
EXPRESSIBILITY AND PARALLEL

COMPLEXITY

NEIL IMMERMAN�

SIAM J� of Comput� �� ������� ��	
����

Abstract

It is shown that the time needed by a concurrent�read� concurrent�
write parallel random access machine �CRAM� to check if an input
has a certain property is the same as the minimal depth of a �rst�
order inductive de�nition of the property� This in turn is equal to the
number of �iterations� of a �rst�order sentence needed to express the
property�

The second contribution of this paper is the introduction of a purely
syntactic uniformity notion for circuits� It is shown that an equiva�
lent de�nition for the uniform circuit classes ACi� i � � is given by
�rst�order sentences �iterated� logi

n times� Similarly� uniform AC�

is de�ned to be the �rst�order expressible properties �which in turn is
equal to constant time on a CRAM by our main theorem��

A corollary of our main result is a new characterization of the
Polynomial�Time Hierarchy �PH�	 PH is equal to the set of languages
accepted by a CRAM using exponentially many processors and con�
stant time�

Key words� Computational complexity� parallel complexity� �rst�order express�
ibility� polynomial�time hierarchy

AMS�MOS� subject classi�cation� 
��
�

� Introduction

Parallel time on a random access machine has a surprisingly simple mathe�
matical de�nition involving well�studied objects of mathematical logic� We

�This research was supported in part by the Mathematical Sciences Research Institute�
Berkeley� California� and by National Science Foundation grants DCR�������� and CCR�
��������

�



show that the time needed by a concurrent�read� concurrent�write parallel
random access machine �CRAM� to check if an input has a certain property
is the same as the minimal depth of a �rst�order inductive de�nition of the
property� This in turn is equal to the number of �iterations� of a �rst�order

sentence needed to express the property�
We now state our main result� �See x	 for relevant de�nitions� In partic�

ular� the iteration of a �rst�order sentence is de�ned in x	�	� and the CRAM
is de�ned in x	�
� The de�nition of the CRAM di�ers from the standard

de�nition of the CRCW PRAM in ��
� only in that a processor may shift
a word of local memory by any polynomial number of bits in unit time�
It follows from our results that for parallel time greater than or equal to

log n there is no distinction between the models with and without the Shift
instruction��

Theorem ��� Let S be a set of structures of some vocabulary � � For exam�
ple� S is a set of boolean strings� or a set of graphs� etc� For all polynomially
bounded� parallel time constructible t�n�� the following are equivalent�

�� S is recognizable by a CRAM in parallel time t�n�� using polynomially

many processors�
	� There exists a �rst�order sentence � such that the property S for

structures of size at most n is expressed by � iterated t�n� times�

� S is de�nable as a uniform �rst�order induction whose depth� for

structures of size n� is at most t�n��

For t�n� � log n� the equivalence of ��� and �	� in Theorem ��� may also

be obtained by combining a result of Ruzzo and Tompa relating CRAMs
to alternating Turing machines ��
� Thm� 
�� together with a result of ours
relating alternating Turing machines to �rst�order expressibility ��� Thm�

B���� In order to prove the theorem for t�n� � log n� we were forced to
modify the models slightly� adding the Shift operation to the CRAMs and
adding BIT as a new logical relation to our �rst�order language �see x	�� We
believe that the naturalness of Theorem ��� justi�es these modi�cations�

This paper is organized as follows� In x	 we give all relevant de�nitions�
In x
 we prove our main result� In x� we give a more detailed analysis of the
bounds in Theorem ���� We show that the number of distinct variables in a
�rst�order inductive de�nition is closely tied to the number of processors in

the corresponding CRAM�
Until now� a principal unaesthetic feature of the theory of complexity

via boolean circuits was that one had resorted to Turing machines to de�ne

	



the uniformity conditions for circuits ����� As a corollary to Theorem ����
we obtain a purely syntactic uniformity notion for circuits� In x� we de�
scribe this result as well as other relations between circuits and �rst�order
complexity�

As another corollary to Theorem ���� we present in x� a new character�
ization of the Polynomial�Time Hierarchy �PH�� PH is equal to the set of
languages recognized by a CRAM using exponentially many processors and
constant time� In x
 we give some suggestions for future work in this area�

� Background and de�nitions

��� First�order logic

We begin this section by making some precise de�nitions concerning �rst�

order logic� For more information see ����
A vocabulary � � hRa�

� � � � � � Rak
k � c�� � � � � cri is a tuple of relation sym�

bols and constant symbols� Rai
i is a relation symbol of arity ai� In the

sequel we will usually omit the superscripts and the underlines to improve

readability� A �nite structure of vocabulary � is a tuple� A � hf�� �� � � � � n�
�g� RA

� � � � � � RA
k � c

A
� � � � � � cAr i� consisting of a universe jAj � n � f�� � � � � n��g

and relations RA
� � � � � � RA

k of arities a�� � � � � ak on jAj corresponding to the

relation symbols Ra�
� � � � � � Rak

k of � � and constants cA� � � � � � cAr from jAj cor�
responding to the constant symbols c�� � � � � cr from � �

For example� a graph on n vertices� G � hf����n� �g� Ei� is a structure
whose vocabulary �� � hE�i has a single binary relation symbol� Similarly� a

binary string of length n is a structure S � hf����n��g�Mi whose vocabulary
�� � hM�i consists of a single unary relation symbol� Here the ith bit of S
is � if and only if S j�M�i��

Let the symbol ��� denote the usual ordering on the natural numbers�

We will include � as a logical relation in our �rst�order languages� This
seems necessary in order to simulate machines whose inputs are structures
given in some order� It is convenient to include logical constant symbols�

�� �� � � �� referring to the zeroth� �rst� etc�� elements of the universe� respec�
tively� �If the universe is smaller than a given constant� then interpret that
constant as ��� We also include the logical predicate BIT� where BIT�x� y�
holds if and only if the xth bit in the binary expansion of y is a one��

�The relation BIT is crucial for the truth of Theorem ���� when t	n
 � logn� and for
the plausibility of De�nition ����






We now de�ne the �rst�order language L��� to be the set of formulas
built up from the relation and constant symbols of � and the logical relation
and constant symbols� ����BIT� �� �� � � �� using logical connectives� ������
variables� x� y� z� � � �� and quanti�ers� ����

We will think of a problem as a set of structures of some vocabulary � � It
su�ces to consider only problems on binary strings� but it is more interesting
to be able to talk about other vocabularies� e�g�� graph problems� as well�
For de�niteness� we will �x a scheme for coding an input structure as a

binary string� If A � hf�� �� � � � � n � �g� RA
� ���R

A
k � c

A
� ���c

A
r i� is a structure of

type � � then A will be encoded as a binary string bin�A� of length I�n� �
na� � � � �� nak � rdlog ne� consisting of one bit for each ai�tuple� potentially

in the relation Ri� and dlog ne bits to name each constant� cj� Thus we
reserve n to indicate the size of the universe of the input structure� I�n��
the length of bin�A�� is polynomially related to n� and in the case where �
consists of a single unary relation � i�e� inputs are binary strings � I�n� � n�

De�ne the complexity class FO to be the set of all �rst�order expressible
problems� We will see in x� that FO is a uniform version of the circuit class
AC�� �See also ��� where it is shown that FO is equal to deterministic log

time uniform AC���

Example ��� An example of a �rst�order expressible property is addition��

In order to turn addition into a yes�no question� we can let our input have the

vocabulary �a � hA�B� ki consisting of two unary relations and a constant
symbol� In a structure A of vocabulary �a� the relations A and B are binary
strings of length n � jAj� We will say that A satis�es the addition property

if the kth bit of the sum of A and B is one�
In order to express addition� we will �rst express the carry bit�

CARRY�x� 	 ��y � x��A�y�� B�y�� ��z�y � z � x�A�z� � B�z��

Then with 
 standing for exclusive or� we can express PLUS�

PLUS�x� 	 A�x�
B�x�
CARRY�x�

Thus the sentence expressing the addition property is PLUS�k�� �

�This is a standard construction� see e�g�� 
����

�



��� Iterating �rst�order sentences

To describe properties that are not in AC�� we need languages that are
more expressive than FO� We now recall the de�nition of the complexity

classes FO�t�n���� Intuitively� FO�t�n�� consists of those problems that may
be described by a �rst�order sentence �iterated t�n� times��

Let x be a variable and M a quanti�er free formula� We will use the
notation ��x�M�� � read� �for all x such that M � ��� � to abbreviate

��x��M � ��� Similarly we will write ��x�M�� � read� �there exists an
x such that M � ��� � to abbreviate ��x��M � ��� We will call the expres�
sions ��x�M� and ��x�M� restricted quanti�ers� Let a quanti�er block be
a �nite sequence of restricted quanti�ers� QB � �Q�x��M�� � � � �Qkxk�Mk��

We will use the notation �QB�t to denote the quanti�er block QB repeated
t times� I mean this literally�

�QB�t � QBQBQB � � �QB� �z �
t times

�

Note that for any quanti�er�free formulas M��M�� � � � �Mk � L���� and
any i � N� the expression �QB�iM� is a well�formed formula in L����
De�nition ��� Let t � N� N be any function� and let � be any vocabulary�
A set C of structures of vocabulary � is a member of FO�t�n�� if and only
if there exists a quanti�er block QB and a quanti�er�free formula M� from

L���� such that if we let �n � �QB�t�n�M�� for n � �� 	� � � �� then for all
structures G of vocabulary � with jGj � n�

G � C 
 G j� �n �

A more traditional way to iterate formulas is by making inductive de�ni�
tions� ����� ����� Let IND�DEPTH�t�n�� be the set of problems expressible as

a uniform induction that requires depth of recursion at most t�n� for struc�
tures of size n� In �
�� Harel and Kozen introduce a programming language
called IND� which is closely tied to inductive de�nitions� They prove that
the execution time for their IND programs is equal to the depth of the in�

ductive de�nitions that describe the programs� input output behavior� Let
IND�TIME�t�n�� be the set of languages accepted by IND programs using
O�t�n�� steps for inputs of size n� Then�

�The notation FO
t	n
� was �rst used in 
���� however� the same classes were de�ned
in 
��� using the notation IQ
t	n
�� standing for �iterated queries�� See 
��� for a survey
of descriptive complexity�

�



Fact ��� ����	 For all t�n��

IND�TIME�t�n�� � IND�DEPTH�t�n�� �

This fact� together with Theorem ���� shows that there is a simple� high
level programming language for which time corresponds exactly to time on

a CRAM� In the remainder of this paper we write IND�t�n�� to signify
IND�TIME�t�n�� as well as IND�DEPTH�t�n���

The following fact relates IND�t�n�� to FO�t�n��� This fact follows easily
from Moschovakis� Canonical Form for Positive Formulas� �����

Fact ��
 ������ ��
�	 For all t�n��

IND�t�n�� � FO�t�n�� �

�In particular� a property in IND�t�n�� is expressible as a FO�t�n�� property

in which M� 	 false� cf� De�nition 	�	��

Example ��
 We show how to transfer a log n depth inductive de�nition

of the transitive closure of a graph to an equivalent FO�log n� de�nition�
Let E be the edge predicate for a graph G with n vertices� We can

inductively de�ne E�� the re�exive� transitive closure of G� as follows�

E��x� y� 	 x � y � E�x� y�� ��z��E��x� z� �E��z� y�� �

Let Pn�x� y� mean that there is a path of length at most n from x to y�

Then we can rewrite the above de�nition of E� as�

Pn�x� y� 	 x � y � E�x� y�� ��z��Pn���x� z�� Pn���z� y�� �

This can be rewritten�

Pn�x� y� 	 ��z�M����z��Pn���x� z�� Pn���z� y�� �

where M� 	 ��x � y�E�x� y��� Note that there is no free occurrence of the
variable z after the �z quanti�er� Thus� in this case ��z�M��� is equivalent
to �M� � ��� Next�

Pn�x� y� 	 ��z�M����z���uv�M���Pn���u� v�� �

where M� 	 �u � x � v � z� � �u � z � v � y�� Now�

Pn�x� y� 	 ��z�M����z���uv�M����xy�M���Pn���x� y�� �

�



where M� 	 �x � u � y � v�� Thus�

Pn�x� y� 	 �QB�dlogne�P��x� y�� �

where QB � ��z�M����z���uv�M����xy�M��� Note that

P��x� y� 	 �QB��false� �

It follows that

Pn�x� y� 	 �QB�d��logne�false� �

and thus E� � FO�log n� as claimed� �

��� Concurrent random access machines

We de�ne the concurrent random access machine �CRAM� to be essen�
tially the concurrent read� concurrent write parallel random access machine

�CRCW PRAM� described in ��
�� A CRAM is a synchronous parallel ma�
chine such that any number of processors may read or write into any word of
global memory at any step� If several processors try to write into the same
word at the same time� then the lowest�numbered processor succeeds�� In

addition to assignments� the CRAM instruction set includes addition� sub�
traction� and branch on less than� Each processor also has a local register

containing its processor number�
The di�erence between the CRAM and the CRCW PRAM described in

��
� is that we also include a Shift instruction� Shift�x� y� causes the word
x to be shifted y bits to the right� Without Shift� CRAM�t�n�� would be

too weak to simulate FO�t�n�� for t�n� � log n� The reason behind the Shift

operation for CRAMs and the corresponding BIT predicate for �rst�order
logic is that each bit of global memory should be available to every processor
in constant time�

Let CRAM�t�n�� be the set of problems accepted by a CRAM using

polynomially many processors and time O�t�n��� Recall that we encode an
input structureA � hf�� �� � � � � n��g� RA

� � � � � � RA
k � c

A
� � � � � � cAr i� as the binary

string bin�A� of length I�n� � na� � � � � � nak � rdlog ne� Where ai is the

arity of the ith input relation� The input string is placed one bit at a time
in the �rst I�n� global memory locations��

�This is the �priority write� model� Our results remain true if instead we use the
�common write� model� in which the program guarantees that di�erent values will never
be written to the same location at the same time� See Corollary ����

�We show in Corollary ��� that if placement of the input is varied� e�g�� if the �rst






� Proof of the main theorem

Theorem ��� follows immediately from three containments� Fact 	��� and
the following two lemmas�

Lemma ��� For any polynomially bounded t�n� we have�

CRAM�t�n�� � IND�t�n�� �

Proof We want to simulate the computation of a CRAMM � On inputA� a
structure of size n� M runs in t�n� synchronous steps� using p�n� processors�
for some polynomial p�n�� Since the number of processors� the time� and the

memory word size are all polynomially bounded� we need only a constant
number of variables x�� � � � � xk� each ranging over the n element universe of
A� to name any bit in any register belonging to any processor at any step

of the computation� We can thus de�ne the contents of all the relevant
registers for any processor of M � by induction on the time step�

We now specify the CRAM model more precisely� We may assume that
each processor has a �nite set of registers including the following� Proces�

sor� containing the number between � and p�n� of the processor� Address�

containing an address of global memory� Contents� containing a word to be
written into or read from global memory� and Program Counter� containing
the line number of the instruction to be executed next� The instructions to

be simulated are limited to the following�

� READ� Read the word of global memory speci�ed by Address into
Contents�

� WRITE� Write the Contents register into the global memory location
speci�ed by Address�

� OP RaRb� Perform OP on Ra and Rb� leaving the result in Rb� Here
OP may be Add� Subtract� or Shift�

� MOVE RaRb� Move Ra to Rb�

� BLT RL� Branch to line L if the contents of R is less than zero�

I	n
� logn words of memory contain logn bits each of the input� or even if all I	n
 bits
are placed in the �rst word� then all our results remain unchanged� Note that this is
not true of the models used in 
��� for example� There processors are assumed to have
unlimited power and thus the partition of the inputs is crucial�

�



It is straightforward to write a �rst�order inductive de�nition for the
relation VALUE�p� t� x� r� b� meaning that bit x in register r of processor p
just after step t is equal to b� Note that since the number of processors� the
time� and the word size are all polynomially bounded� a constant number of

variables ranging from � to n� � su�ce to specify each of these values�
The inductive de�nition of the relation VALUE�p� t� x� r� b� is a disjunc�

tion depending on the value of p�s program counter at time t� �� The most
interesting case is when the instruction to be executed is READ� Here we

simply �nd the most recent time t� � t at which the word speci�ed by p�s
Address register at time t was written into� and the lowest numbered pro�
cessor p� that wrote into this address at time t�� In this way we can access

the answer� namely the xth bit of p� s Contents register at time t��
It remains to check that Addition� Subtraction� BLT� and Shift are �rst�

order expressible� and that we can express the fact that each processor begins
with its own processor number in its Processor register� Addition was done

in Example 	��� In a similar way we can express Subtraction� and Less
Than� The main place we need the BIT relation is to express the fact that
the initial contents of each processor�s Processor register is its processor

number� The relation BIT allows us to translate between variable numbers

and words in memory� Using BIT we can also express addition on variable
numbers and thus express the Shift operation�

Thus we have described an inductive de�nition of the relation VALUE�

coding M �s entire computation� Furthermore� one iteration of the de�nition
occurs for each step of M � �

Lemma ��� For polynomially bounded� and parallel time constructible t�n��

FO�t�n�� � CRAM�t�n�� �

Proof Let the FO�t�n�� problem be determined by the following quanti�er�
free formulas and quanti�er block�

M��M�� � � � �Mk� QB � �Q�x��M�� � � � �Qkxk�Mk� �

Our CRAM must test whether an input structure A satis�es the sentence�

�n 	 �QB�t�n�M� �

�



The CRAM will use nk processors and nk�� bits of global memory� Note
that each processor has a number a� � � � ak with � � ai � n� Using the Shift
operation it can retrieve each of the ai s in constant time�	

The CRAM will evaluate �n from right to left� simultaneously for all

values of the variables x�� � � � � xk� For � � r � t�n� � k� let�

�r
n 	 �Qixi�Mi� � � � �Qkxk�Mk��QB�qM� �

where r � k � �q � �� � �� i� Let x� � � � �xi � � �xk be the k� ��tuple resulting
from x� � � �xk by removing xi� We will now give a program for the CRAM

which is broken into rounds� each consisting of three processor steps such
that�

��� Just after the rth round� the contents of memory location a� � � � �ai � � � ak
is � or � according to whether A j� �r

n�a�� � � � � ak��
Note that xi is not free in �r

n� At the rth round� processor number
a� � � � ak executes the following three instructions according to whether Qi �

� or Qi � ��
fQi � �g

�� b� loc�a� � � � �ai�� � � �ak��
	� loc�a� � � � �ai � � � ak� � ��


� if Mi�a�� � � � � ak� and b then loc�a� � � � �ai � � � ak�� ��

fQi � �g
�� b� loc�a� � � � �ai�� � � �ak��
	� loc�a� � � � �ai � � � ak� � ��


� if Mi�a�� � � � � ak� and �b then loc�a� � � � �ai � � �ak�� ��

It is not hard to prove by induction that ��� holds� and thus that the

CRAM simulates the formula� �

Remark ��� The proof of Lemma 
�	 provides a very simple network for
simulating a FO�t�n�� property� The network has nk�� bits of global memory

and knk gates� where k is the number of distinct variables in the quanti�er

�This is obvious if n is a power of �� If not� we can just let each processor break its
processor number into k dlogne�tuples of bits� If any of these is greater than or equal to
n� then the processor should do nothing during the entire computation�

��



block� Each gate of the network is connected to two bits of global memory in
a simple connection pattern� The blowup of processors going from CRAM
to FO to CRAM seems large �cf� Corollary ����� however� it is plausible
to build �rst�order networks with billions of processing elements� i�e� gates�

thus accommodating fairly large n and moderately large k�

An immediate corollary of Theorem ��� is that the complexity class

CRAM�t�n�� is not a�ected by minor changes in how the input is arranged�
nor in the global memory word size� nor even by a change in the convention
on how write con�icts are resolved�

Corollary ��
 For any function t�n�� the complexity class CRAM�t�n�� is
not changed if we modify the de�nition of a CRAM in any consistent com�
bination of the following ways� �By consistent we mean that we don�t allow

input words larger than the global word size� nor larger than the allowable
length of applications of Shift��

�� Change the input distribution so that either �a� the entire input is
placed in the �rst word of global memory� or �b� the I�n� bits of input are

placed log n bits at a time in the �rst I�n�� logn words of global memory�
	� Change the global memory word size so that either �a�The global word

size is one� i�e� words are single bits� �Local registers do not have this

restriction so that the processor�s number may be stored and manipulated���
or �b� The global word size is bounded by O�log n��


� Modify the Shift operation so that shifts are limited to the maximum
of the input word size and of the log base � of the number of processors�

�� Remove the polynomial bound on the number of memory locations�
thus allowing an unbounded global memory�

�� Instead of the priority rule for the resolution of write con	icts� adopt

the common write rule in which di
erent processors never write di
erent

values into the same memory location at a given time step�

Proof The proof is that Lemmas 
�� and 
�	 still hold with any consistent
set of these modi�cations� This is immediate for Lemma 
��� For Lemma


�	� we must only show that processor number a� � � � ak still has the power
in constant time to evaluate the quanti�er�free formula Mi�a�� � � � � ak�� and
to name the global memory location a� � � � �ai � � � ak� for � � i � k� Re�
call that we are assuming that the input structure A � hf�� �� � � � � n �
�g� RA

� � � � � � RA
p � c

A
� � � � � � cAq i is coded as a bit string of length I�n� � nr� �

� � ��nrp � qdlog ne� It is clear that all of the consistent modi�cations above

��



allow processor a� � � � ak to test in constant time whether or not the rela�
tion R�t�� � � � � tr� holds� where R is an input or logical relation� and tj �
fa�� � � � � akg � fcj j� � j � qg�

�

� On the e�ciency of the simulations

In this section we analyze the proof of Theorem ��� in more detail in order
to give the following bounds for translating between CRAM and IND� After
we prove Corollary ���� we discuss the cost of the simulation� and how these

bounds can be improved� The proofs in this section involve counting how
many variables are needed in various �rst�order formulas� This whole section
should be omitted by the casual reader�

Corollary 
�� Let CRAM�t�n���PROC�p�n�� be the complexity class CRAM�t�n��
restricted to machines using at most O�p�n�� processors� Let IND�t�n���VAR�v�n��
be the complexity class IND�t�n�� restricted to inductive de�nitions using at

most v�n� distinct variables� Assume for simplicity that the maximum size

of a register word� and t�n� are both o�
p
n�� and that � � � is a natural

number� Then�

CRAM�t�n���PROC�n��
� IND�t�n���VAR�	� � 	�

� CRAM�t�n���PROC�n�����

Proof We prove these bounds using the following two lemmas�

Lemma 
�� If the maximum size of a register word� and t�n� are both

o�
p
n�� and if M is a CRAM�t�n���PROC�n�� machine� then the inductive

de�nition of VALUE may be written using 	� � 	 variables�

Proof We write out the inductive de�nition of VALUE in enough detail
to count the number of variables used�

VALUE�p� t� x� r� b� 	 Z �W � S � R �M � B �A �

where the disjuncts have the following intuitive meanings�

Z� t � � and the initial value of r is correct�

�	



W � t �� � and the instruction just executed is WRITE� and the value of
r is correct� i�e�� unchanged unless r is Program Counter�

S�R�M�B�A� Similarly for SHIFT� READ� MOVE� BLT� and� ADD or
SUBTRACT� respectively�

It su�ces to show that each disjunct can be written using the number
of variables claimed� First we consider the disjunct Z� The only interesting
part of Z is the case where r is �Processor�� In this case we use the relation
BIT to say that b � � if and only if the xth bit of p is �� No extra variables

are needed� Note that the number of free variables in the relation is � � �
because we may combine the values t� x� r� and b into a single variable�

Next we consider the case of Addition� Recall that the main work is to

express the carry bit�

C�A�B��x� 	 ��y � x��A�y�� B�y�� ��z�y � z � x�A�z� � B�z�� �

This de�nition uses two extra variables� Thus � � 
 � 	� � 	 variables
certainly su�ce� The cases S�M� and B are simpler�

The last� and most interesting case is R� Here we must say�

�� The instruction just executed is READ�

	� Register r is the Contents register�


� There exists a processor p� and a time t� such that�

�a� t� � t�

�b� Address�p�� t�� �Address�p� t��

�c� VALUE�p�� t�� x� r� b��

�d� Processor p� wrote at time t��

�e� For all p�� � p�� if p�� wrote at time t�� then Address�p��� t�� ��Address�p�� t���

�f� For all t�� such that t� � t�� � t and for all p��� if p�� wrote at time
t��� then Address�p��� t��� ��Address�p�� t���

Let�s count variables� On its face this formula uses three p�s and three

t�s� However� two copies of each su�ce� Observe that where we quantify
p�� in lines 
e and 
f� we no longer need p� so we may use these variables
instead� Similarly� when we quantify t�� on line 
f� we don�t need p�� so we
may temporarily use one of its variables for t��� Finally� we would seem

to need an extra variable to say �Address�p��� t��� ��Address�p�� t���� in 
f�
Here we use the fact that t is o�

p
n�� so t� and t�� can be coded into a single

�




variable� Then with one more variable we can say that there exists a bit
on which Address�p��� t��� and Address�p�� t�� disagree� Thus 	��	 variables
su�ce as claimed� �

The second lemma we need �Lemma ��
� is a re�nement of Lemma 
�	�

Lemma 
�� Let ��R� x� be an inductive de�nition of depth d�n�� Let k

be the number of distinct variables including x occurring in �� Then the
relation de�ned by � is also computable in CRAM�d�n���PROC�O�nk���

Proof This is very similar to the proof of Lemma 
�	� Let T be the parse
tree of �� The CRAM will have nkjT j processors� one for each value of
the k variables and each node in T � Let 	 be the depth of T � In rounds

consisting of 
	 steps� the CRAM will evaluate an iteration of �� Let r �
arity�R� � the number of variables in x� so r � k� The CRAM will have
nr bits of global memory to hold the truth value of Rt � �t���� It will use
an additional nkjT j bits of memory to store the truth values corresponding

to nodes of T � Thus Rd�n�� the least �xed point of �� is computed in time

O�d�n��� using O�nk� processors� as claimed� �

This completes the proof of Corollary ���� �

The above proofs give us some information concerning the e�ciency of

our simulation of CRAMs with �rst�order inductive de�nitions� The main
questions is� �Why is the number of variables needed to express a compu�
tation of n� processors 	��	� instead of � � We discuss the multiplicative
factor of two� and the additional two variables� respectively in the next two

paragraphs�
We need the 	� term for two reasons� we must specify p and p� at the

same time in order to say that their Address registers are equal� and we need
to say that no lower numbered processor p�� wrote into the same address as p��

This term points out a di�erence between the CRAMmodel and the network
described in Remark 
�
 that was used to simulate a FO�t�n�� property� The
factor of two would be eliminated if we adopted a weaker parallel machine

model allowing only common writes
� and such that the memory location
accessed by a processor could be determined by a very simple computation

on the processor number�

�See 
�� for an earlier proof that a common write machine can simulate a CRAM with
a linear increase in time and a squaring of the number of processors�

��



The additional two variables arise for various bookkeeping reasons� This
term can be signi�cantly reduced if we make the following two changes�

�� Rather than keeping track of all previous times� we can assume that
every bit of global memory is written into at least every T time steps for

some constant T �
	� The register size can be restricted toO�log n� so we need onlyO�log log n�

bits to name a bit of a word�

Remark 
�
 The above observations show that the relation between the
number of variables needed to give an inductive de�nition of a relation� and
the logarithm to the base n of the number of processors needed to quickly

compute the relation are nearly identical� The cost of programming with
�rst�order inductive de�nitions rather than CRAMs is theoretically very
small� More work and even some experimentation must be done before one

can say whether or not this will turn out to be a practical approach�

� NC versus FO

In this section we relate the uniform NC circuit classes to FO�t�n��� and we
derive a completely syntactic de�nition for circuit uniformity� We show that
our de�nition is equivalent to the usual Turing machine�based de�nition in

the range where the latter exists�
Let NCi �respectively� ACi� be the set of problems recognizable by a uni�

form sequence of polynomial size� bounded fan�in �respectively� unbounded
fan�in� boolean circuits of depth logi n� Let NC � AC �

S
i NCi� Ruzzo

characterized these uniform circuit classes in terms of alternating Turing
machines�

Fact 
�� ���
�	 For i � ��

NCi � ASPACE�TIME�log n� logi n� �

ACi � ASPACE�ALT�log n� logi n� �

Ruzzo and Tompa proved the following relationship between the uniform

AC classes and the CRAM �

Fact 
�� �����	 For i � ��ACi � CRAM�logi n��

��



The following corollary of Theorem ��� and Fact ��	 shows that the uni�
formity condition for the ACi circuit classes can be described in a syntactic
way� A �rst�order sentence iterated t�n� times is also an AC circuit �it�
erated� t�n� times� Thus we no longer need to mention machines when

discussing uniform circuit complexity�

Corollary 
�� For i � �� ACi � FO�logi n��

Before now there was no satisfactory de�nition for uniform AC�� It is
easy to see that a �rst�order sentence corresponds to a particularly simple
sequence of AC� circuits� Each quanti�er �x �respectively� �x� is just an
n�ary �or� �respectively� �and��� In ���� we showed that an appropriate

way to make �rst�order sentences nonuniform is to add an arbitrary new
logical relation� The following fact says that nonuniform AC� is equal to
nonuniform FO��

Fact 
�
 �����	 Given a problem S and an integer d 
 � the following are
equivalent�

�� S is recognized by a sequence of depth d��� polynomial�size circuits�

with bounded fan�in at the bottom level�

�� There exists a new logical relation R � Na and a �rst�order formula

� in which R occurs such that � expresses S� The formula � contains

d alternating blocks of quanti�ers�

In view of the above results� we propose the following�

De�nition 
�
 Let �uniform� AC� def
� FO��� � CRAM��� �

Since we �rst made this suggestion� much evidence concerning the appro�
priateness of De�nition ��� has appeared� In particular� see ��� for a study
of low�level uniformity� It is shown there that FO is equal to deterministic

log time uniform AC��
In ���� we introduced the notion of �rst�order translations� These reduc�

tions consist of a �xed �rst�order formula translating all instances of one
problem to instances of another� �First�order translations are interpreta�

tions between theories� cf� ���� that are also reductions in the complexity

�In 
��� Stockmeyer and Vishkin showed that nonuniform AC� is equal to constant
time on a nonuniform CRAM� This� together with Fact ���� gives a nonuniform version
of Theorem ����

��



theoretic sense�� It follows from De�nition ��� that �rst�order translations
are exactly uniform AC� reductions�

One way to evaluate the appropriateness of De�nition ��� is to examine
examples of AC� reductions in the literature and see whether or not they can

be made uniform� Of those we have considered� the answer is yes� with the
following interesting exception� �The UGAP problem is the set of undirected
graphs for which there exists a path from vertex � to vertex n� ���

Fact 
�� 
��� UGAP is nonuniform AC� reducible to UNDIR�CYCLE�

Now UNDIR�CYCLE is in DSPACE�log n� ���� but UGAP is not known
to be in DSPACE�log n�� Of course�

Remark 
�� If UGAP is uniform AC� reducible to UNDIR�CYCLE� then
UGAP is in DSPACE�log n��

We mention one more interesting justi�cation of De�nition ���� In �
� it
is shown that the obvious bounds�

nonuniform NCi � nonuniform ACi

can be improved to

Fact 
�� ����	

nonuniform NCi � nonuniform AC�DEPTH�logi n� log log n� �

When i � � this bound is optimal because nonuniform AC�DEPTH�log n� log log n�
is necessary for Parity ����� We next show that the same bound holds in the
uniform case�

Theorem 
�� For t�n� � log n�

ASPACE�log n��TIME�t�n�� � FO�t�n�� log log n� �

Proof This is a log log n factor improvement of Theorem B�
 in ���� There
we showed how to code a log space Turing machine con�guration using a
constant number of variables� as well as how to write the predicateM��!x� !y��

meaning that h!x� !yi is a valid move of the given alternating Turing machine�
We could then inductively de�ne the predicate Acceptt�!x�� meaning that

�




the con�guration !x leads to acceptance in the sense of alternating Turing
machines in t steps�

Acceptt�!x� 	 ��!y�M��!x� !y����!z�M��Acceptt���!z� �

where M� 	 �!z � !y� � ��!x is universal� �M��!x� !z���
To improve this simulation by a log log n factor� observe that a list of

which existential moves to make in the event of each possible sequence of
�log log n��	 universal moves can be given in log n bits� Thus we can write�

Acceptt�!x� 	 ��e�u���!z��R � Acceptt�log logn�!z�� � ���

where R says that !z follows from !x in the log log n moves determined by e

and u�
Now it is easy to write an inductive de�nition of R whose depth is

log log n� This de�nition uses the BIT predicate to decode from e and u
which of the possible two moves the Turing machine makes at each of the

log log n steps� The simultaneous inductive de�nition of Accept is given in
Equation �� Obviously its depth is log n� log log n� �

Corollary 
��� For i � �� NCi � FO�logi n� log log n� �

� The polynomial�time hierarchy

In second�order logic we have �rst�order logic� plus new relation variables
over which we may quantify� Let Aj

i be a j�ary relation variable� Then

��Aj
i �� means that for all choices of j�ary relation Aj

i � � holds� It is well
known that second�order formulas may be transformed into prenex form�
with all second�order quanti�ers in front� Let SO be the set of second�order

expressible properties� and let �SO �� be the set of second�order proper�
ties that may be written in prenex form with no universal second�order
quanti�ers� Fagin gave the following interesting characterization of nonde�

terministic polynomial�time �NP� in terms of logical expressibility�

Fact ��� ��
�	 �SO�� � NP �

A few years later� when he de�ned the polynomial�time hierarchy �PH��
Stockmeyer showed that it coincided with the set of second�order expressible
properties�

��



Fact ��� �����	 PH � SO�

As a corollary to Fact ��	 and Theorem ���� we obtain the following

characterization of PH as a parallel complexity class�

Corollary ��� PH is equal to the set of properties checkable by a CRAM

using exponentially many processors and constant time��

PH �
��

k
�

CRAM����PROC�	n
k

� �

Proof The inclusion SO � CRAM����PROC�	n
O	�


� follows just as in the
proof of Lemma 
�	� A processor number is now large enough to give val�

ues to all the relational variables as well as to all the �rst�order variables�

Thus� as in Lemma 
�	� the CRAM can evaluate each �rst or second�order
quanti�er in three steps�

The inclusion CRAM����PROC�	n
O	�


� � SO follows just as in the proof

of Lemma 
��� The only di�erence is that we use second�order variables to
specify the processor number� �

	 Conclusions

To recapitulate� we have shown that parallel time has a simple mathematical

de�nition� the minimal parallel time needed to compute a property using
at most polynomially many processors is equal to the minimum depth of a
�rst�order inductive de�nition of the property� Furthermore� the number of

processors needed by the CRAM is closely tied to the number of variables
needed in the inductive de�nition� We have also given purely syntactic def�
initions for uniformity of the circuit complexity classes ACi� i � �� Finally�
we have given a striking� new characterization of the polynomial�time hier�

archy� We believe that these results help to explain the nature of parallel
complexity and will lead to an improved understanding of the subject�

There is much work to be done� The following general directions suggest

themselves�

�Up to this point we had been assuming for notational simplicity that a CRAM has
at most polynomially many processors� However� the class CRAM
t	n
��PROC
p	n
� still
makes sense for numbers of processors p	n
 that are not polynomially bounded�

��



�� This paper provides a new way to think about parallel programming�
The programmer provides e�cient inductive de�nitions of the problem to
be solved� Our simulation results then automatically give an e�cient im�
plementation on a CRAM� Much work is needed to explore whether or not

this approach is practical�
	� We have given characterizations of parallel time and number of proces�

sors in terms of the depth and number of variables in inductive de�nitions�
One should now develop upper and lower bounds on these parameters for

all sorts of problems� We also feel that the analysis of the simulation in x�
can and should be improved�


� There are many fascinating questions concerning uniformity and the

power of precomputation� We hope that the notion of syntactic uniformity of
circuits will help researchers determine when precomputation�nonuniformity
can help� or� to prove lower bounds on what can be done by uniform circuits
and formulas�

Acknowledgments� Thanks to Steve Cook� Steven Lindell� Ruben
Michel� and Larry Ruzzo� who contributed comments and corrections to
previous drafts of this paper�

References

��� D� M� BARRINGTON� N� IMMERMAN� AND H� STRAUBING� On

uniformity within NC�� Proc� 
rd Annual Symposium on Structure in
Complexity Theory ������� pp� �
����

�	� P� BEAME� Limits on the power of concurrent�write parallel machines�
Proc� ��th ACM Symposium on Theory of Computing ������� pp� ����

�
��

�
� A� CHANDRA� L� STOCKMEYER� AND U� VISHKIN� Constant
depth reducibility� SIAM J� of Comput� �
 ������� pp� �	
��
��

��� H� ENDERTON� A Mathematical Introduction to Logic� Academic

Press� New York� ��
	�

��� R� FAGIN� Generalized �rst�order spectra and polynomial�time recog�
nizable sets� in Complexity of Computation� R� Karp� ed�� SIAM�AMS
Proc�� 
 ���
��� pp� 	
����

��� F� FICH� P� RAGDE� AND A� WIGDERSON� Relations between
concurrent�write models of parallel computation� Proc� 
rd Annual

	�



ACM Symposium on Principles of Distributed Computing ������� pp�
�
������

�
� D� HAREL AND D� KOZEN� A programming language for the induc�
tive sets� and applications� Proc� �th International Colloquium on Au�

tomata Languages� and Programming� Springer�Verlag Lecture Notes
in Computer Science� ��� ����	�� pp� 
�
�
	��

��� J��W� HONG� On some deterministic space complexity problems� SIAM
J� Comput�� �� ����	�� pp� ��������

��� N� IMMERMAN� Upper and lower bounds for �rst�order expressibility�

J� Comput� System� Sci�� 	� ����	�� pp� 
�����

���� � Relational queries computable in polynomial time� Inform� and
Control� �� ������� pp� ������� A preliminary version of this paper
appeared in Proc� ��th ACM Symposium on Theory of Computing

����	�� pp� ��
���	�

���� � Languages that capture complexity classes� SIAM J� Comput��
�� ����
�� pp� 
���

�� A preliminary version of this paper appeared
in Proc� ��th ACM Symposium on Theory of Computing ����
��pp�


�
�
���

��	� � Expressibility as a complexity measure� Results and directions�
Proc� 	nd Annual Symposium on Structure in Complexity Theory
����
�� pp� ����	�	�

��
� � Descriptive and computational complexity� Proc� ���� AMS
Short Course in Computational Complexity Theory� to appear�

���� Y�N�MOSCHOVAKIS� Elementary Induction on Abstract Structures�
North Holland� Amsterdam� ��
��

���� L� RUZZO� On uniform circuit complexity� J� Comput� System� Sci�� 	�
������� pp� 
���
�
�

���� L� STOCKMEYER� The polynomial�time hierarchy� Theoretical Com�
put� Sci�� 
 ���

�� pp� ��		�

��
� L� STOCKMEYER AND U� VISHKIN� Simulation of parallel random

access machines by circuits� SIAM J� of Comput� �
 ������� pp� ����
�		�

	�



���� A� C��C� YAO� Separating the polynomial�time hierarchy by oracles�
Proc� 	�th Annual IEEE Symposium on Foundations of Comput� Sci�
������� pp� �����

		


