) is indistinguishable in the remaining moves from the pair, (@;, @;1). It follows
that it is no advantage to Player I to choose vertices from the left-hand component in such
a path. Any such vertex will be answered by the identical vertex. |

5 Local Orderings

As noted in the Introduction, Theorem 1.2 refutes Conjecture 1.18. We now prove Theorem
1.3, namely, that the graph properties expressible with the logic (FO+TC+COUNT +2LO)
are exactly those in NL.

Proof of Theorem 1.3: The key lemma is the following:

Lemma 5.1 Let G = (N,V,E,c§,...,cS), where V = {vy,...,v,} and N = {1,2,...,n}.
Then, there is a formula E'(i,7), expressible in (FO + TC+ COUNT 4+ 2LO0), that defines a
graph G' (over numbers) isomorphic to the input graph (over vertices). For each constant
¢ of the vocabulary, there is a formula V.(3) which holds true for a unique i., and such that

the isomorphism between G and G' maps i, to c©.

Proof The idea for expressing E’ is to

1. Totally order each (weakly) connected component of E, using the method of [EI95]
(specifically, see Theorem 3.11 of that paper), which is based on distinguishing vertices
by the lexicographically least shortest path that leads to them from a given vertex.
To do so view all incoming edges as greater in the ordering than the outgoing edges.

8 A refutation of Conjecture 1.1 can also be obtained as a corollary of the results of [CFI92]. A slight
modification of the gadgets used there, from undirected gadgets to directed ones, yields this result.

14

2. Note that there is one ordering for each vertex in a component. For each connected
component, choose the minimal one with respect to the lexicographic order of the
adjacency sub-matrix.

3. Now order these components based on the following criteria (in decreasing order of
significance):
(a) Size of the component (non-decreasing order).
(b) Lexicographic value of the minimal adjacency sub-matrix (non-decreasing order).

(c) Containment of the constants ¢, ¢s, . . ., ¢x in the component (in increasing order,
from ¢; to ¢ and lastly none of them).

We have thus partitioned the graph into an ordered sequence of sets of components: 57, 55, ...

where each §; = {C1,...,C;,} is a set of one or more ordered, isomorphic components. We
now define E’ which puts an edge relation on the set of numbers N, depending on where
that number sits in the ordering of all n vertices in S51,...,S,. Note that even though the
components in each S5; are not ordered, it doesn’t matter. The point is that we have 7;
identical copies of the relevant component. The unique place Counting is essential is in
determining the numbers ¢;. Now we provide the expression of E’.

E'(i,7) = 32, y(E(z,y) A
A,m(BU 2 < (2, 2)AImy <(¢¥,y)) A
3b ((componentsize(z,b) A componentsize(y,b)) A
3r ((incomparable(z,r) A incomparable(y,r)) A
dg (r=gxbA
(Fd(0<d<@))i=1+dxb A j=m+dxb))

The formula < (2, y) will be the partial order we obtain from the criteria outlined above. It
is described below. incomparable(z,r) means “There are exactly r vertices incomparable
to @ according to the partial ordering defined by <”, and it is expressed by:

incomparable(z,r)= (Alry) - < (z,y) A~ =2 (y,z)

The only vertices which remain incomparable to ¢ and y in this ordering are vertices in
disjoint components isomorphic to the component # and y are in (clearly, if « and y have
an edge to each other they are in the same component). Thus, counting the number of
such incomparable vertices, the formula assures that ¢ and j are in one component and are
positioned where there is an edge, according to the possible orderings of the isomorphic
components.

< (z,y) = b1, by ((componentsize(z,by) N componentsize(y,bs))A
(b1 < b2 V (b1 = by A mincomp < (z,y))))

componentsize(z,b) = 3'b y undirectedpath(z,y)

Here mincomp < (z,y) means “the minimal adjacency matrix (minimal among the choices
of ordering we have for the component) of the component of z is less than or equal to that of

15

the component of y (lexicographically and in terms of containment of constants).” We leave
it to the reader to verify that this formula is expressible using TC, counting quantifiers, and
the component orderings constructible, via the [EI95] method from the available two-way
local ordering.

Since each ¢% is in a singleton component, its position is determined uniquely, and the
formula V(%) is easy to derive from the above construction.

Thus, given an input graph with a two-way local ordering, we can define an isomorphic
graph on an ordered set of numbers. Theorem 1.3 follows. |

6 Tree Canonization € (FO + COUNT)|logn]

We obtain a (FO + COUNT)[logn] formula for tree canonization. This improves on the
previous best upper bound of (FO 4+ LFP + COUNT) [DM90] for tree canonization without
ordering. Note that (FO+LFP +COUNT) = (FO+COUNT)[n°M)]. We also show that for

bounded-degree tree isomorphism a (FO)[log n] formula is sufficient, i.e., without counting.

Let |v| denote the number of nodes in st(v). We use the following simple fact about trees:

Lemma 6.1 For any tree T with root s, there is a unique node s', such that |s'| > [2]s|]
and such that for all children v of s', |v| < [%]s]].

Proof of Theorem 1.4: To find out whether trees rooted at a and b are isomorphic, we
find the unique nodes &’ and b’ in st(a) and st(b), respectively, with the property of the
lemma (this is done by existentially quantifying ¢’ and b’ and checking that they and their
children satisfy the required subtree size properties).

We existentially quantify d and assert that d is equal to the distance between a and a’ and
and b and b’ (d could be 0, i.e. a could equal a’). Otherwise, we will immediately know
that the graphs are non-isomorphic.

Now, we recursively check that for each 0 < r < d for each vertex v which is a child off
the path a ~ d’ (i.e., it is not itself on the path) at level r, st(v) has exactly the same
number of siblings subtrees (including itself) that are isomorphic to it as it has isomorphic
copies of child subtrees off the path from b ~» b’ at level ». The only subtlety is that we
need to do exact counting, whereas we only have the regular counting quantifiers available.
In order to augment exact counting we will simultaneously build inductive definitions for
tree-isomorphism and tree-non-isomorphism. For tree-non-isomorphism we use exactly the
same 2/3-decomposition and look for a discrepancy. Exact counting can then be done by
counting how many siblings are isomorphic and how many are non-isomorphic and making
sure the sum adds up to the degree coming off the a ~» a’ path at the given level.

Recursively, this assures that the two original trees rooted at a and b are isomorphic.
Furthermore, the recursive checks are all done on subtrees with less than 2/3 the size of the
original tree, thus the logn bound on the depth of the formula.

We now give the formal expression of the (FO 4+ COUNT)[logn| formula.

16

We will give an inductive definition for a formula iso(a, b), which determines whether the
trees rooted at a and b are isomorphic. iso() will use a relation Special N ode(a,a’) which
determines that a’ is the unique node in the subtree of a with the property of Lemma 6.1.
We will use Lemma 6.1 to conclude that the inductive definition will close after O(logn)
iterations, establishing the theorem.

iso(a,b) = 3i ((T'reeSize(a,i) A TreeSize(b,i)) A
(i=1vV
Ja’, b’ (Special Node(a,a’) A Special N ode(b,b') A
3d' (Dist(a,d’,d’) A Dist(b,b',d')) A
vd,a",b" ((Dist(a,a”,d) A Dist(b,b", d)A
Ances(a”,a') N Ances(b”,b')) —
Vz ((Child(a”, z) A = Ances(z,a’)) —
37(3jz(Child(a”, z) N = Ances(z, a’) A iso(z, z)) A
jy(Child(d”,y) A =Ances(y,b') A iso(y, 2))))))))

Special Node(a,a’) = path(a,a’)Ald'| > [2/3]]a| A
Ve(Child(d',c) — |c| < [2/3]]al])

TreeSize(x,i) = 3% z path(a,z)

The Dist(z,y,d) predicate means: “The distance from z to y is d”, and the Ances(z,y)
predicate means: “z is an ancestor of y”, and Child(z,y) means “y is a child of ”. These
simple predicates can very easily be expressed in FO[logn].

Note that in the above expressions we use exact countingin several places, i.e., expressions of
the form 3!z ¢(2). As was mentioned, we can augment these inductive definitions using only
the usual counting quantifiers. To do so, we will simultaneously build inductive definitions
for tree-isomorphism and tree-non-isomorphism. We then determine the exact number j of
edges leaving a vertex and check that there are counts ¢ and 3’ such that

(Fiz)p(z) A (Fdz)p(z) AN i+d =7

As mentioned, for tree-non-isomorphism we use exactly the same 2/3-decomposition and
look for a discrepancy. The simultaneous inductive definition for "non-iso” is the negation
of the inductive definition for iso, where of course —iso(z,y) is replaced by "non-iso(x,y)”
and —non — iso(z,y) is replaced by iso(z,y). The same sort of simultaneous inductive
definition allows us to define path(x,y) and no-path(x,y).

Note that all our uses of the relation iso in the definition of iso are on vertices whose
subtrees are at most 2/3 the size of the original subtrees rooted at a and b. Thus, since
Lemma 6.1 guarantees the existence of the a’ and b’ claimed in the formula, we know that
the inductive definition will close after at most O(logn) iterations, and we are done.

To express a canonical label for a tree we modify the above idea to express a canonical
ordering relation <’ (a,b) on the vertices of a tree. Intuitively, the “canonical ordering” will
consist of the following criteria (in decreasing order of significance):

17

1. Size(st(a)) < Size(st(b))

2. depth(a’) < depth(b'), for a’ and b’ the vertices in the subtree of a and b, respectively,
determined by Lemma 6.1

3. Walking down the path from a and b to a’ and ¥, respectively, let depth d be the first
place where there is any “difference”. Then some smallest child z off the path from
a to a’ or b to b’ has ¢ isomorphic siblings as children of a”, but it has k isomorphic
siblings as children of 4”, and ¢ < k.

Once we have the formal expression for <’, we use it to express a relation E’(%,7) on
numbers, which, like Lemma 5.1, will define a canonical tree isomorphic to the input tree

E.

More formally, here is the expression? for <’, note the similarity to iso(a,b):

<'(a,b) = 34, j((TreeSize(a,i) A TreeSize(b,j) AN i < j)V
Ja’, b’ ((Special Node(a,a’) A Special N ode(b,b')A
Dist*(a,a’) < Dist*(b,b')) v
(Dist*(a,a’) = Dist*(b,b') A 3d, a”,b" (Dist(a,a”, d)A
Dist(b,b",d) N Ances(a”,a’) A Ances(b”,b') A
Jz (((Child(a”, z) N = Ances(z,a’)) V (Child(b", z) N Ances(z,b')))A
Je(Fle w(Child(a”,u) N = Ances(u, a’) A iso(u, z)) A
Nk w(Child(d”,w) A = Ances(w,b’) A iso(w, z) A ¢ < k))))
(and for smaller children at the level of z, or for higher children
at depth less than d, there are the same number
of isomorphic subtrees on both sides.)))

<" (#,y) linearly orders trees. We can use <’ (#,y) to canonize a tree as follows: as in
Lemma 5.1, we will express a relation E’(Z,j) on number variables ¢ and j such that E’
defines a canonical tree isomorphic to the input tree E. E’ will be defined so that there is
an edge from ¢ to j iff the following conditions hold:

1. The ¢’th vertex in the canonical ordering has an edge to a vertex of the same isomor-
phism type as the 7’th vertex.

2. There are m vertices of a type less than the 7’th in the canonical ordering. There are
m' numbers d less than ¢ but such that the d’th vertex is of the same type as the 7’th.

3. There are b vertices of the same type as the j’th which have an edge coming into them
from a vertex of type less than the ¢’th vertex.

4. There are [vertices of the same type as the j’th to which a vertex of the same type
as the ¢’th has an edge to.

5. The following bounds on j hold: m + b+ 1I(m’) < j <m+b+I(m'+1). The bounds
garantee that the j’th vertex is among those vertices of the same type as the j’th
which has an incoming edge from the 7’th vertex.

?The Dist*(z,y) function in the expression is an abbreviation for use of the Dist(z,y,d) relation.

18

We now give the formal definition of E’. The definition will contain the subformula:
Type(i,v) = “The ¢’th vertex in the canonical ordering has a subtree isomorphic to that of
vertex v”, which we subsequently define.

E'(¢,7) = Ju,v(Type(i,u) A Type(j,v) A E(u,v))A
ImItm z (2 <’ v)A
363AbyIz(z <" u A E(z,y) A iso(y, v))A
Im'Im'k(k < i A Type(k, u))A
FINw(E(u, w) A iso(w,v))A
m4b+I(m)<jnj<m+b+1(m' +1)

Type(i,v) = ImI'm u (u <’ vA
Ir(r w iso(r,w) Am <iANi<m+7))

Theorem 1.4 together with Theorem 1.2, yields Corollary 1.5. We finally show that for
bounded degree trees, counting is not needed (from which Corollary 1.7 follows immedi-
ately):

Proof of Theorem 1.6 In order to convert the proof of Theorem 1.4 to this case it suffices
to show that we can count the size of bounded degree subtrees in FO[logn|. For once this is
done, the “level-by-level” counting of the number of isomorphic subtrees just off the critical
path from a to @’ and b to ' can be done “by hand”, i.e., quantifying the bounded number
of possible vertices and checking that one of the various counting scenarios holds.

To count the size of a bounded degree subtree in FO[log n| we use the same 2/3-1/3 technique

used by Ruzzo [Ruz80] to prove CFL’s are recognizable by tree-size bounded alternating

Turing machines, and, in the logical setting, used in [Imm82] (specifically, Theorem B.1) to

prove a related result. Of course, when the degree bound is k, instead of a 2/3-1/3 lemma
k 1

we have a i lemma, but this is all that is required to get a logn bound on the depth

of the required formula.

What is needed is to define k BoundedTreeSize(z,y1,y2, - - ., Yk, 1), meaning “the size of the
k-bounded degree tree rooted at z, excluding the subtrees rooted at yq,...,yx in the tree,
is 2.” To define this we quantify a vertex y,.., and check, recursively, that its subtree size is
1/3|z| <1< 2/3|z|, and, again recursively, we check that k BoundedTreeSize(z,y1,Y2, - - - Yy Ynew, ')
holds, and we also check that [+ 1" = 7. Of course, we can not just keep increasing the
arity of our relation like that, so whenever our list of removed nodes exceeds k, we look
for a vertex y’ that is an ancestor of exactly m of the k + 1 vertices 2 < m < k. Such a
vertex must exist by induction (walk down from the root of the tree and use the pigeon-hole
principle). We then recursively find the size of the tree rooted at y’ and add it to the size of
the tree that also excludes y’ (but we no longer need to exclude the other y’s that descend
from y’ thus we always only keep track of k excluded vertices).

Bounded-degree tree canonization can also be expressed in FO[log n] using a variant of the
canonization technique in Theorem 1.4. The following claim provides what is needed.

19

Claim 6.2 Given a formula ¢(z) expressible in FO[logn] over k-bounded degree (directed)
trees, there is a formula (%) expressible in FO[logn]| such that

P(i) <= izp(z)

Proof The proofis another application of Ruzzo’s technique [Ruz80]. We quantify the root
of the tree and count the number of nodes in its subtree (all vertices) satisfy the property
. The only difference between this and the previous case is that we are counting only the
vertices that satisfy property ¢ which is itself an FO[logn] formula, so our inductive depth
can increase by (at most) a factor of 2. |

Once we have the claim, note that the expression for E’(%, j) in Theorem 1.4 can be converted
to an FOl[logn] expression on k-bounded degree trees by inductively eliminating all the
counting quantifiers. Note however that, whereas Theorem 1.4 works for both trees and
forests, the proofs here work only for trees because counting is not available when all vertices
do not belong to the same subtree. |

7 Conclusion

We have separated the unordered versions of the logics for ThC!, AC!, and NL using
very natural problems: tree-isomorphism and bounded-degree tree-isomorphism. We have
observed that these separations also hold in the presence of one-waylocal ordering. Recently,
L. Hella and H. Imhof [Hel96] have extended our results to show that tree isomorphism is
not expressible in some even stronger logics, in particular in the logic augmented with the
alternating transitive closure (ATC) operator ([Imm87]).

The key remaining open problems deal with two-way local ordering and they take on in-
creased significance due to Theorem 1.3:

1. Separate (FO + DTC + COUNT + 2LO) from (FO + TC + COUNT + 2LO).
2. Are there any Logspace graph properties not in (FO + DTC + COUNT + 2L0O) %

3. Tree isomorphism is a natural and order-independent property. What natural prop-
erties can we add to (FO + TC + COUNT) in order to express properties like tree
isomorphism, and what does the addition buy us in expressive power? In particu-
lar, what do we gain by adding an operator for tree canonization? Do we get much
closer to the order-independent complexity class? We would conjecture that proper-
ties derived from the results of [CFI92] would still not be expressible in this extended
logic.

Note that a polynomial length universal traversal sequence, which exists by the results of
[AKL*79], gives the logic (FO + DTC 4 COUNT + 2LO) a systematic way to reach each
node, and thus a way to construct a total ordering of all weakly connected components
(based on when a vertex is first hit), and thus a canonization algorithm. It follows that a

non-uniform version of (FO + DTC+ COUNT + 2LO) includes all of L. Thus a lower bound

*Tree-isomorphism-like properties are not a candidate for this, because Lindell’s result [Lin92] goes
through with 2LO regardless of the edge directions.

20

on the uniform language (FO + DTC 4+ COUNT + 2LO) will be very interesting and will
likely be quite difficult.

As yet, there are no non-trivial lower bounds for transitive closure logics with two-way local
ordering and numbers, even without counting. The best that is known is a separation of

(FO + COUNT + 2LO) from (FO + DTC + 2LO), implicit in the lower bound of [Ete95].

Acknowledgements

Thanks to Allan Borodin and Steven Lindell for various helpful discussions. Thanks to
Janos Makowsky and to the anonymous referees for pointing out an error in our earlier
proof of Corollary 4.10.

References

[AKL*79] R. Aleliunas, R. Karp, R. Lipton, L. Lovasz, and C. Rackoff. Random walks,
universal traversal sequences, and the complexity of the maze problem. In 20th
IEEFE Found. of Comp. Sci. Symp., pages 218-223, 1979.

[BIS90] D. Mix Barrington, N. Immerman, and H. Straubing. On uniformity within
NC!. JCSS, 41:274-306, 1990.

[CFI92] J. Cai, M. Fiirer, and N. Immerman. An optimal lower bound on the number of
variables for graph identification. Combinatorica, 12 (4):389-410, 1992.

[CM92] A. Calo and J. Makowsky. The Ehrenfeucht-Fraissé games for transitive closure.
In 2nd Inter. Symp. on Logical Foundations of Computer Science, 1992.

[CR80] S. A. Cook and C. W. Rackoff. Space lower bounds for maze threadability of
restricted machines. STAM J. Comput., 9 (3):636-652, 1980.

[DM90] P. Dublish and S. Maheshwari. Query languages which express all ptime queries
for trees and unicyclic graphs. In Proc. of MFCS 90 LNCS vol. 452, 1990.

[EI95] K. Etessami and N. Immerman. Reachability and the power of local ordering.
Theoretical Computer Science, 148:227-260, 1995.

[Ete95] K. Etessami. Counting quantifiers, successor relations, and logarithmic space.
In 10th Structure in Complezity Theory Conf., pages 1-10, 1995. to appear in
JCSS.

[Gradl] E. Grédel. On transitive closure logic. In Proceed. 5th Workshop on Comp. Sci.
Logic, volume 626 of LNCS, pages 149-163, 1991.

[Hel96] L. Hella. personal communication. 1996.

[IL90] N. Immerman and E. Lander. Describing graphs: A first-order approach to
graph canonization. In Alan Selman, editor, Complexity Theory Retrospective,
pages 59-81. Springer-Verlag, 1990.

[Imm82] N. Immerman. Upper and lower bounds for first order expressibility. JCSS, 25
(1):76-98, 1982.

21

[Imm87]

[Imm88|

[Imm89]

[Imm96]

[Lin92]

[Ot£96]

[Ruz80]

N. Immerman. Languages that capture complexity classes. SIAM J. Comput.,
16:4:760-778, 1987.

N. Immerman. Nondeterministic space is closed under complementation. STAM
J. Comput., 17:5:935-938, 1988.

N. Immerman. Expressibility and parallel complexity. SIAM J. of Comput.,
18:625-638, 1989.

N. Immerman. Descriptive Complezity. Springer-Verlag, New York, to appear
1996.

S. Lindell. A logspace algorithm for tree canonization. In 2/th Symp. on Theory
of Comput., pages 400-404, 1992.

M. Otto. The expressive power of fixed-point logic with counting. Journal of
Symbolic Logic, 61(1):147-176, 1996.

W.-L. Ruzzo. Tree-size bounded alternation. Journal of Computer and System
Sciences, 21, 1980.

22

