EXPRESSIBILITY AND PARALLEL
COMPLEXITY

NEIL IMMERMAN*

SIAM J. of Comput. 18 (1989), 625-638.

Abstract

It is shown that the time needed by a concurrent-read, concurrent-
write parallel random access machine (CRAM) to check if an input
has a certain property is the same as the minimal depth of a first-
order inductive definition of the property. This in turn is equal to the
number of “iterations” of a first-order sentence needed to express the
property.

The second contribution of this paperis the introduction of a purely
syntactic uniformity notion for circuits. It is shown that an equiva-
lent definition for the uniform circuit classes ACY, i > 11is given by
first-order sentences “iterated” log’n times. Similarly, uniform AC°
is defined to be the first-order expressible properties (which in turn is
equal to constant time on a CRAM by our main theorem).

A corollary of our main result is a new characterization of the
Polynomial-Time Hierarchy (PH): PH is equal to the set of languages
accepted by a CRAM using exponentially many processors and con-
stant time.

Key words. Computational complexity, parallel complexity, first-order express-
ibility, polynomial-time hierarchy
AMS(MOS) subject classification. 63025

1 Introduction

Parallel time on a random access machine has a surprisingly simple mathe-
matical definition involving well-studied objects of mathematical logic. We

*This research was supported in part by the Mathematical Sciences Research Institute,
Berkeley, California, and by National Science Foundation grants DCR-8603346 and CCR-
8806308.

show that the time needed by a concurrent-read, concurrent-write parallel
random access machine (CRAM) to check if an input has a certain property
is the same as the minimal depth of a first-order inductive definition of the
property. This in turn is equal to the number of “iterations” of a first-order
sentence needed to express the property.

We now state our main result. (See §2 for relevant definitions. In partic-
ular, the iteration of a first-order sentence is defined in §2.2, and the CRAM
is defined in §2.3. The definition of the CRAM differs from the standard
definition of the CRCW PRAM in [17] only in that a processor may shift
a word of local memory by any polynomial number of bits in unit time.
It follows from our results that for parallel time greater than or equal to
log n there is no distinction between the models with and without the Shift
instruction.)

Theorem 1.1 Let S be a set of structures of some vocabulary 7. For exam-
ple, S is a set of boolean strings, or a set of graphs, etc. For all polynomially
bounded, parallel time constructible t(n), the following are equivalent:

1. S is recognizable by a CRAM in parallel time t(n), using polynomially
many processors.

2. There exists a first-order sentence ¢ such that the property S for
structures of size at most n is expressed by ¢ iterated t(n) times.

3. S is definable as a uniform first-order induction whose depth, for
structures of size n, is at most t(n).

For t(n) > logn, the equivalence of (1) and (2) in Theorem 1.1 may also
be obtained by combining a result of Ruzzo and Tompa relating CRAMs
to alternating Turing machines [17, Thm. 3], together with a result of ours
relating alternating Turing machines to first-order expressibility [9, Thm.
B.4]. In order to prove the theorem for t(n) < logn, we were forced to
modify the models slightly, adding the Shift operation to the CRAMs and
adding BIT as a new logical relation to our first-order language (see §2). We
believe that the naturalness of Theorem 1.1 justifies these modifications.

This paper is organized as follows. In §2 we give all relevant definitions.
In §3 we prove our main result. In §4 we give a more detailed analysis of the
bounds in Theorem 1.1. We show that the number of distinct variables in a
first-order inductive definition is closely tied to the number of processors in
the corresponding CRAM.

Until now, a principal unaesthetic feature of the theory of complexity
via boolean circuits was that one had resorted to Turing machines to define

the uniformity conditions for circuits [15]. As a corollary to Theorem 1.1,
we obtain a purely syntactic uniformity notion for circuits. In §5 we de-
scribe this result as well as other relations between circuits and first-order
complexity.

As another corollary to Theorem 1.1, we present in §6 a new character-
ization of the Polynomial-Time Hierarchy (PH): PH is equal to the set of
languages recognized by a CRAM using exponentially many processors and
constant time. In §7 we give some suggestions for future work in this area.

2 Background and definitions

2.1 First-order logic

We begin this section by making some precise definitions concerning first-
order logic. For more information see [4].

A wvocabulary T = (RY*,--+, Ry*,¢q,- -+, ¢,) is a tuple of relation sym-
bols and constant symbols. R;* is a relation symbol of arity a;. In the
sequel we will usually omit the superscripts and the underlines to improve
readability. A finite structure of vocabulary 7 is a tuple, A = ({0,1,---,n—

1}, Ry, R{ ef', -+,), consisting of a universe |A| = n = {0,---,n—1}
and relations Rf',---, R{ of arities a1,---,az on |A| corresponding to the
relation symbols R{,---, R¢* of 7, and constants ¢f,---, ¢ from |.A| cor-
responding to the constant symbols ¢;,- -, ¢, from 7.

For example, a graph on n vertices, G = ({0...n — 1}, F), is a structure
whose vocabulary 7o = (£?) has a single binary relation symbol. Similarly, a
binary string of length n is a structure S = ({0...n—1}, M) whose vocabulary
71 = (M) consists of a single unary relation symbol. Here the ith bit of S
is 1 if and only if S = M (7).

Let the symbol “<” denote the usual ordering on the natural numbers.
We will include < as a logical relation in our first-order languages. This
seems necessary in order to simulate machines whose inputs are structures
given in some order. It is convenient to include logical constant symbols,
0,1,---, referring to the zeroth, first, etc., elements of the universe, respec-
tively. (If the universe is smaller than a given constant, then interpret that
constant as 0.) We also include the logical predicate BIT, where BIT(z,y)
holds if and only if the zth bit in the binary expansion of y is a one.!

!The relation BIT is crucial for the truth of Theorem 1.1, when #(n) < logn, and for
the plausibility of Definition 5.5.

We now define the first-order language L£(7) to be the set of formulas
built up from the relation and constant symbols of 7 and the logical relation
and constant symbols, =, <,BIT,0,1,--., using logical connectives, A,V,,
variables, z,v, z, - - -, and quantifiers, V, 3.

We will think of a problem as a set of structures of some vocabulary 7. It
suffices to consider only problems on binary strings, but it is more interesting
to be able to talk about other vocabularies, e.g., graph problems, as well.
For definiteness, we will fix a scheme for coding an input structure as a
binary string. If A = ({0,1,---,n — 1},R“14...RkA,c“14...cf), is a structure of
type 7, then A will be encoded as a binary string bin(.A) of length I(n) =
n® 4+ .-+ n% +r[logn|, consisting of one bit for each a;-tuple, potentially
in the relation R;, and [logn] bits to name each constant, ¢;. Thus we
reserve n to indicate the size of the universe of the input structure. I(n),
the length of bin(.A), is polynomially related to n, and in the case where 7
consists of a single unary relation — i.e. inputs are binary strings — I(n) = n.

Define the complexity class FO to be the set of all first-order expressible
problems. We will see in §5 that FO is a uniform version of the circuit class
ACY. (See also [1] where it is shown that FO is equal to deterministic log
time uniform ACY.)

Example 2.1 An example of a first-order expressible property is addition.?
In order to turn addition into a yes/no question, we can let our input have the
vocabulary 7, = (A, B, k) consisting of two unary relations and a constant
symbol. In a structure A of vocabulary 7,, the relations A and B are binary
strings of length n = | A|. We will say that A satisfies the addition property
if the kth bit of the sum of A and B is one.

In order to express addition, we will first express the carry bit,

CARRY(z) = (Jy < z)[A(y) AN B(y) A Vz.y < z < 2)A(z) V B(z)]
Then with @ standing for exclusive or, we can express PLUS,
PLUS(z) = A(z) ® B(z) ® CARRY(x)

Thus the sentence expressing the addition property is PLUS(k). O

>This is a standard construction, see e.g., [17].

2.2 Iterating first-order sentences

To describe properties that are not in AC?, we need languages that are
more expressive than FO. We now recall the definition of the complexity
classes FO[t(n)]?. Intuitively, FO[t(n)] consists of those problems that may
be described by a first-order sentence “iterated ¢(n) times.”

Let z be a variable and M a quantifier free formula. We will use the
notation (Vz.M)y — read, “for all x such that M, ,” — to abbreviate
(Vz)(M —). Similarly we will write (Jz.M)1 — read, “there exists an
x such that M, ¢,” — to abbreviate (3z)(M A). We will call the expres-
sions (Vz.M) and (Jz.M) restricted quantifiers. Let a quantifier block be
a finite sequence of restricted quantifiers: QB = (Qz1.M7) - - - (Qrzr.-My).
We will use the notation [QB]? to denote the quantifier block QB repeated
t times. I mean this literally:

[QB]' = QBQBQB---QB .

t times

Note that for any quantifier-free formulas My, My, -, My € L(7), and
any 7 € N, the expression [QB]*Mj is a well-formed formula in £(7).

Definition 2.2 Let¢: N — N be any function, and let 7 be any vocabulary.
A set C of structures of vocabulary 7 is a member of FO[t(n)] if and only
if there exists a quantifier block QB and a quantifier-free formula My from
L(7), such that if we let ¢, = [QB]"™ My, for n = 1,2,---, then for all
structures G of vocabulary 7 with |G| = n,

GeEC & Gk ¢n.

A more traditional way to iterate formulas is by making inductive defini-
tions, [14], [10]. Let IND-DEPTH[t(n)] be the set of problems expressible as
a uniform induction that requires depth of recursion at most ¢(n) for struc-
tures of size n. In [7], Harel and Kozen introduce a programming language
called IND, which is closely tied to inductive definitions. They prove that
the execution time for their IND programs is equal to the depth of the in-
ductive definitions that describe the programs’ input output behavior. Let
IND-TIME[t(n)] be the set of languages accepted by IND programs using
O[t(n)] steps for inputs of size n. Then:

*The notation FO[t(n)] was first used in [12]; however, the same classes were defined
in [10] using the notation 1Q[¢(n)], standing for “iterated queries.” See [13] for a survey
of descriptive complexity.

Fact 2.3 ([7]) For all t(n),
IND-TIME[¢(n)] = IND-DEPTH[t(n)] .

This fact, together with Theorem 1.1, shows that there is a simple, high
level programming language for which time corresponds exactly to time on
a CRAM. In the remainder of this paper we write IND[¢(n)] to signify
IND-TIME[t(n)] as well as IND-DEPTH[t(n)].

The following fact relates IND[¢t(n)] to FO[t(n)]. This fact follows easily
from Moschovakis’ Canonical Form for Positive Formulas, [14].

Fact 2.4 ([10], [14]) For all t(n),
IND[t(n)] € FO[t(n)] .

(In particular, a property in IND[t(n)] is expressible as a FO[t(n)] property
in which My = false, cf. Definition 2.2.)

Example 2.5 We show how to transfer a logn depth inductive definition

of the transitive closure of a graph to an equivalent FO[logn] definition.
Let E be the edge predicate for a graph G with n vertices. We can

inductively define £*, the reflexive, transitive closure of GG, as follows:

E(z,y) = z=yV E(z,y) vV (32)(E(z,2) A E¥(2,9)) .

Let P,(z,y) mean that there is a path of length at most n from z to y.
Then we can rewrite the above definition of £* as:

This can be rewritten:
Po(z,y) = (V2. M1)(32)(Pyj2(®,2) A Ppja(z,9)) ,

where M; = —-(xz =yV E(z,y)). Note that there is no free occurrence of the
variable z after the Vz quantifier. Thus, in this case (Vz.M)« is equivalent
to (M7 — «). Next,

Po(z,y) = (V2.M1)(3z) (Vuv. M) (P 2(u, v))
where Mo=(u=zxzAv=2)V(u=2z2Av=y). Now,

Po(z,y) = (V2.M1)(3z)(VYuv. M) (Vay.M3) (P, j2(z,y)) ,

6

where M3 = (x =uAy=wv). Thus,

Po(z,y) = [QB])'5" (Pi(z,y)) ,
where QB = (Vz.M1)(3z) (Yuv.Ms)(Vzy.Ms3). Note that

Pi(z,y) = [QB](false) .

It follows that
Py(z,y) = QB8 (false) ,

and thus £* € FOllogn] as claimed. O

2.3 Concurrent random access machines

We define the concurrent random access machine (CRAM) to be essen-
tially the concurrent read, concurrent write parallel random access machine
(CRCW PRAM) described in [17]. A CRAM is a synchronous parallel ma-
chine such that any number of processors may read or write into any word of
global memory at any step. If several processors try to write into the same
word at the same time, then the lowest-numbered processor succeeds.* In
addition to assignments, the CRAM instruction set includes addition, sub-
traction, and branch on less than. Each processor also has a local register
containing its processor number.

The difference between the CRAM and the CRCW PRAM described in
[17] is that we also include a Shift instruction. Shift(z,y) causes the word
z to be shifted y bits to the right. Without Shift, CRAM[t(n)] would be
too weak to simulate FO[t(n)] for ¢(n) < logn. The reason behind the Shift
operation for CRAMs and the corresponding BIT predicate for first-order
logic is that each bit of global memory should be available to every processor
in constant time.

Let CRAM][t(n)] be the set of problems accepted by a CRAM using
polynomially many processors and time O[t(n)]. Recall that we encode an
input structure A = ({0,1,---,n—1}, R{, - - -, RkA, ¢, -, cA), as the binary
string bin(.A) of length I(n) = n® + ... + n% 4 r[logn]|, Where q; is the
arity of the ¢th input relation. The input string is placed one bit at a time
in the first I(n) global memory locations.?

“This is the “priority write” model. Our results remain true if instead we use the
“common write” model, in which the program guarantees that different values will never
be written to the same location at the same time. See Corollary 3.4.

®We show in Corollary 3.4 that if placement of the input is varied, e.g., if the first

3 Proof of the main theorem

Theorem 1.1 follows immediately from three containments: Fact 2.4, and
the following two lemmas.

Lemma 3.1 For any polynomially bounded t(n) we have,

CRAM(t(n)] C IND[t(n)] .

Proof We want to simulate the computation of a CRAM M. On input A, a
structure of size n, M runs in ¢(n) synchronous steps, using p(n) processors,
for some polynomial p(n). Since the number of processors, the time, and the
memory word size are all polynomially bounded, we need only a constant
number of variables z1,- -, 2, each ranging over the n element universe of
A, to name any bit in any register belonging to any processor at any step
of the computation. We can thus define the contents of all the relevant
registers for any processor of M, by induction on the time step.

We now specify the CRAM model more precisely. We may assume that
each processor has a finite set of registers including the following: Proces-
sor, containing the number between 1 and p(n) of the processor; Address,
containing an address of global memory; Contents, containing a word to be
written into or read from global memory; and Program_Counter, containing
the line number of the instruction to be executed next. The instructions to
be simulated are limited to the following:

e READ: Read the word of global memory specified by Address into
Contents.

e WRITE: Write the Contents register into the global memory location
specified by Address.

e OP R, Ry: Perform OP on R, and Ry, leaving the result in Rj. Here
OP may be Add, Subtract, or Shift.

e MOVE R, Ry: Move R, to R.

e BLT R L: Branch to line L if the contents of R is less than zero.

I(n)/logn words of memory contain logn bits each of the input, or even if all I(n) bits
are placed in the first word, then all our results remain unchanged. Note that this is
not true of the models used in [2], for example. There processors are assumed to have
unlimited power and thus the partition of the inputs is crucial.

It is straightforward to write a first-order inductive definition for the
relation VALUE(D, ¢, T, r,b) meaning that bit Z in register » of processor p
just after step ¢ is equal to b. Note that since the number of processors, the
time, and the word size are all polynomially bounded, a constant number of
variables ranging from 0 to n — 1 suffice to specify each of these values.

The inductive definition of the relation VALUE(p, ,Z,r,b) is a disjunc-
tion depending on the value of p’s program counter at time ¢ — 1. The most
interesting case is when the instruction to be executed is READ. Here we
simply find the most recent time ¢’ < ¥ at which the word specified by 7’s
Address register at time # was written into, and the lowest numbered pro-
cessor p’ that wrote into this address at time #/. In this way we can access
the answer, namely the Tth bit of p’s Contents register at time ¢.

It remains to check that Addition, Subtraction, BLT, and Shift are first-
order expressible, and that we can express the fact that each processor begins
with its own processor number in its Processor register. Addition was done
in Example 2.1. In a similar way we can express Subtraction, and Less
Than. The main place we need the BIT relation is to express the fact that
the initial contents of each processor’s Processor register is its processor
number. The relation BIT allows us to translate between variable numbers
and words in memory. Using BIT we can also express addition on variable
numbers and thus express the Shift operation.

Thus we have described an inductive definition of the relation VALUE,
coding M’s entire computation. Furthermore, one iteration of the definition
occurs for each step of M. O

Lemma 3.2 For polynomially bounded, and parallel time constructible t(n),

FO[t(n)] € CRAM[t(n)] .

Proof Let the FO[t(n)] problem be determined by the following quantifier-
free formulas and quantifier block,

Mo, My,--, My, QB = (Quz1.M1) - (Qrzr.-My) .
Our CRAM must test whether an input structure A satisfies the sentence,

The CRAM will use n* processors and n*~! bits of global memory. Note
that each processor has a number a;j - - - a with 0 < a; < n. Using the Shift
operation it can retrieve each of the a;s in constant time.5

The CRAM will evaluate ¢, from right to left, simultaneously for all
values of the variables x1,---, 2. For 0 <r <t(n) -k, let,

on = (Qizi.M;) - - (Qrzr- M) [QB] Mo,

where r = k-(¢+1)+1—14. Let &y ---&;---x be the k — 1-tuple resulting
from ;- - -z by removing z;. We will now give a program for the CRAM
which is broken into rounds, each consisting of three processor steps such
that:

() Just after the rth round, the contents of memory location aj --- ;- - ag
is 1 or 0 according to whether A |= ¢] (a1,- -, ak)-

Note that x; is not free in ¢! At the rth round, processor number
a1 - - - ap executes the following three instructions according to whether Q; =
JorQ; =V:

{Qi =3}

1. b —loc(ay---aiy1---ag);

2. loc(ag---a;---ag) < 0;

3. if M;(a1,---,ax) and b then loc(ay ---a;---ag) < 1;
{Q: =V}

1. b —loc(ay - -ajr1---ak);

2. loc(ag «--G;---ag) «— 1;

3. if M;(a1,---,ax) and —b then loc(ay ---G;---ag) < 0;

It is not hard to prove by induction that (x) holds, and thus that the
CRAM simulates the formula. O

Remark 3.3 The proof of Lemma 3.2 provides a very simple network for
simulating a FO[t(n)] property. The network has n*~! bits of global memory
and kn”* gates, where k is the number of distinct variables in the quantifier

®This is obvious if n is a power of 2. If not, we can just let each processor break its
processor number into k [logn]-tuples of bits. If any of these is greater than or equal to
n, then the processor should do nothing during the entire computation.

10

block. Each gate of the network is connected to two bits of global memory in
a simple connection pattern. The blowup of processors going from CRAM
to FO to CRAM seems large (cf. Corollary 4.1); however, it is plausible
to build first-order networks with billions of processing elements, i.e. gates,
thus accommodating fairly large n and moderately large k.

An immediate corollary of Theorem 1.1 is that the complexity class
CRAM[t(n)] is not affected by minor changes in how the input is arranged,
nor in the global memory word size, nor even by a change in the convention
on how write conflicts are resolved.

Corollary 3.4 For any function t(n), the complexity class CRAM[t(n)] is
not changed if we modify the definition of a CRAM in any consistent com-
bination of the following ways. (By consistent we mean that we don’t allow
mput words larger than the global word size, nor larger than the allowable
length of applications of Shift.)

1. Change the input distribution so that either (a) the entire input is
placed in the first word of global memory, or (b) the I(n) bits of input are
placed logn bits at a time in the first I(n)/logn words of global memory.

2. Change the global memory word size so that either (a) The global word
size is one, i.e. words are single bits. (Local registers do not have this
restriction so that the processor’s number may be stored and manipulated.),
or (b) The global word size is bounded by O[logn].

3. Modify the Shift operation so that shifts are limited to the maximum
of the input word size and of the log base 2 of the number of processors.

4. Remove the polynomial bound on the number of memory locations,
thus allowing an unbounded global memory.

5. Instead of the priority rule for the resolution of write conflicts, adopt
the common write rule in which different processors never write different
values into the same memory location at a given time step.

Proof The proofis that Lemmas 3.1 and 3.2 still hold with any consistent
set of these modifications. This is immediate for Lemma 3.1. For Lemma
3.2, we must only show that processor number aj - - - ay still has the power

in constant time to evaluate the quantifier-free formula M;(aq,---,ag), and
to name the global memory location aj---d;---ag, for 1 < ¢ < k. Re-
call that we are assuming that the input structure A = ({0,1,---,n —

1},R“14,-~~,R;,4,c“14,~~,c(“14> is coded as a bit string of length I(n) = n™ +
<-4+ n" +q[logn]|. It is clear that all of the consistent modifications above

11

allow processor ai---aj to test in constant time whether or not the rela-
tion R(t,---,t,) holds, where R is an input or logical relation, and ¢; €
{a1, - ax} U{g|1 <j < g}

O

4 On the efficiency of the simulations

In this section we analyze the proof of Theorem 1.1 in more detail in order
to give the following bounds for translating between CRAM and IND. After
we prove Corollary 4.1, we discuss the cost of the simulation, and how these
bounds can be improved. The proofs in this section involve counting how
many variables are needed in various first-order formulas. This whole section
should be omitted by the casual reader.

Corollary 4.1 Let CRAM][t(n)]-PROCIp(n)] be the complezity class CRAM[t(n)]
restricted to machines using at most O[p(n)] processors. Let IND[t(n)]-VAR[v(n)]
be the complexity class IND[t(n)] restricted to inductive definitions using at
most v(n) distinct variables. Assume for simplicity that the maximum size

of a register word, and t(n) are both o[\/n], and that * > 1 is a natural
number. Then,

CRAM[t(n)]-PROC[n"]
C IND[t(n)]-VAR[2T + 2]
C CRAM[t(n)]-PROC[n?"+2]

Proof We prove these bounds using the following two lemmas.

Lemma 4.2 If the maximum size of a register word, and t(n) are both
o[v/n], and if M is a CRAM[t(n)]-PROC[n"] machine, then the inductive
definition of VALUE may be written using 2w + 2 variables.

Proof We write out the inductive definition of VALUE in enough detail
to count the number of variables used:

VALUE(p,t,2,7,b) = ZVWVSVRVMVBVA,

where the disjuncts have the following intuitive meanings:
Z: t =0 and the initial value of r is correct.

12

W: t # 0 and the instruction just executed is WRITE, and the value of
r is correct, i.e., unchanged unless r is Program_Counter.

S, R, M, B, A: Similarly for SHIFT, READ, MOVE, BLT, and, ADD or
SUBTRACT, respectively.

It suffices to show that each disjunct can be written using the number
of variables claimed. First we consider the disjunct Z. The only interesting
part of Z is the case where r is “Processor”. In this case we use the relation
BIT to say that b = 1 if and only if the zth bit of 7 is 1. No extra variables
are needed. Note that the number of free variables in the relation is 7w + 1
because we may combine the values ¢,z,r, and b into a single variable.

Next we consider the case of Addition. Recall that the main work is to
express the carry bit:

C[A,Bl(z) = (Fy < z)[A(y) A B(y) A (Vz.y < z < 2)A(z) V B(2)] .

This definition uses two extra variables. Thus = + 3 < 27 + 2 variables
certainly suffice. The cases S, M, and B are simpler.
The last, and most interesting case is R. Here we must say,

1. The instruction just executed is READ,
2. Register r is the Contents register,
3. There exists a processor p’ and a time ¢’ such that:

(a) t' <t,

(b) Address(p’,t') =Address(p, t),

(c) VALUE(Y, ¢, z,7,b),
)
)
)

(d) Processor p’ wrote at time #',

—~ ~~

f) For all ¢ such that ¢' <" < ¢ and for all P, if p" wrote at time
", then Address(p”,t") #ZAddress(p’,t').

Let’s count variables. On its face this formula uses three p’s and three
t’s. However, two copies of each suffice. Observe that where we quantify
p” in lines 3e and 3f, we no longer need P, so we may use these variables
instead. Similarly, when we quantify ¢ on line 3f, we don’t need p” so we
may temporarily use one of its variables for #/. Finally, we would seem
to need an extra variable to say “Address(p”,t") #Address(p/,t'),” in 3f.

Here we use the fact that ¢ is o[/n], so t’ and " can be coded into a single

13

e) Forall p” < p/,if p” wrote at time ¢/, then Address(p”, ') #Address(p’, '),

variable. Then with one more variable we can say that there exists a bit
on which Address(p”,t") and Address(p’,¢') disagree. Thus 27 + 2 variables
suffice as claimed. O

The second lemma we need (Lemma 4.3) is a refinement of Lemma 3.2.

Lemma 4.3 Let ¢(R,T) be an inductive definition of depth d(n). Let k
be the number of distinct variables including T occurring in ¢. Then the
relation defined by ¢ is also computable in CRAM[d(n)]-PROC[O[n*]].

Proof This is very similar to the proof of Lemma 3.2. Let T" be the parse
tree of . The CRAM will have n*|T| processors: one for each value of
the k variables and each node in T. Let é be the depth of 7. In rounds
consisting of 36 steps, the CRAM will evaluate an iteration of ¢. Let r =
arity(R) = the number of variables in Z; so »r < k. The CRAM will have
n” bits of global memory to hold the truth value of Ry = ¢'(0). It will use
an additional n*|T'| bits of memory to store the truth values corresponding
to nodes of T'. Thus Ry(,), the least fixed point of ¢, is computed in time
O[d(n)], using O[n¥] processors, as claimed. O

This completes the proof of Corollary 4.1. O

The above proofs give us some information concerning the efficiency of
our simulation of CRAM s with first-order inductive definitions. The main
questions is, “Why is the number of variables needed to express a compu-
tation of n™ processors 27 + 2, instead of 777 We discuss the multiplicative
factor of two, and the additional two variables, respectively in the next two
paragraphs.

We need the 27 term for two reasons: we must specify p and p’ at the
same time in order to say that their Address registers are equal; and we need
to say that no lower numbered processor p” wrote into the same address as p'.
This term points out a difference between the CRAM model and the network
described in Remark 3.3 that was used to simulate a FO[t(n)] property. The
factor of two would be eliminated if we adopted a weaker parallel machine
model allowing only common writes”, and such that the memory location
accessed by a processor could be determined by a very simple computation
on the processor number.

"See [6] for an earlier proof that a common write machine can simulate a CRAM with
a linear increase in time and a squaring of the number of processors.

14

The additional two variables arise for various bookkeeping reasons. This
term can be significantly reduced if we make the following two changes:

1. Rather than keeping track of all previous times, we can assume that
every bit of global memory is written into at least every T time steps for
some constant 7.

2. The register size can be restricted to O[log n] so we need only O[log log n]
bits to name a bit of a word.

Remark 4.4 The above observations show that the relation between the
number of variables needed to give an inductive definition of a relation, and
the logarithm to the base n of the number of processors needed to quickly
compute the relation are nearly identical. The cost of programming with
first-order inductive definitions rather than CRAMs is theoretically very
small. More work and even some experimentation must be done before one
can say whether or not this will turn out to be a practical approach.

5 NC versus FO

In this section we relate the uniform NC circuit classes to FO[t(n)], and we
derive a completely syntactic definition for circuit uniformity. We show that
our definition is equivalent to the usual Turing machine-based definition in
the range where the latter exists.

Let NC? (respectively, AC?) be the set of problems recognizable by a uni-
form sequence of polynomial size, bounded fan-in (respectively, unbounded
fan-in) boolean circuits of depth log’n. Let NC = AC = |J,NC’. Ruzzo
characterized these uniform circuit classes in terms of alternating Turing
machines:

Fact 5.1 ([15]) Fori>1,

NC' = ASPACE-TIME[logn,log'n],
AC' = ASPACE-ALTlogn,log'n] .

Ruzzo and Tompa proved the following relationship between the uniform
AC classes and the CRAM :

Fact 5.2 ([17]) Fori > 1,AC' = CRAM[log’ n].

15

The following corollary of Theorem 1.1 and Fact 5.2 shows that the uni-
formity condition for the AC® circuit classes can be described in a syntactic
way. A first-order sentence iterated ¢(n) times is also an AC circuit “it-
erated” t(n) times. Thus we no longer need to mention machines when
discussing uniform circuit complexity.

Corollary 5.3 Fori > 1, AC* = FO[log" n].

Before now there was no satisfactory definition for uniform ACC. Tt is
easy to see that a first-order sentence corresponds to a particularly simple
sequence of AC? circuits. Each quantifier 3z (respectively, V) is just an
n-ary “or” (respectively, “and”). In [11] we showed that an appropriate
way to make first-order sentences nonuniform is to add an arbitrary new
logical relation. The following fact says that nonuniform AC? is equal to
nonuniform FO.?

Fact 5.4 ([11]) Given a problem S and an integer d > 1 the following are
equivalent:

1. S is recognized by a sequence of depth d+1, polynomial-size circuits,
with bounded fan-in at the bottom level.

2. There exists a new logical relation R C N® and a first-order formula
@ i which R occurs such that ¢ expresses S. The formula ¢ contains
d alternating blocks of quantifiers.

In view of the above results, we propose the following:
Definition 5.5 Let (uniform) AC? &' FO[1] = CRAM[1] .

Since we first made this suggestion, much evidence concerning the appro-
priateness of Definition 5.5 has appeared. In particular, see [1] for a study
of low-level uniformity. It is shown there that FO is equal to deterministic
log time uniform ACY.

In [11] we introduced the notion of first-order translations. These reduc-
tions consist of a fixed first-order formula translating all instances of one
problem to instances of another. (First-order translations are interpreta-
tions between theories, cf. [4], that are also reductions in the complexity

In [17] Stockmeyer and Vishkin showed that nonuniform AC° is equal to constant
time on a nonuniform CRAM. This, together with Fact 5.4, gives a nonuniform version
of Theorem 1.1.

16

theoretic sense.) It follows from Definition 5.5 that first-order translations
are exactly uniform AC® reductions.

One way to evaluate the appropriateness of Definition 5.5 is to examine
examples of AC? reductions in the literature and see whether or not they can
be made uniform. Of those we have considered, the answer is yes, with the
following interesting exception. (The UGAP problem is the set of undirected
graphs for which there exists a path from vertex 0 to vertex n — 1.)

Fact 5.6 [3]. UGAP is nonuniform AC® reducible to UNDIR-CYCLE.

Now UNDIR-CYCLE is in DSPACE[log n| [8], but UGAP is not known
to be in DSPACE[log n]. Of course,

Remark 5.7 If UGAP is uniform ACP reducible to UNDIR-CYCLE, then
UGAP is in DSPACE][log n].

We mention one more interesting justification of Definition 5.5. In [3] it
is shown that the obvious bounds,

nonuniform NC* C nonuniform AC
can be improved to
Fact 5.8 ([3])

nonuniform NC' C nonuniform AC-DEPTH|[log’ n/log logn] .

When i = 1 this bound is optimal because nonuniform AC-DEPTH[logn/loglogn|
is necessary for Parity [18]. We next show that the same bound holds in the
uniform case:

Theorem 5.9 For t(n) > logn,

ASPACE[log n|—TIME[t(n)] C FO[t(n)/loglogn] .
Proof This is a loglogn factor improvement of Theorem B.3 in [9]. There
we showed how to code a log space Turing machine configuration using a
constant number of variables, as well as how to write the predicate M;(z,7),

meaning that (z,y) is a valid move of the given alternating Turing machine.
We could then inductively define the predicate Accept,(Z), meaning that

17

the configuration Z leads to acceptance in the sense of alternating Turing
machines in ¢ steps:

Accept,(z) = (Jg.M1(Z,7))(Vz.Ma)Accept,_1(Z) ,

where My = (2 =g) V (“Z is universal” A Mi(Z,Z2)).

To improve this simulation by a loglogn factor, observe that a list of
which existential moves to make in the event of each possible sequence of
(loglogn)/2 universal moves can be given in logn bits. Thus we can write,

Accept, (Z) = (JeVu)(32) (R A Accepty_joglogn(Z)) (1)

where R says that Z follows from Z in the loglogn moves determined by e
and u.

Now it is easy to write an inductive definition of R whose depth is
loglogn. This definition uses the BIT predicate to decode from e and u
which of the possible two moves the Turing machine makes at each of the
loglog n steps. The simultaneous inductive definition of Accept is given in
Equation 1. Obviously its depth is logn/loglogn. O

Corollary 5.10 Fori > 1, NC' C FO[log' n/loglogn] .

6 The polynomial-time hierarchy

In second-order logic we have first-order logic, plus new relation variables
over which we may quantify. Let A! be a j-ary relation variable. Then
(VAI)¢ means that for all choices of j-ary relation A7, ¢ holds. It is well
known that second-order formulas may be transformed into prenex form,
with all second-order quantifiers in front. Let SO be the set of second-order
expressible properties, and let (SO 3J) be the set of second-order proper-
ties that may be written in prenex form with no universal second-order
quantifiers. Fagin gave the following interesting characterization of nonde-
terministic polynomial-time (NP) in terms of logical expressibility:

Fact 6.1 ([5]) (SO3) = NP .

A few years later, when he defined the polynomial-time hierarchy (PH),
Stockmeyer showed that it coincided with the set of second-order expressible
properties:

18

Fact 6.2 ([16]) PH = SO.

As a corollary to Fact 6.2 and Theorem 1.1, we obtain the following
characterization of PH as a parallel complexity class:

Corollary 6.3 PH is equal to the set of properties checkable by a CRAM
using exponentially many processors and constant time®:

PH = | J CRAM[1]-PROC[2"].
k=1

Proof The inclusion SO C CRAM[I]—PROC[T’”OD]] follows just as in the
proof of Lemma 3.2. A processor number is now large enough to give val-
ues to all the relational variables as well as to all the first-order variables.
Thus, as in Lemma, 3.2, the CRAM can evaluate each first or second-order
quantifier in three steps.

The inclusion CRAM[l]—PROC[Z"Om] C SO follows just as in the proof
of Lemma 3.1. The only difference is that we use second-order variables to
specify the processor number. O

7 Conclusions

To recapitulate, we have shown that parallel time has a simple mathematical
definition: the minimal parallel time needed to compute a property using
at most polynomially many processors is equal to the minimum depth of a
first-order inductive definition of the property. Furthermore, the number of
processors needed by the CRAM is closely tied to the number of variables
needed in the inductive definition. We have also given purely syntactic def-
initions for uniformity of the circuit complexity classes AC?, i > 0. Finally,
we have given a striking, new characterization of the polynomial-time hier-
archy. We believe that these results help to explain the nature of parallel
complexity and will lead to an improved understanding of the subject.

There is much work to be done. The following general directions suggest
themselves:

®Up to this point we had been assuming for notational simplicity that a CRAM has
at most polynomially many processors. However, the class CRAM[¢(n)]-PROC[p(n)] still
makes sense for numbers of processors p(n) that are not polynomially bounded.

19

1. This paper provides a new way to think about parallel programming.
The programmer provides efficient inductive definitions of the problem to
be solved. Our simulation results then automatically give an efficient im-
plementation on a CRAM. Much work is needed to explore whether or not
this approach is practical.

2. We have given characterizations of parallel time and number of proces-
sors in terms of the depth and number of variables in inductive definitions.
One should now develop upper and lower bounds on these parameters for
all sorts of problems. We also feel that the analysis of the simulation in §4
can and should be improved.

3. There are many fascinating questions concerning uniformity and the
power of precomputation. We hope that the notion of syntactic uniformity of
circuits will help researchers determine when precomputation/nonuniformity
can help; or, to prove lower bounds on what can be done by uniform circuits
and formulas.

Acknowledgments. Thanks to Steve Cook, Steven Lindell, Ruben
Michel, and Larry Ruzzo, who contributed comments and corrections to
previous drafts of this paper.

References

[1] D. M. BARRINGTON, N. IMMERMAN, AND H. STRAUBING, On
uniformity within NC!, Proc. 3rd Annual Symposium on Structure in
Complexity Theory (1988), pp. 47-59.

[2] P. BEAME, Limits on the power of concurrent-write parallel machines,
Proc. 18th ACM Symposium on Theory of Computing (1986), pp. 169-
176.

[3] A. CHANDRA, L. STOCKMEYER, AND U. VISHKIN, Constant
depth reducibility, STAM J. of Comput. 13 (1984), pp. 423-439.

[4] H. ENDERTON, A Mathematical Introduction to Logic, Academic
Press, New York, 1972.

[5] R. FAGIN, Generalized first-order spectra and polynomial-time recog-
nizable sets, in Complexity of Computation, R. Karp, ed., SIAM-AMS
Proc., 7 (1974), pp. 27-41.

[6] F. FICH, P. RAGDE, AND A. WIGDERSON, Relations between
concurrent-write models of parallel computation, Proc. 3rd Annual

20

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

ACM Symposium on Principles of Distributed Computing (1984), pp.
179-189.

D. HAREL AND D. KOZEN, A programming language for the induc-
tive sets, and applications, Proc. 9th International Colloquium on Au-
tomata Languages, and Programming, Springer-Verlag Lecture Notes
in Computer Science, 140 (1982), pp. 313-329.

J.-W. HONG, On some deterministic space complexity problems, STAM
J. Comput., 11 (1982), pp. 591-601.

N. IMMERMAN, Upper and lower bounds for first-order expressibility,
J. Comput. System. Sci., 25 (1982), pp. 76-98.

, Relational queries computable in polynomaal time, Inform. and
Control, 68 (1986), pp. 86-104. A preliminary version of this paper
appeared in Proc. 14th ACM Symposium on Theory of Computing
(1982), pp. 147-152.

, Languages that capture complexity classes, STAM J. Comput.,
16 (1987), pp. 760-778. A preliminary version of this paper appeared
in Proc. 15th ACM Symposium on Theory of Computing (1983),pp.
347-354.

, Fxpressibility as a complexity measure: Results and directions,
Proc. 2nd Annual Symposium on Structure in Complexity Theory
(1987), pp. 194-202.

, Descriptive and computational complexity, Proc. 1988 AMS
Short Course in Computational Complexity Theory, to appear.

Y.N.MOSCHOVAKIS, FElementary Induction on Abstract Structures,
North Holland, Amsterdam, 1974.

L. RUZZO, On uniform circuit complexity, J. Comput. System. Sci., 21
(1981), pp. 365-383.

L. STOCKMEYER, The polynomial-time hierarchy, Theoretical Com-
put. Sci., 3 (1977), pp. 1-22.

L. STOCKMEYER AND U. VISHKIN, Simulation of parallel random
access machines by circuits, STAM J. of Comput. 13 (1984), pp. 409-
422.

21

[18] A. C.-C. YAO, Separating the polynomial-time hierarchy by oracles,
Proc. 26th Annual IEEE Symposium on Foundations of Comput. Sci.
(1985), pp. 1-10.

22

