
Descriptive and Computational Complexity�

Neil Immerman
y

Computer Science Department

University of Massachusetts

Amherst� MA �����

� Introduction

Computational complexity began with the natural physical notions of time
and space� Given a property� S� an important issue is the computational
complexity of checking whether or not an input satis�es S� For a long time�

the notion of complexity referred to the time or space used in the compu�
tation� A mathematician might ask� �What is the complexity of expressing
the property S�� It should not be surprising that these two questions � that

of checking and that of expressing � are related� However it is startling how
closely tied they are when the second question refers to expressing the prop�
erty in �rst�order logic� Many complexity classes originally de�ned in terms
of time or space resources have precise de�nitions as classes in �rst�order

logic�
In �	
� Fagin gave a characterization of nondeterministic polynomial

time �NP
 as the set of properties expressible in second�order existential
logic� We will begin with this result and then survey some more recent work

relating �rst�order expressibility to computational complexity� Some of the
results arising from this approach include characterizing polynomial time
�P
 as the set of properties expressible in �rst�order logic plus a least �xed

point operator �to be de�ned later
� and showing that the set of �rst�order
inductive de�nitions for �nite structures is closed under complementation�

�Lecture Notes for the AMS Short Course in Computational Complexity Theory� Jan�
���� ����� Atlanta� GA� Appeard in Proceedings of Symposia in Applied Mathematics�
Vol� �� 	����
� ������

yResearch supported by NSF Grant DCR������
��

�

Recently our technology has become able to build highly parallel com�
puters containing thousands of processors working simultaneously� For this
reason the theory of parallel computation� and the study of parallel time as
a computational resource has become an important area� We will discuss

parallel computation� and then show that parallel time can be neatly char�
acterized in terms of �rst�order expressibility� The minimum parallel time
needed to compute a property using at most polynomially many processors
is equal to the minimum depth of a �rst�order inductive de�nition of the

property�
An apparently weaker operator than full inductive de�nitions is the

power to take the re�exive� transitive closure �TC
 of any de�ned binary

relation ���x� �y
� We show that �FO � pos TC
� the class of properties ex�
pressible using TC positively �i�e� not within any negations
 is equal to
NSPACE�log n�� Finally we show the very surprising� recent result that �FO
� pos TC
 is closed under complementation� A corollary of this result is�

Theorem For any s�n
 � log n� nondeterministic space s�n
 is closed
under complementation�

� Some Logical De�nitions

We begin with some precise de�nitions� The reader is referred to �
� for

background in �rst�order logic�
A vocabulary � � hRa�

� � � � R
ak
k � c� � � � cri is a tuple of relation symbols and

constant symbols� Rai
i is a relation symbol of arity ai� In the sequel we will

often omit the superscripts to improve readability� A �nite structure with

vocabulary � is a tuple� A � hf�� �� � � � � n� �g� RA� ���R
A
k � c

A
� ���c

A
r i� consisting

of a universe UA � f�� � � � � n��g and relations RA� ���R
A
k of arities a�� � � � � ak

on UA corresponding to the relation symbols Ra�
� ���Rak

k of � � and constants

cA� ���c
A
r from UA corresponding to the constant symbols c� � � � cr from � � We

write jAj to denote n� the cardinality of the universe of A�
For example� if �g consists of a single binary relation symbol E �standing

for edge
 then a structure G � hf����n��g� Ei with vocabulary �g is a graph

on n vertices� Similarly if �s consists of a single unary relation symbol M
then a structure S � hf����n� �g�Mi with vocabulary �s is a binary string
of length n�

Let the symbol ��� denote the usual ordering on the natural numbers�
We will include � as a logical relation in our �rst�order languages� This

seems necessary in order to simulate machines whose inputs are structures

�

given in some order� For convenience we also include the constant symbols �
and max refering to the �rst and last elements of the structure respectively�
and the logical relation s�x� y
 true when x is the immediate successor of y
in the � ordering� For technical reasons we also include the logical relation

BIT� where BIT�x� y
 holds i� the xth bit in the binary expansion of y is a
one��

We now de�ne the �rst�order language L��
 to be the set of formu�
las built up from the relation and constant symbols of � � and the logical

relation symbols and constant symbols� ���� s�BIT� ��max� using logical
connectives� ������ variables� x� y� z� ���� and quanti�ers� ����

From now on� we will think of a problem as a set of structures of some

vocabulary � � Thus P� NP� etc� will be the set of problems in P �polyno�
mial time
� NP �non�deterministic polynomial time
� etc� It su�ces to only
consider problems on binary strings� but it is more interesting to be able to
talk about other vocabularies� e�g� graph problems� as well� De�ne FO to

be the set of all �rst�order expressible problems�

Example ��� An example of a �rst�order expressible property is addition��

In order to turn addition into a yes�no question we can let our input have the
vocabulary �a � hA�B� ki consisting of two unary relations and a constant
symbol� In a structure A of vocabulary �a� the relations A and B are binary

strings of length n � jAj� We�ll say that A satis�es the addition property if
the kth bit of the sum of A and B is one�

In order to express addition we will �rst express the carry bit�

CARRY�x
 � ��y � x
�A�y
� B�y
� ��z�y � z � x
A�z
� B�z
�

Then with 	 standing for exclusive or� we can express PLUS�

PLUS�x
 � A�x
	B�x
	 CARRY�x

Thus the sentence expressing the addition property is PLUS�k��

It is straightforward to check that FO is contained in DSPACE�log n���

We will see in Section � that FO is equal to the set of problems checkable

�Of course some of these logical relations are redundant� We include all of them to
make the statements of some of our theorems simpler� Theorem
�� requires the constant
symbols� Theorem ��� requires the relation BIT when t	n
 is o	logn
� Theorem ���
requires the successor relation and the constant symbols�

�This is a standard construction� see e�g� �����
�To see this suppose we are given a �rst�order sentence

� � 	�x�
	�x�
 � � � 	Qkxk
M	�x
 �

�

in constant time on a concurrent parallel random access machine �CRAM
�
This is a very weak complexity class� In the next several sections we will
discuss strengthenings of �rst�order logic to languages that capture more
important complexity classes�

� Second�Order Logic and Fagin�s Theorem

In second�order logic we have �rst�order logic� plus new relation variables
over which we may quantify� Let A

j
i be a j�ary relation variable� Then

��Aj
i
� means that for all choices of j�ary relation A

j
i � � holds� It is well

known that second�order formulas may be transformed into prenex form�
with all second�order quanti�ers in front� Let SO be the set of second�order
expressible properties� and let �SO �
 be the set of second�order properties

that may be written in prenex form with no universal second�order quan�
ti�ers� Consider the following example� in which R� Y� and B are unary
relation variables�

� � ��R
��Y
��B
��x

h
�R�x
� Y �x
� B�x

 � ��y

�
E�x� y

��R�x
� R�y

 � ��Y �x
 � Y �y

 � ��B�x
 �B�y

�i

Observe that a graph G satis�es � i� G is ��colorable�� The formula �
is an example of the following theorem of Fagin�

Theorem ��� �	
 �SO �� � NP �

Proof ��
� Given a second�order existential sentence � � ��Ra�
�
 � � � ��Rak

k
�
the task of our NP machine is to test whether its input A satis�es �� To
do this the machine can guess the relations Ra�

� � � � � � R
ak
k � The relation Rai

i

may be speci�ed by a string of nai bits where n � jAj� The task of testing

whether A� Ra�
� � � � � � R

ak
k j� � is a problem in FO and thus certainly in P�

��
� Conversely� let N be a nondeterministic Turing machine that uses
time nk for inputs A with n � jAj� We will write a second�order sentence

A logspace Turing machine T must check whether its input A satis�es �� Let n � jAj�
T marks o� k logn tape cells in which it can systematically cycle through all values of
x�� � � � � xk� For each value of �x� T tests whether or not the quanti�er free matrixM holds
in A�

�A graph is ��colorable i� its vertices may be colored with one of three colors so that no
two adjacent vertices are the same color� Three colorabliity is an NP complete property�

�

� � ��C� � � � Cs
� that says� �There exists an accepting computation �C of
N �� More precisely� the �rst�order sentence � will have the property that
A� �C j� � i� �C is an accepting computation of N on input A� Thus�

A j� �
 N accepts A

We now describe how to code N �s computation� �C consists of a matrix
�C��s� �t
 of n�k tape cells with space �s and time �t varying between � and nk���
We use a k�tuple of variables �t � tk� � � � � t� and �s � sk� � � � s� each ranging
over the universe of A� i�e� from � to n� �� to code these values� For each

�s� �t pair� �C��s� �t
 codes the tape symbol � that appears in the �sth cell at time
�t� if n�s head is not on this cell� If the head is present then �C��s� �t
 codes the
pair hq� �i consisting of N �s state q at time �t� and the tape symbol �� Let
R � fr�� � � � � rsg � �Q � �
 � � be a listing of the possible contents of a

computation cell� We will let Ci be a �k�ary relation variable for � � i � s�

The intuitive meaning of Ci��s� �t
 is that the computation cell �s at time �t
contains symbol ri�

It is now fairly straightforward to write the �rst�order sentence �� �C

saying that �C codes a valid accepting computation of N � Note that the
input A is coded in the contents of N �s tape at time �� One can code A in
a sequence of na� � na� � � � � � nat � r log n bits where A has vocabulary

� � hRa�
� � � � � � Rat

t � c�� � � � � cri� The sentence � must assert that the input
is coded correctly� e�g�� � includes the following clause meaning that cell
� � � � �s� � � � sa� is a one i� Ra�

� �s�� � � � � sa�
 holds�

�sk � � � sk�� � � � � � � � sa��� � �

 �C���s
� Ra�
� �s�� � � � sa�

The sentence � must also assert that the contents of tape cell ��s� �t� �

follows from the contents of cells ��s� �� �t
� ��s� �t
� and ��s � �� �t
 via a move
of N � Finally� � says that an accept state is eventually reached�

The following corollary due to Stockmeyer gives a nice characterization

of the polynomial�time hierarchy�

Corollary ��� ��	
 PH � SO �

� Inductive De�nitions

A useful way to increase the power of �rst�order logic without jumping all
the way up to second order logic is to add the power to de�ne new relations

�

by induction� For example� consider the vocabulary �g � hEi of graphs� We
can de�ne the re�exive� transitive closure E� of E as follows� Let R be a
binary relation variable and consider the formula�

��R� x� y
 � x � y � �z�E�x� z
� R�z� y

 ��

The formula � formalizes an inductive de�nition of E� which may be

more suggestively written as follows�

E��x� y
 � x � y � �z�E�x� z
�E��z� y

For any structure A with vocabulary �g� � induces a map from binary
relations on the universe of A to binary relations on the universe of A�

�A�R
 � fha� bi j A j� ��R� a� b
g

Note that since R appears only positively in �� �A is monotonic� Let �r
A

denote �A iterated r times� With � de�ned as in Equation �� A any graph�
and r � � observe that�

�r
A��
 � fha� bi � �UA
� j distance�a� b
 � r � �g �

Thus� in particular� if n � jAj� then �n
A��
 � E� � the least �xed

point of �A� In general� let ��R� x�� � � � � xk
 be an R�positive �rst�order

formula� i�e�� R does not occur within any negation signs� Then for any
�nite structure A� the least �xed point of �A exists and is equal to �r

A��

where r is minimal so that �r

A��
 � �r��
A ��
� The number r is called the

closure ordinal of � in A and denoted j�Aj� Note that j�Aj � nk where

n � jAj� This is true because each application of �A before the r��st adds

some new k�tuple to the relation� We also de�ne the closure ordinal of � by
j�j�n
 � maxfj�Aj jn � jAjg�

Remark ��� For � given in Equation
 the closure ordinal j�j�n
 � n�
However� the following alternate inductive de�nition of E� has closure or�
dinal j�j�n
 � dlog ne� ��

��R� x� y
 � x � y � E�x� y
 � �z�R�x� z
� R�z� y

De�nition ��� We now de�ne �FO � LFP� to be the set of �rst�order

inductive de�nitions� We do this by adding a least �xed point operator �LFP�
to �rst�order logic� If ��Rk� x�� � � � � xk
 is an Rk�positive formula in �FO �

�

LFP�� then �LFPRkx����xk
�
 is a formula in �FO � LFP� denoting the least

�xed point of �� We also de�ne IND�f�n

 to be the sublanguage of �FO �
LFP� in which we only include least �xed points of �rst�order formulas �
for which j�j is O�f�n
�� For example� the re�exive� transitive closure of E

is expressible as �LFPRxy �
 and is thus in IND�log n�� Note also that�

�FO � LFP
 �
��
k��

IND�nk� �

Immerman and Vardi independently characterized the complexity of �FO
� LFP
 as follows�

Theorem ��� �
�� �

 �FO � LFP� � P �

Proof ��
� By the above discussion� for an inputA of size n� �LFPRx� ���xk �
 �

�nk

A � Thus we need only evaluate the formula � at most nk times�

��
� Let M be a deterministic Turing machine that runs in time nk

for input structures of size n� Recall the proof of Theorem ��� where we
existentially quanti�ed �C� an accepting computation of the nondeterministic

Turing machine N � Here we de�ne the computation �C of M by induction�
and assert that it ends in an accepting state� Instead of presenting the
details now� we defer them until the proof of Theorem ��� for which the
present theorem is a corollary�

In the proof of Theorem ��� we did not need to assume that the logical
relation � is present� This is because in �SO �
 we can existentially quantify
a binary relation L and assert that it is a total ordering on the universe�

However� having the ordering is crucial to the truth of Theorem ���� For
example� even the trivial graph property of having an even number of edges
is not expressible in �FO�wo�
 � LFP
� ��� �
�� Consider the language

�FO�wo�
 � pos LFP
� in which LFP does not occur within any negation
symbols� An interesting question is whether or not this class is closed under
complementation� In the case of in�nite structures the answer is no �����
For �nite structures� Chandra and Harel ��� conjectured that the answer is

no�
For �nite ordered structures� the proof of Theorem ��� shows that one

�xed point is enough to de�ne a whole polynomial time computation and

�When we say� �wo��� we mean without any of the logical representations of ordering�
i�e� �� s�BIT�

thus �FO � pos LFP
 � P � �FO � LFP
� It was surprising to �nd that
even without ordering �xed points are closed under complementation�

Theorem ��� �
�
 �FO�wo�� � pos LFP� � �FO�wo�� � LFP� �

Proof Suppose we are given anR�positive �rst�order formula��R� x�� � � � � xk
�

We must show that the relation ��LFPR�x �
 is expressible in the form
�LFPSy� ���yt �
 for some S�positive �rst�order formula �� We prove this using
the Stage Comparison Theorem of Moschovakis ����� Fix a �nite structure

A� De�ne the relations �� and �� on the set of k�tuples from the universe
of A as follows� Let cl��A� �a
 be the minimum r such that �a � �r

A��
 if
�a � LFP��A
 and � otherwise� We de�ne �a ��

�b �resp� �a ��
�b
 to mean

that cl��A� �a
 � � and cl��A� �a
 � cl��A��b
 �resp� cl��A� �a
 � cl��A��b

�

In words� �a ��
�b if �a is in the LFP of � and comes in no later than �b� The

stage comparison theorem states that �� and �� are expressible as a single
least �xed point�

Now we have the tools to express the negation of the �xed point of ��

First� it is easy to express the relation �a ��
�b meaning that cl��A� �a
 �

cl��A��b
 � �� Of course the closure ordinal j�Aj is �nite since A is �nite�
Using �� and �� we can express the fact that some �m has this maximal

closure ordinal�

MAX� �m
 � � �m �� �m
 � ���x
��x �� �m � �m�� �x
 �

Using MAX we can then express negation as follows�

��LFPRx� ���xk �
��y
 � �� �m
�MAX� �m
 � �m �� �y
 �

It is well known ���� ��� that the two positive �xed points for �� and ���

plus the �nitely many extra quanti�ers can be merged into a single positive

�xed point�

To conclude this section we note that the above results lead to the fol�
lowing normal form theorem for the language �FO � LFP
�

Theorem ��� �
�
 Let � be any formula in the language �FO � LFP��
Whether or not the ordering relations are present� there exists a �rst�order

formula � such that
� � �LFP�
���

� Inductive Depth Equals Parallel Time

In this section we study the relationship between �rst�order expressibil�
ity and parallel complexity� First we precisely de�ne the class CRAM�
TIME�t�n
�� which is intuitively the set of problems checkable by an idealized

parallel computer in time t�n
�
The concurrent random access machine �CRAM
 is essentially the con�

current read� concurrent write parallel random access machine �CRCW

PRAM
 described in ��	�� A CRAM is a synchronous parallel machine such
that any number of processors may read or write into any word of global
memory at any step� If several processors try to write into the same word at
the same time� then the lowest numbered processor succeeds� In addition to

assignments� the CRAM instruction set includes addition� subtraction� and
branch on less than� Each processor also has a local register containing its
processor number�

The di�erence between the CRAM and the CRCW PRAM described in

��	� is that we also include a SHIFT instruction� SHIFT�x� y
 causes the
word x to be shifted y bits to the right� Without SHIFT� CRAM�t�n
� would
be too weak to simulate FO�t�n
� for t�n
 � log n� The reason behind the

SHIFT operation for CRAMs and the corresponding BIT predicate for �rst�
order logic is that each bit of global memory should be available to every
processor in constant time�

Let CRAM�t�n
� be the set of problems accepted by a CRAM using a

polynomial amount of hardware �i�e� polynomially many processors and

polynomially many bits of memory
 and time O�t�n
�� The input to a
CRAM is a binary string coding a �rst�order structure A of vocabulary
� � hRa�

� � � � � � Rat
t � c�� � � � � cri� Recall that A may be coded in a sequence of

m � na� � na� � � � �� nat � r log n bits� The input string is placed one bit
at a time in the �rst m global memory locations��

The following theorem says that the parallel time needed to check if an

input has a certain property S is linearly related to the inductive depth
needed to express S�

Theorem ��� �
	
For all polynomially bounded t�n
�

CRAM�t�n
� � IND�t�n
� �

�If placement of the input is varied� e�g� if the �rst m� logn words of memory contain
logm bits each of the input� or even if the wholem�bit string is placed in the �rst memory
location� then all our results remain unchanged�

	

Lemma ��� For any polynomially bounded t�n
 we have�

CRAM�t�n
� � IND�t�n
�

Proof We want to simulate the computation of a CRAMM � On inputA� a
structure of size n� M runs in t�n
 synchronous steps� using p�n
 processors�

for some polynomial p�n
� Since the number of processors� the time� and the
memory word size are all polynomially bounded� we need only a constant
number of variables x�� � � � � xk� each ranging over the n element universe of
A� to name any bit in any register belonging to any processor at any step

of the computation� We can thus de�ne the contents of all the relevant
registers for any processor of M � by induction on the time step�

We now specify the CRAM model more precisely� We may assume that

each processor has a �nite set of registers including the following� Proces�
sor� containing the number between � and p�n
 of the processor� Address�
containing an address of global memory� Contents� containing a word to be
written into or read from global memory� and� Program Counter� containing

the line number of the instruction to be executed next� The instructions to
be simulated are limited to the following�

READ� Read the word of global memory speci�ed by Address into Con�

tents�

WRITE� Write the Contents register into the global memory location
speci�ed by Address�

OP RaRb� Perform OP on Ra and Rb leaving the result in Rb� Here OP
may be Add� Subtract� or� Shift�

MOVE RaRb� Move Ra to Rb�

BLT RL� Branch to line L if the contents of R is less than zero�

It is straightforward to write a �rst�order inductive de�nition for the
relation VALUE�p� t� x� r� b
 meaning that bit x in register r of processor

p at step t is equal to b� Note that since the number of processors� the
time� and the word size are all polynomially bounded� a constant number of
variables ranging from � to n� � su�ce to specify each of these values�

The inductive de�nition of the relation VALUE�p� t� x� r� b
 is a disjunc�

tion depending on the value of p�s program counter at time t� �� The most
interesting case is when the instruction at time t � � is READ� Here we

��

simply �nd the most recent time t� � t � � at which the word speci�ed by
p�s Address register at time t� � was written into� and the lowest numbered
processor p� that wrote into this address at time t�� In this way we can access
the answer� namely the xth bit of p� s Contents register at time t��

It remains to check that Addition� Subtaction� BLT� and SHIFT are
�rst�order expressible� and that we can express the fact that each processor
begins with its own processor number in its Processor register� Addition
was done in Example ��� and Subtraction and Less Than are similar� The

main place we need the BIT relation is to express the fact that the intitial
contents of each processor�s Processor register is it�s processor number� The
relation BIT allows us to translate between variable numbers and words in

memory� Using BIT we can also express addition on variable numbers and
thus express the SHIFT operation�

Thus we have described an inductive de�nition of the relation VALUE�
coding M �s entire computation� Furthermore� one iteration of the de�nition

occurs for each step of M �

In order to compute inductive de�nitions on CRAM�s it is convenient to

put the inductive de�nitions into a simple normal form� The following has

a straightforward inductive proof� cf� ���� ����

Fact ��� Let � be an R�positive �rst�order formula� Then � can be written
in the following form�

��R� x�� � � � � xk
 � �Q�z��M�
 � � � �Qszs�Ms
��x� � � � xk�Ms��
R�x�� � � � � xk
 �

where the Mi�s are quanti�er�free formulas in which R does not occur�

Here the notation ��x�M
� means ��x
M
 �� and ��x�M
� means
��x
M � �� Note that the above requanti�cation of the xi�s means that
these variables may occur free inM� � � �Ms� but they are bound inMs�� and

R�x�� � � � � xk
� Note that the same variables may now be requanti�ed� Let us
write QB to denote the quanti�er block �Q�z��M�
 � � � �Qszs�Ms
��x� � � � xk�Ms��
�
Thus� in particular� for any structure A�and any r � N�

A j� ��r
A��

� ��QB�rfalse
 �

Here �QB�r means QB repeated r times �literally
� It follows immediately

that if t � j�j�n
� and A is any structure of size n then

A j� �LFP�
� ��QB�tfalse
 �

This is the simple form for inductive de�nitions we wanted� We next
show how to evaluate such de�nitions using a CRAM�

��

Lemma ��� For polynomially bounded t�n
�

IND�t�n
� � CRAM�t�n
�

Proof As in the above discussion� let the IND�t�n
� problem be determined
by the following quanti�er free formulas and quanti�er block�

M�� � � � �Mk� QB � �Q�x��M�
 � � � �Qkxk�Mk
 �

Our CRAM must test whether an input structure A satis�es the sentence�

�n � �QB�t	n
false �

The CRAM will use nk processors and nk�� bits of global memory� Note

that each processor has a number a� � � � ak with � � ai � n� Using the

SHIFT operation it can retrieve each of the ai s in constant time�
The CRAM will evaluate �n from right to left� simultaneously for all

values of the variables x�� � � � � xk� For � � r � t�n
 � k� let�

�r
n � �Qixi�Mi
 � � � �Qkxk�Mk
�QB�qfalse �

where r � k � �q � �
 � �� i� Let x� � � � !xi � � � xk be the k� ��tuple resulting
from x� � � � xk by removing xi� We will now give a program for the CRAM

which is broken into rounds each consisting of three processor steps such
that�
��
 Just after the rth round� the contents of memory location a� � � � !ai � � � ak
is � or � according as whether A j� �r

n�a�� � � � � ak
 or not�

Note that xi does not occur free in �
r
n" At the r

th round� processor num�

ber a� � � � ak executes the following three instructions according to whether

Qi � � or Qi � ��

fQi � �g

�� b� loc�a� � � � !ai�� � � � ak
#

�� loc�a� � � � !ai � � � ak
� �#

�� if Mi�a�� � � � � ak
 and b then loc�a� � � � !ai � � � ak
� �#

fQi � �g

�� b� loc�a� � � � !ai�� � � � ak
#

�� loc�a� � � � !ai � � � ak
� �#

��

�� if Mi�a�� � � � � ak
 and �b then loc�a� � � � !ai � � � ak
� �#

It is not hard to prove by induction that ��
 holds� and thus that the
CRAM simulates the formula� It is also straightforward to check for progress
after each iteration of the whole quanti�er block� and to halt when no such

progress occurs�

Theorem ��� tells us that inductive depth is exactly equal to parallel

time� in the whole range in which inductive depth is de�ned� If we want to
talk about super polynomial parallel time� then we must talk about iterat�
ing �rst�order formulas as in the discussion after Fact ���� We now de�ne

FO�t�n
� to be the set of properties de�ned by quanti�er blocks iterated t�n

times�

De�nition ��� A set C of structures of vocabulary � is a member of FO�t�n
�
i� there exist quanti�er free formulasMi� � � i � k� from L��
� and a quan�
ti�er block�

QB � ��Q�x��M�
 � � � �Qkxk�Mk
�

such that if we let �n � �QB�t	n
M�� for n � �� �� � � �� then for all structures
A of vocabulary � with jAj � n�

A � C
 A j� �n �

As a corollary to Fact ���� and a simple generalization of Theorem ����
we obtain the following three results� Note that we need the uniformity as�

sumption on t�n
 because unlike a FO�t�n
� property� an inductive de�nition
or a CRAM program must �gure out on its own when to stop� To prove
Corollary �� just observe that since we de�ned our CRAM time to be on a
machine with polynomially bounded hardware� if such a CRAM is allowed to

run for an unlimited amount of time� it can make use of at most exponential

time and it can compute exactly the polynomial space properties�

Corollary ��� �
	
 For all polynomially bounded� parallel time constructible
t�n
�

FO�t�n
� � IND�t�n
� �

Corollary ��� �
	
 For all parallel time constructible t�n
�

CRAM�t�n
� � FO�t�n
� �

Corollary ��	 �
�

PSPACE �
��
k��

FO��n
k

�

��

� First�Order Logic Plus Transitive Closure

The re�exive� transitive closure is a particularly important case of an in�
ductive de�nition� Let ��x�� � � � � xk� x

�
� � � � x

�
k
 be a formula with �k free

variables� We will write �TCx� ���xkx
�
�
���x�

k

�
 to denote the re�exive� transitive

closure of the binary relation ���x� �x�
� Let �FO � TC
 be the closure of
�rst�order logic with arbitrary occurrences of TC� and let �FO � pos TC

be the restriction of �FO � TC
 in which TC never occurs within a negation�

Theorem ��� �
�
 �FO � pos TC� � NSPACE�log n
 �

Proof ��
� The set of relations computable in NSPACE�log n� is closed
under �rst�order quanti�ers� ��x
 and ��x
 because with space log n we can

cycle through all the values of x� Thus it su�ces to show that if ���x� �x�

is computable in NSPACE�log n�� then so is �TC�x��x� �
� We can test if the
structure A satis�es �TC�x��x� �
��a� �a

�
 as follows� Guess �b and check that

A j� ���a��b
� Next throw away �a and guess �c such that A j� ���b� �c
� Repeat
this process until we guess �z such that A j� ���y� �z
� and �z � �a�� in which case
we accept� The space needed is �k log n plus the space to check if ���x� �x�

holds� where k is the arity of �x�

��
� Here we are given an NSPACE�log n� machine N and we must write
the sentence � � �FO � pos TC
 such that for any structure A�

�A j� �

 �N accepts A
 �

Assume for the sake of simplicity that N accepts a graph problem� and
uses k log n bits of work tape� Then any con�guration of N can be coded

with k � � variables� r�� r�� w�� w�� � � � � wk� q where w�� w�� � � � � wk code the
work tape� q codes n�s state and the position of its work head� and r�� r�
code the position of N �s read head� Note that the read head is looking at bit

hr�� r�i of A�s adjacency matrix� Thus the read head is reading a one �resp�
a zero
 i� A j� E�r�� r�
 �resp� A j� �E�r�� r�

� It is straightforward to
see that the predicates START��c
� ACCEPT� �d
� and MOVE��e� �f
� meaning
that �c is the initial con�guration of N � �d is an accept con�guration� and

that h�e� �fi is a legal move of N � are all �rst�order expressible�� Thus the

�In order to write MOVE	�e� �f
� we make use of the relation BIT to read the appropriate
bit of the variables coding N �s work tape� If BIT were not given to us� however� it would
still be expressible from � using TC� See ���� for this and all the other details of this
proof�

��

sentence we need is

� � ���c�START��c

���d�ACCEPT� �d

�TC�e� �f MOVE
��c� �d
 �

It is interesting that every property in NSPACE�log n� may be written

as a transitive closure of a quanti�er free �rst�order relation� See ���� for
the proof of the following normal form theorem�

Theorem ��� Every formula in �FO � pos TC� may be written in the form

�TC�x��x� �
����max

where � is �rst�order and quanti�er free�

We close with a very surprising result�

Theorem ��� �
�
 �FO � pos TC� � �FO � TC� �

Proof It will su�ce to show that the relation ��TCu�u� E�u� u�

��� x

meaning that there is no path from � to x is expressible in �FO � pos TC
�

We will do this in two lemmas� Let PATH�y� d
 mean that there is a path
of length at most d from � to y� Obviously this relation is expressible in
�FO � pos TC
� Suppose that we are given cd� the exact number of vertices

y �� � such that PATH�y� d
 holds�
 Lemma ��� shows that in this case the
negation of PATH�y� d
 is also expressible in �FO � pos TC
� We will then
use this result in Lemma ��� to show that given cd we can compute cd��� It
then follows using one more transitive closure� that we can compute cn���

Thus by Lemma ��� again� we can say� �There is no path from � to x��

Lemma ��� Let NOPATH�y� d� c
 be a formula such that

NOPATH�y� d� cd

 �PATH�y� d
 �

That is� if c � cd� then NOPATH�y� d� c
 is the negation of PATH�y� d
�
whereas� if c �� cd then we don�t care what NOPATH�y� d� c
 means� Then
such a formula NOPATH�y� d� c
 is expressible in �FO � pos TC��

�We don�t include � here just because variables range from � to n� �� while� if we did
include �� then counts would range from � to n�

��

Proof The idea is that if c � cd� then �PATH�y� d
 holds i� there exist at
least c nonzero vertices z �� y such that PATH�z� d
� The latter condition
is expressible in �FO � pos TC
 as follows� First de�ne an � edge between
pairs of vertices�

��u� k� u�� k�
 � s�u� u�
 �
h�
k � k�

�
�
�
s�k� k�
 � PATH�u�� d
 � u� �� y

�i

Here s is the successor relation� An � edge exists from hu� ki to hu��� ki in
all cases� and to hu� �� k � �i just if PATH�u� �� d
 holds� and u� � �� y�
It follows that the formula

NOPATH�y� d� c
 � �y �� �
 � �TCuk�u�k� �
��� ��max� c

has the required properties�

The next lemma shows that if we are given cd then we an compute cd���

Lemma ��� Let NEXT�d� c� d�� c�
 mean that d� � d� � and if c � cd then
c� � cd��� Then NEXT is expressible in �FO � pos TC��

Proof We will express NEXT in �FO � pos TC
� using PATH and
NOPATH� In order to do this we must cycle through all vertices v� keeping

a count of how many of them are reachable in at most d� � steps� We will

say that there is a � edge from hv� ki to hv�� k�i if and only if v� � v � �
and k� � k � � if PATH�v�� d� �
 holds� and k� � k otherwise� The formal
de�nition of � is�

��v� k� v�� k�# d� c
 �

�
s�v� v�
 �

h�
k � k� � ��z
��z �� v� � �E�z� v�

� NOPATH�z� d� c

�

�
�
s�k� k�
 � ��z
��z � v� � E�z� v�

� PATH�z� d

�i�

It follows that there is a � path from h�� �i to hmax� ki i� k � cd��� Thus�

NEXT�d� c� d�� c�
 � s�d� d�
 � �TCvk�v�k� �
��� ��max� c�

Let COUNT�d� c
 mean that c � cd� This can be expressed as a transitive

closure of NEXT�

COUNT�d� c
 � �TCdc�d�c� NEXT
��� �� d� c

��

Finally� as promised we can express the nonexistence of a path from �
to x�

��c
�COUNT�max� c
 � NOPATH�x�max� c

One can generalize Theorem ��� to the following two corollaries� Corol�

lary ��
 settles a question dating back to �	��� These corollaries are sur�

prising since almost everyone had conjectured their negation��

Corollary ��� �
�� ��
 For any s�n
 � log n�

NSPACE�s�n�
 � co�NSPACE�s�n�
 �

Corollary ��� �
�� ��
 The class of context sensitive languages is closed
under complementation�

Proof Kuroda showed in �	�� that CSL � NSPACE�n� �����

References

��� D� Mix Barrington� N� Immerman� and H� Straubing� On Uniformity
Within NC�� Third Annual Structure in Complexity Theory Symp�

��	
�

��� A� Borodin� S�A� Cook� P�W� Dymond� W�L� Ruzzo� and M� Tompa�
Two Applications of Complementation via Inductive Counting� Third
Annual Structure in Complexity Theory Symp� ��	
�

��� Ashok Chandra and David Harel� Structure and Complexity of Rela�

tional Queries� ��st IEEE Symp� on Foundations of Computer Sci�
ence� ��	 �
� �������

� Also appeared in a revised form in JCSS ��

��	 �
� �		���
�

��� Ashok Chandra� Dexter Kozen� and Larry Stockmeyer� Alternation�
JACM� �	� No� �� ��	 �
� ��������

��� Ashok Chandra� Larry Stockmeyer and Uzi Vishkin� Constant Depth

Reducibility� SIAM J� of Comp� ��� No� �� �	 �� �������	
�

�These two corollaries have been discovered independently and essentially simultane�
ously by R�obert Szelepcs�enyi �����

�

��� Stephen Cook� A Taxonomy of Problems with Fast Parallel Algo�
rithms� Information and Control �� ��	 �
� �����

�
� H� Enderton� A Mathematical Introduction to Logic� Academic Press�
�	
��

� � Ron Fagin� Generalized First�Order Spectra and Polynomial�Time

Recognizable Sets� in Complexity of Computation� �ed� R� Karp
�
SIAM�AMS Proc� �� �	
�� ��
���
�

�	� Etienne Grandjean� The Spectra of First�Order Sentences and Com�
putational Complexity� SIAM J� of Comp� ��� No� � ��	 �
� �����
��

���� Etienne Grandjean� Universal quanti�ers and time complexity of Ran�

dom Access Machines� Math� Syst� Th� ��	 �
� �
���
�

���� Etienne Grandjean� First�order spectra with one variable� to appear in
J� Comput� Syst� Sci�

���� Yuri Gurevich� Toward Logic Tailored for Computational Complexity�
Computation and Proof Theory �M�M� Ricther et� al�� eds�
� Springer�

Verlag Lecture Notes in Math� ���� ��	 �
� �
������

���� Neil Immerman� Number of Quanti�ers is Better than Number of Tape
Cells� JCSS ��� No� �� June �	 �� ���
��

���� Neil Immerman� Upper and Lower Bounds for First Order Express�
ibility� JCSS ��� No� � ��	 �
�
��	 �

���� Neil Immerman� Relational Queries Computable in Polynomial Time�

��th ACM STOC Symp�� ��	 �
� ��
����� Also appeared in revised
form in Information and Control� � ��	 �
� ������

���� Neil Immerman� Languages Which Capture Complexity Classes�
SIAM J� Comput� ��� No� � ��	

�

��
� Neil Immerman� Expressibility as a Complexity Measure� Results and

Directions� Second Structure in Complexity Theory Conf� ��	

�

�	������

�� � Neil Immerman� Expressibility and Parallel Complexity� Tech� Report�
Yale University Department of Computer Science ��	

�

�

��	� Neil Immerman� Nondeterministic Space is Closed Under Complemen�
tation� to appear in the Third Structure in Complexity Theory Conf�
��	
 and also in SIAM J� Comput�

���� Neil Immerman and Dexter Kozen� De�nablitity with Bounded Number

of Bound Variables� Second LICS Symp� ��	

���� Neil Immerman and Eric S� Lander� �Describing Graphs� A First�
Order Approach to Graph Canonization�� Tech Report ���� Yale Uni�
versity Department of Computer Science ��	
�

���� S�Y� Kuroda� Classes of Languages and Linear�Bounded Automata�

Information and Control
 ��	��
� ��
�����

���� K�J� Lange� B� Jenner� and B� Kirsig ��	

� The Logarithmic Hierar�
chy Collapses� A�L

� � A$L
� � ��th ICALP�

���� Daniel Leivant� Characterization of Complexity Classes in Higher�
Order Logic� Second Structure in Complexity Theory Conf� ��	

�

������
�

���� James Lynch� �Complexity Classes and Theories of Finite Models��
Math� Sys� Theory �� ��	 �
� ��
�����

���� Yiannis N� Moschovakis� Elementary Induction on Abstract Structures�
North Holland� �	
��

��
� Larry Ruzzo� On Uniform Circuit Complexity� J� Comp� Sys� Sci��

��� No� � ��	 �
� ����� ��

�� � Larry Stockmeyer� The Polynomial�Time Hierarchy� Theoretical
Comp� Sci� �� �	

������
�

��	� Larry Stockmeyer and Uzi Vishkin� Simulation of Parallel Random
Access Machines by Circuits� SIAM J� of Comp� ��� No� �� �	 ��

���	����
�

���� R%obert Szelepcs%enyi� The Method of Forcing for Nondeterministic Au�
tomata� Bull� European Association Theor� Comp� Sci� �Oct� �	

�
	������

���� M� Vardi� Complexity of Relational Query Languages� ��th Sympo�
sium on Theory of Computation� �	 �� ���
����
�

�	

