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1 Introduction

Computational complexity began with the natural physical notions of time
and space. Given a property, S, an important issue is the computational
complexity of checking whether or not an input satisfies S. For a long time,
the notion of complexity referred to the time or space used in the compu-
tation. A mathematician might ask, “What is the complexity of expressing
the property S7” It should not be surprising that these two questions — that
of checking and that of expressing — are related. However it is startling how
closely tied they are when the second question refers to expressing the prop-
erty in first-order logic. Many complexity classes originally defined in terms
of time or space resources have precise definitions as classes in first-order
logic.

In 1974 Fagin gave a characterization of nondeterministic polynomial
time (NP) as the set of properties expressible in second-order existential
logic. We will begin with this result and then survey some more recent work
relating first-order expressibility to computational complexity. Some of the
results arising from this approach include characterizing polynomial time
(P) as the set of properties expressible in first-order logic plus a least fixed
point operator (to be defined later), and showing that the set of first-order
inductive definitions for finite structures is closed under complementation.

*Lecture Notes for the AMS Short Course in Computational Complexity Theory, Jan.
5-6, 1988, Atlanta, GA. Appeard in Proceedings of Symposia in Applied Mathematics,
Vol. 38 (1989), 75-91.
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Recently our technology has become able to build highly parallel com-
puters containing thousands of processors working simultaneously. For this
reason the theory of parallel computation, and the study of parallel time as
a computational resource has become an important area. We will discuss
parallel computation, and then show that parallel time can be neatly char-
acterized in terms of first-order expressibility: The minimum parallel time
needed to compute a property using at most polynomially many processors
is equal to the minimum depth of a first-order inductive definition of the
property.

An apparently weaker operator than full inductive definitions is the
power to take the reflexive, transitive closure (TC) of any defined binary
relation ¢(Z,y). We show that (FO + pos TC), the class of properties ex-
pressible using TC positively (i.e. not within any negations) is equal to
NSPACE][log n]. Finally we show the very surprising, recent result that (FO
+ pos TC) is closed under complementation. A corollary of this result is:

Theorem For any s(n) > logn, nondeterministic space s(n) is closed
under complementation.

2 Some Logical Definitions

We begin with some precise definitions. The reader is referred to [7] for
background in first-order logic.

A vocabulary T = (R{* ... R{*,¢1 ... ¢,) is a tuple of relation symbols and
constant symbols. R is a relation symbol of arity a;. In the sequel we will
often omit the superscripts to improve readability. A finite structure with
vocabulary 7 is a tuple, A = ({0,1,...,n — 1}, R{*...R{}, ¢f*...c/), consisting
of a universe U = {0,...,n—1} and relations Rf‘...RkA of arities aq,...,ag
on U corresponding to the relation symbols Ri*...R{* of 7, and constants
cf...cA from U corresponding to the constant symbols ¢; ... ¢, from 7. We
write |A| to denote n, the cardinality of the universe of A.

For example, if 7, consists of a single binary relation symbol E (standing
for edge) then a structure G = ({0...n—1}, E') with vocabulary 74 is a graph
on n vertices. Similarly if 7, consists of a single unary relation symbol M
then a structure S = ({0...n — 1}, M) with vocabulary 7, is a binary string
of length n.

Let the symbol ‘<’ denote the usual ordering on the natural numbers.
We will include < as a logical relation in our first-order languages. This
seems necessary in order to simulate machines whose inputs are structures



given in some order. For convenience we also include the constant symbols 0
and maz refering to the first and last elements of the structure respectively,
and the logical relation s(z,y) true when z is the immediate successor of y
in the < ordering. For technical reasons we also include the logical relation
BIT, where BIT(z,y) holds iff the xth bit in the binary expansion of y is a
one.!

We now define the first-order language L£(7) to be the set of formu-
las built up from the relation and constant symbols of 7, and the logical
relation symbols and constant symbols: =,<,s,BIT, 0, maz, using logical
connectives: A,V, -, variables: z,v, z, ..., and quantifiers: V,d.

From now on, we will think of a problem as a set of structures of some
vocabulary 7. Thus P, NP, etc. will be the set of problems in P (polyno-
mial time), NP (non-deterministic polynomial time), etc. It suffices to only
consider problems on binary strings, but it is more interesting to be able to
talk about other vocabularies, e.g. graph problems, as well. Define FO to
be the set of all first-order expressible problems.

Example 2.1 An example of a first-order expressible property is addition.?
In order to turn addition into a yes/no question we can let our input have the
vocabulary 7, = (A, B, k) consisting of two unary relations and a constant
symbol. In a structure A of vocabulary 74, the relations A and B are binary
strings of length n = |A|. We’ll say that A satisfies the addition property if
the k™ bit of the sum of A and B is one.

In order to express additton we will first express the carry bit,

CARRY(z) = (Jy < 2)[A(y) AB(y) A (Vz.y < z < z)A(z) V B(z)]
Then with & standing for exclusive or, we can express PLUS,
PLUS(z) = A(z) ® B(z) ® CARRY(x)
Thus the sentence expressing the addition property is PLUS(k).

It is straightforward to check that FO is contained in DSPACE[log n].3
We will see in Section 5 that FO is equal to the set of problems checkable

1Of course some of these logical relations are redundant. We include all of them to
make the statements of some of our theorems simpler: Theorem 4.5 requires the constant
symbols. Theorem 5.1 requires the relation BIT when ¢(n) is o(logn). Theorem 6.2
requires the successor relation and the constant symbols.

*This is a standard construction, see e.g. [29].

$To see this suppose we are given a first-order sentence

¢ = (Fz1)(Vea) ... (Quer)M(T) .



in constant time on a concurrent parallel random access machine (CRAM).
This is a very weak complexity class. In the next several sections we will
discuss strengthenings of first-order logic to languages that capture more
important complexity classes.

3 Second-Order Logic and Fagin’s Theorem

In second-order logic we have first-order logic, plus new relation variables
over which we may quantify. Let A} be a j-ary relation variable. Then
(VA{ ) means that for all choices of j-ary relation A{ , @ holds. Tt is well
known that second-order formulas may be transformed into prenex form,
with all second-order quantifiers in front. Let SO be the set of second-order
expressible properties, and let (SO 3) be the set of second-order properties
that may be written in prenex form with no universal second-order quan-
tifiers. Consider the following example, in which R,Y, and B are unary
relation variables,

o = (AR)AY)(3B)(Va)[(R(z) VY () V B(2)) A (Vy)(E(z,y) —

~(R(z) A R(y)) A ~(Y () AY () A =(B(z) A B(y)))]

Observe that a graph G satisfies o iff G is 3-colorable.* The formula o
is an example of the following theorem of Fagin,

Theorem 3.1 /8] (50 3) = NP .

Proof (C): Given a second-order existential sentence ® = (IR}") ... (AR )y
the task of our NP machine is to test whether its input A satisfies ®. To
do this the machine can guess the relations Ry',..., R;*. The relation R;*
may be specified by a string of n% bits where n = |.A|. The task of testing
whether A, R{*,..., Ri* = ¢ is a problem in FO and thus certainly in P.
(D): Conversely, let N be a nondeterministic Turing machine that uses
time n* for inputs A with n = |A|. We will write a second-order sentence

A logspace Turing machine T must check whether its input A satisfies . Let n = |A4].
T marks off klogn tape cells in which it can systematically cycle through all values of
Z1,.-.,2k. For each value of Z, T tests whether or not the quantifier free matrix M holds
in A.

A graph is 3-colorable iff its vertices may be colored with one of three colors so that no
two adjacent vertices are the same color. Three colorabliity is an NP complete property.



® = (3C...C,)p that says, “There exists an accepting computation C' of
N.” More precisely, the first-order sentence ¢ will have the property that
A,C = ¢ iff C is an accepting computation of N on input .A. Thus,

A= ® < N accepts A

We now describe how to code N’s computation. C consists of a matrix
C(3,1) of n?* tape cells with space 5 and time ¢ varying between 0 and n* —1.
We use a k-tuple of variables ¢ = tg,...,t; and § = sg,...s1 each ranging
over the universe of A, i.e. from 0 to n — 1, to code these values. For each
5,1 pair, C(5,1) codes the tape symbol o that appears in the 5" cell at time
t, if n’s head is not on this cell. If the head is present then C(5,) codes the
pair (g, o) consisting of N’s state ¢ at time ¢, and the tape symbol o. Let
R = {r1,...,7s} = (Q x ¥) U X be a listing of the possible contents of a
computation cell. We will let C; be a 2k-ary relation variable for 1 <¢ < s.
The intuitive meaning of C;(s,%) is that the computation cell 5 at time ¢
contains symbol r;.

It is now fairly straightforward to write the first-order sentence ¢(C)
saying that C' codes a valid accepting computation of N. Note that the
input A is coded in the contents of N’s tape at time 0. One can code A in
a sequence of n® +n® + ...+ n? + rlogn bits where A has vocabulary

T = (R7',...,R{"*,c1,...,¢,). The sentence ¢ must assert that the input
is coded correctly, e.g., ¢ includes the following clause meaning that cell
0...081...8q, is a one iff R{*(s1,...,8,,) holds.

(Sk =0As,_1 =0A ... ASg 41 = 0) — (01(5) — R‘lll (81,...8a1))

The sentence ¢ must also assert that the contents of tape cell (5,7 + 1)
follows from the contents of cells (5 — 1,%), (5,%), and (5 + 1,%) via a move
of N. Finally, ¢ says that an accept state is eventually reached. |

The following corollary due to Stockmeyer gives a nice characterization
of the polynomial-time hierarchy.

Corollary 3.2 [28] PH = SO .

4 Inductive Definitions

A useful way to increase the power of first-order logic without jumping all
the way up to second order logic is to add the power to define new relations



by induction. For example, consider the vocabulary 7, = (E) of graphs. We
can define the reflexive, transitive closure E* of E as follows. Let R be a
binary relation variable and consider the formula,

p(Ryz,y) = z=yV Iz(FE(z,2) A\ R(z,y)) (1)

The formula ¢ formalizes an inductive definition of £* which may be
more suggestively written as follows,

E*(z,y) = z=yV3z(E(z,2) A E*(2,y))

For any structure A with vocabulary 74, ¢ induces a map from binary
relations on the universe of A to binary relations on the universe of A,

pa(R) = {{a,b) | AFE p(R,a,b)}

Note that since R appears only positively in ¢, ¢4 is monotonic. Let ¢’y
denote @ 4 iterated r times. With ¢ defined as in Equation 1, A any graph,
and r > 0 observe that,

e (0) = {(a,b) € (U2 | distance(a,b) <r —1} .

Thus, in particular, if n = |A|, then ¢%(0) = E* = the least fixed
point of ¢ 4. In general, let ¥(R,z1,...,2;) be an R-positive first-order
formula, i.e., R does not occur within any negation signs. Then for any
finite structure A, the least fixed point of ¥ 4 exists and is equal to ¥, (0)
where 7 is minimal so that ¥7(0) = "' (#). The number 7 is called the
closure ordinal of ¢ in A and denoted |¢)4]. Note that 4] < n* where
n = |A|. This is true because each application of 14 before the r» + 15t adds
some new k-tuple to the relation. We also define the closure ordinal of ¢ by

[¥[(n) = max{[pal|n = [Al}.

Remark 4.1 For ¢ given in Equation 1 the closure ordinal |p|(n) = n.
However, the following alternate inductive definition of E* has closure or-
dinal |B|(n) = [logn] + 1.

ﬁ(Ruxay) =z=yV E(x7y) \ EZ(R(Q‘,Z) A R(Z,y))

Definition 4.2 We now define (FO + LFP) to be the set of first-order
inductive definitions. We do this by adding a least fixed point operator (LFP)
to first-order logic. If ¢(R*,z1,...,x1) is an R*-positive formula in (FO +



LFP), then (LFPgi,, .. @) is a formula in (FO + LFP) denoting the least
fized point of . We also define IND[f(n)] to be the sublanguage of (FO +
LFP) in which we only include least fized points of first-order formulas ¢
for which |¢| is O[f(n)]. For example, the reflexive, transitive closure of E
is expressible as (LFP oy B) and is thus in IND[logn]. Note also that,

(FO + LFP) = G IND[n"] .
k=1

Immerman and Vardi independently characterized the complexity of (FO
+ LFP) as follows,

Theorem 4.3 [15, 31] (FO + LFP) = P .

Proof (C): By the above discussion, for an input A of size n, (LFP gz, ..o, ©)
<p’j4k. Thus we need only evaluate the formula ¢ at most n* times.

(2): Let M be a deterministic Turing machine that runs in time n
for input structures of size n. Recall the proof of Theorem 3.1 where we
existentially quantified C, an accepting computation of the nondeterministic
Turing machine N. Here we define the computation C of M by induction,
and assert that it ends in an accepting state. Instead of presenting the
details now, we defer them until the proof of Theorem 5.1 for which the
present theorem is a corollary. |

k

In the proof of Theorem 3.1 we did not need to assume that the logical
relation < is present. This is because in (SO 3) we can existentially quantify
a binary relation L and assert that it is a total ordering on the universe.
However, having the ordering is crucial to the truth of Theorem 4.3. For
example, even the trivial graph property of having an even number of edges
is not expressible in (FO(wo<) + LFP)% [3, 17]. Consider the language
(FO(wo<) + pos LFP), in which LFP does not occur within any negation
symbols. An interesting question is whether or not this class is closed under
complementation. In the case of infinite structures the answer is no [26].
For finite structures, Chandra and Harel [3] conjectured that the answer is
no.

For finite ordered structures, the proof of Theorem 4.3 shows that one
fixed point is enough to define a whole polynomial time computation and

*When we say, “wo<,” we mean without any of the logical representations of ordering,
ie. <,s,BIT.



thus (FO + pos LFP) = P = (FO + LFP). It was surprising to find that
even without ordering fixed points are closed under complementation.

Theorem 4.4 [15] (FO(wo<) + pos LFP) = (FO(wo<) + LFP) .

Proof Suppose we are given an R-positive first-order formula ¢ (R, 21, ..., k).
We must show that the relation —=(LFPgz ¢) is expressible in the form
(LFPgy, ..y, ) for some S-positive first-order formula 1). We prove this using
the Stage Comparison Theorem of Moschovakis [26]. Fix a finite structure
A. Define the relations <, and <, on the set of k-tuples from the universe
of A as follows. Let cl(¢.4,a) be the minimum r such that a € ¢’(0) if
a € LFP(p.4) and oo otherwise. We define a <., b (resp. a <, b) to mean
that cl(p4,a) < oo and cl(p.4,a) < cl(pa,b) (resp. cl(pa,a) < cl(pa,b)).
In words, @ <, b if @ is in the LFP of ¢ and comes in no later than b. The
stage comparison theorem states that <, and <, are expressible as a single
least fixed point.

Now we have the tools to express the negation of the fixed point of ¢.
First, it is easy to express the relation a <, b meaning that cl(p.4,a) <
cl(pa,b) — 1. Of course the closure ordinal |p 4| is finite since A is finite.
Using <, and <, we can express the fact that some m has this maximal
closure ordinal,

MAX(m) = (m <, m)A(VE)(Z <, mV m <L, T) .
Using MAX we can then express negation as follows:
(LFPRay..2y, 0)(5) = (3m)(MAX() Am <, 7) -

It is well known [26, 15] that the two positive fixed points for <, and <,
plus the finitely many extra quantifiers can be merged into a single positive
fixed point. |

To conclude this section we note that the above results lead to the fol-
lowing normal form theorem for the language (FO + LFP).

Theorem 4.5 [15] Let ¢ be any formula in the language (FO + LFP).
Whether or not the ordering relations are present, there exists a first-order
formula ¥ such that

p = (LFPy)(0)



5 Inductive Depth Equals Parallel Time

In this section we study the relationship between first-order expressibil-
ity and parallel complexity. First we precisely define the class CRAM-
TIME[t(n)], which is intuitively the set of problems checkable by an idealized
parallel computer in time ¢(n).

The concurrent random access machine (CRAM) is essentially the con-
current read, concurrent write parallel random access machine (CRCW
PRAM) described in [29]. A CRAM is a synchronous parallel machine such
that any number of processors may read or write into any word of global
memory at any step. If several processors try to write into the same word at
the same time, then the lowest numbered processor succeeds. In addition to
assignments, the CRAM instruction set includes addition, subtraction, and
branch on less than. Each processor also has a local register containing its
processor number.

The difference between the CRAM and the CRCW PRAM described in
[29] is that we also include a SHIFT instruction. SHIFT(z,y) causes the
word x to be shifted y bits to the right. Without SHIFT, CRAM[t(n)] would
be too weak to simulate FO[t(n)] for t(n) < logn. The reason behind the
SHIFT operation for CRAMs and the corresponding BIT predicate for first-
order logic is that each bit of global memory should be available to every
processor in constant time.

Let CRAM[t(n)] be the set of problems accepted by a CRAM using a
polynomial amount of hardware (i.e. polynomially many processors and
polynomially many bits of memory) and time O[t(n)]. The input to a
CRAM is a binary string coding a first-order structure A of vocabulary
T={(R,...,R{* c1,...,cr). Recall that A may be coded in a sequence of
m=n""4+n*? 4+ ...+ n" + rlogn bits. The input string is placed one bit
at a time in the first m global memory locations.®

The following theorem says that the parallel time needed to check if an
input has a certain property S is linearly related to the inductive depth
needed to express S.

Theorem 5.1 [18/For all polynomially bounded t(n),

CRAM[t(n)] = IND[t(n)].

®If placement of the input is varied, e.g. if the first m/logn words of memory contain
log m bits each of the input, or even if the whole m-bit string is placed in the first memory
location, then all our results remain unchanged.



Lemma 5.2 For any polynomially bounded t(n) we have,

CRAM][t(n)] C IND[t(n)]

Proof We want to simulate the computation of a CRAM M. On input A, a
structure of size n, M runs in ¢(n) synchronous steps, using p(n) processors,
for some polynomial p(n). Since the number of processors, the time, and the
memory word size are all polynomially bounded, we need only a constant
number of variables z1,...,xx, each ranging over the n element universe of
A, to name any bit in any register belonging to any processor at any step
of the computation. We can thus define the contents of all the relevant
registers for any processor of M, by induction on the time step.

We now specify the CRAM model more precisely. We may assume that
each processor has a finite set of registers including the following, Proces-
sor: containing the number between 1 and p(n) of the processor, Address:
containing an address of global memory, Contents: containing a word to be
written into or read from global memory, and, Program_Counter: containing
the line number of the instruction to be executed next. The instructions to
be simulated are limited to the following:

READ: Read the word of global memory specified by Address into Con-
tents.

WRITE: Write the Contents register into the global memory location
specified by Address.

OP R, Ry: Perform OP on R, and Ry leaving the result in R;. Here OP
may be Add, Subtract, or, Shift.

MOVE R, Rp: Move R, to Ry.
BLT R L: Branch to line L if the contents of R is less than zero.

It is straightforward to write a first-order inductive definition for the
relation VALUE(p,t,T,r,b) meaning that bit T in register r of processor
P at step t is equal to b. Note that since the number of processors, the
time, and the word size are all polynomially bounded, a constant number of
variables ranging from 0 to n — 1 suffice to specify each of these values.

The inductive definition of the relation VALUE(p,t,Z,7,b) is a disjunc-
tion depending on the value of p’s program counter at time ¢ — 1. The most
interesting case is when the instruction at time ¢ — 1 is READ. Here we

10



simply find the most recent time t' < # — 1 at which the word specified by
P’s Address register at time ¢ — 1 was written into, and the lowest numbered
processor p’ that wrote into this address at time ¢'. In this way we can access
the answer, namely the Zt" bit of p’s Contents register at time 7',

It remains to check that Addition, Subtaction, BLT, and SHIFT are
first-order expressible, and that we can express the fact that each processor
begins with its own processor number in its Processor register. Addition
was done in Example 2.1 and Subtraction and Less Than are similar. The
main place we need the BIT relation is to express the fact that the intitial
contents of each processor’s Processor register is it’s processor number. The
relation BIT allows us to translate between variable numbers and words in
memory. Using BIT we can also express addition on variable numbers and
thus express the SHIFT operation.

Thus we have described an inductive definition of the relation VALUE,
coding M’s entire computation. Furthermore, one iteration of the definition
occurs for each step of M. |

In order to compute inductive definitions on CRAM’s it is convenient to
put the inductive definitions into a simple normal form. The following has
a straightforward inductive proof, cf. [26, 15].

Fact 5.3 Let ¢ be an R-positive first-order formula. Then ¢ can be written
in the following form,

90(R7 T1y--- ,Llfk) = (lel-Ml) s (Qszs-Ms)(Elajl ce $k.M5+1)R(fE1, s ,Llfk) .
where the M;’s are quantifier-free formulas in which R does not occur.

Here the notation (Va.M)y means (Vz)M — 1, and (3z.M )y means
(Jz)M A 1. Note that the above requantification of the z;’s means that
these variables may occur free in Mj ... M, but they are bound in M,41 and
R(z1,...,2). Note that the same variables may now be requantified. Let us
write QB to denote the quantifier block (Q1z1.M1) ... (Qszs.My)(Fx1 ... 2. Msy1).
Thus, in particular, for any structure .4,and any r € N,

A (p4(0) < ([QB]" false) .

Here [QB]” means QB repeated r times (literally). It follows immediately
that if ¢ = |p|(n), and A is any structure of size n then

A= (LFP ¢) < ([QB]'false) .

This is the simple form for inductive definitions we wanted. We next
show how to evaluate such definitions using a CRAM.

11



Lemma 5.4 For polynomially bounded t(n),

IND[t(n)] € CRAM[t(n)]

Proof As in the above discussion, let the IND[¢(n)] problem be determined
by the following quantifier free formulas and quantifier block,

M., My, QB=(Qiz1.M1)...(Qrzr-My) .

Our CRAM must test whether an input structure A satisfies the sentence,

on = [QBI"™false .

The CRAM will use n* processors and n* ! bits of global memory. Note
that each processor has a number ay...a; with 0 < a; < n. Using the
SHIFT operation it can retrieve each of the a; s in constant time.

The CRAM will evaluate ¢, from right to left, simultaneously for all
values of the variables x1,...,zg. For 0 < r < t(n) -k, let,

on = (Qizi.M;) .. . (Qrar-Mi)[QB] false,

where r = k-(qg+1)+1—14. Let #1...2;...x be the k — 1-tuple resulting
from 7 ...z, by removing z;. We will now give a program for the CRAM
which is broken into rounds each consisting of three processor steps such
that:

(%) Just after the " round, the contents of memory location aj ...d;...ax
is 1 or 0 according as whether A |= ¢7 (a1,...,ax) or not.

Note that x; does not occur free in 7! At the r*® round, processor num-
ber aj ...aj executes the following three instructions according to whether

Q;=dorQ; =V:
{Q: =3}
1. b« loc(al...di+1...ak);

2. loc(ay ...d4;...ax) < 0;

3. if M;(a1,...,ax) and b then loc(ay ...d4;...ax) — 1;

{Qi =V}
1. b—loclay...aj1...ax);

2. loc(ay ...a;...ax) < 1;

12



3. if M;(a1,...,ax) and —b then loc(ay ...a;...ax) < 0;

It is not hard to prove by induction that (*) holds, and thus that the
CRAM simulates the formula. It is also straightforward to check for progress
after each iteration of the whole quantifier block, and to halt when no such
progress occurs. |

Theorem 5.1 tells us that inductive depth is exactly equal to parallel
time, in the whole range in which inductive depth is defined. If we want to
talk about super polynomial parallel time, then we must talk about iterat-
ing first-order formulas as in the discussion after Fact 5.3. We now define
FO[t(n)] to be the set of properties defined by quantifier blocks iterated ¢(n)
times:

Definition 5.5 A set C of structures of vocabulary T is a member of FO[t(n)]
iff there exist quantifier free formulas M;, 0 < i < k, from L(7), and a quan-
tifier block,

QB = [(Qiz1.M1) ... (Qrak-My)]
such that if we let ¢, = [QBI"™ My, forn =1,2,..., then for all structures
A of vocabulary T with |A| = n,

AeC & AEp,.

As a corollary to Fact 5.3, and a simple generalization of Theorem 5.1,
we obtain the following three results. Note that we need the uniformity as-
sumption on t(n) because unlike a FO[t(n)] property, an inductive definition
or a CRAM program must figure out on its own when to stop. To prove
Corollary 5.8 just observe that since we defined our CRAM time to be on a
machine with polynomially bounded hardware, if such a CRAM is allowed to
run for an unlimited amount of time, it can make use of at most exponential
time and it can compute exactly the polynomial space properties.

Corollary 5.6 [18] For all polynomially bounded, parallel time constructible

t(n),
FO[t(n)] = IND[t(n)] .

Corollary 5.7 [18] For all parallel time constructible t(n),
CRAM[t(n)] = FO[t(n)] .
Corollary 5.8 [1/]
PSPACE = G FO[2™"]

k=1
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6 First-Order Logic Plus Transitive Closure

The reflexive, transitive closure is a particularly important case of an in-
ductive definition. Let @(z1,...,2k, 2} ...2}) be a formula with 2k free
variables. We will write (TCzl...mkm’l...m’k ©) to denote the reflexive, transitive
closure of the binary relation ¢(z,z'). Let (FO + TC) be the closure of
first-order logic with arbitrary occurrences of TC, and let (FO 4 pos TC)
be the restriction of (FO 4+ TC) in which TC never occurs within a negation.

Theorem 6.1 [16] (FO + pos TC) = NSPACEflogn] .

Proof (C): The set of relations computable in NSPACE[log n] is closed
under first-order quantifiers, (Vz) and (3x) because with space logn we can
cycle through all the values of z. Thus it suffices to show that if ¢(Z,z')
is computable in NSPACE[logn], then so is (TCz z ). We can test if the
structure A satisfies (TCzz ¢)(a,a’) as follows: Guess b and check that
A |E ¢(a,b). Next throw away @ and guess ¢ such that A = ¢(b,¢). Repeat
this process until we guess z such that A = ¢(¥, z), and z = @', in which case
we accept. The space needed is 3k logn plus the space to check if o(Z, ')
holds, where k is the arity of z.

(2): Here we are given an NSPACE[log n] machine N and we must write
the sentence ¢ € (FO + pos TC) such that for any structure A,

(AE1y) & (N accepts A) .

Assume for the sake of simplicity that N accepts a graph problem, and
uses klogn bits of work tape. Then any configuration of N can be coded
with k + 3 variables: ri,7r2,wi,ws,...,ws,q where wy,ws, ..., w, code the
work tape, ¢ codes n’s state and the position of its work head, and 71,72
code the position of N’s read head. Note that the read head is looking at bit
(r1,ra) of A’s adjacency matrix. Thus the read head is reading a one (resp.
a zero) iff A = E(r1,r2) (resp. A |= —E(rq,7r2) ). It is straightforward to
see that the predicates START(¢), ACCEPT(d), and MOVE(e, f), meaning
that ¢ is the initial configuration of N, d is an accept configuration, and
that (e, f) is a legal move of N, are all first-order expressible.” Thus the

"In order to write MOVE(g, f), we make use of the relation BIT to read the appropriate
bit of the variables coding N’s work tape. If BIT were not given to us, however, it would
still be expressible from < using TC. See [16] for this and all the other details of this
proof.
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sentence we need is
¢ = (3¢.START(¢))(3d.ACCEPT(d))(TC, s MOVE)(¢, d) .

It is interesting that every property in NSPACE[log n] may be written
as a transitive closure of a quantifier free first-order relation. See [16] for
the proof of the following normal form theorem.

Theorem 6.2 Every formula in (FO + pos TC) may be written in the form
(TCzz #)(0, maz)
where @ is first-order and quantifier free.
We close with a very surprising result.

Theorem 6.3 [19] (FO + pos TC) = (FO + TC).

Proof It will suffice to show that the relation —(TC, . E(u,u’))(0,z)
meaning that there is no path from 0 to z is expressible in (FO + pos TC).
We will do this in two lemmas. Let PATH(y,d) mean that there is a path
of length at most d from 0 to y. Obviously this relation is expressible in
(FO + pos TC). Suppose that we are given ¢4, the exact number of vertices
y # 0 such that PATH(y, d) holds.® Lemma 6.4 shows that in this case the
negation of PATH(y, d) is also expressible in (FO + pos TC). We will then
use this result in Lemma 6.5 to show that given c; we can compute cg41. It
then follows using one more transitive closure, that we can compute ¢,—1.
Thus by Lemma, 6.4 again, we can say, “There is no path from 0 to z.”

Lemma 6.4 Let NOPATH(y,d,c) be a formula such that
NOPATH(y,d, cq) < —PATH(y,d).

That s, if ¢ = cq, then NOPATH(y,d,c) is the negation of PATH(y,d);
whereas, if ¢ # cq then we don’t care what NOPAT H(y,d,c) means. Then
such a formula NOPATH(y, d, c) is expressible in (FO + pos TC).

$We don’t include 0 here just because variables range from 0 to n — 1, while, if we did
include 0, then counts would range from 1 to n.
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Proof The idea is that if ¢ = ¢4, then “PATH(y, d) holds iff there exist at
least ¢ nonzero vertices z # y such that PATH(z,d). The latter condition
is expressible in (FO + pos TC) as follows. First define an « edge between
pairs of vertices:

a(u,k,u' B = s(u,u’) A Kk = k') v (s(k:,k:') APATH(v ,d) Au' # y)}

Here s is the successor relation. An « edge exists from (u, k) to (u+1,k) in
all cases, and to {(u + 1,k + 1) just if PATH(u + 1,d) holds, and u + 1 # y.
It follows that the formula

NOPATH(ya d) C) = (y 7& O) A (Tcuk,u’k’ Oé) (07 07 maz, C)

has the required properties. |

The next lemma shows that if we are given ¢4 then we an compute cg41.

Lemma 6.5 Let NEXT(d,c,d’, ') mean that d = d+ 1 and if c = cq then
¢ =cqr1. Then NEXT is expressible in (FO + pos TC).

Proof We will express NEXT in (FO + pos TC), using PATH and
NOPATH. In order to do this we must cycle through all vertices v, keeping
a count of how many of them are reachable in at most d 4+ 1 steps. We will
say that there is a (8 edge from (v,k) to (', k') if and only if v/ = v + 1
and k' =k + 1 if PATH(v',d + 1) holds, and k' = k otherwise. The formal
definition of 3 is:

Blv, kW' k5 d,e) = (s(v,v') A
[(k = K A (V2)((2 # v A=E(2,0')) V NOPATH (2, d, ) )
v (s(k,k) A (32)((z = v/ V B(,v/)) A PATH(z, d))D
It follows that there is a  path from (0,0) to (maz, k) iff kK = cq11. Thus,
NEXT(d,c,d',c') = s(d,d") N (TCyrir 8)(0,0, maz,c’)

Let COUNT(d, ¢) mean that ¢ = ¢g. This can be expressed as a transitive
closure of NEXT:

COUNT(d,¢) = (TCgeaes NEXT)(0,0,d,c)

16



Finally, as promised we can express the nonexistence of a path from 0
to z:
(3¢)(COUNT (maz,c) A NOPATH(z, maz, c))

One can generalize Theorem 6.3 to the following two corollaries. Corol-
lary 6.7 settles a question dating back to 1964. These corollaries are sur-
prising since almost everyone had conjectured their negation.?

Corollary 6.6 [19, 30] For any s(n) > logn,
NSPACE[s(n)] = co-NSPACE[s(n)] .

Corollary 6.7 [19, 30] The class of context sensitive languages is closed
under complementation.

Proof Kuroda showed in 1964 that CSL = NSPACE([n] [22]. |
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