FIRST ORDER EXPRESSIBILITY AS
A NEW COMPLEXITY MEASURE
Neil Immerman
Ph.D. Thesis

TR 80-432

Department of Computer Science
Cornell University
Ithaca, N.Y. 14853



FIRST ORDER EXPRESSIBILITY AS A NEW COMPLEXITY MEASURE

A Thesis
Presented to the Faculty of the Graduate School
of Corncll University
in Partial Fulfillment for the Degree of
Doctor of Philosophy

by
Neil Immerman

August, 1980



Biographical Sketch

Neil Immerman was born on November 24, 1953 in Manhasset, New York. He grew up on Long
Istand. in the summer of 1969 Ncil attended a National Scicnce Foundation sponsored summer
prugram at the University of New Hampshire at which he met some respectable people who enjoyed

their days dving mathematics.

He visited and luter taught at Hampshire College Summer Studics in Mathematics, a descendant of
the UNH program. ‘Ihis idcalistic six week scssion in which math is taught and created in an eatirely
conperative and supportive aunosg')hcm was a major influcnce on Neil. [t was also the place at which

he met Susan Landau 1o whom he was married somctiine later.

In 1974 Neil graduated Yale University summa cum laude with both B.S. and M.S. degrees in

mathcinatics. The M.S. emiphaisized mathematical logic.

Neceding a break from school, Neil spent the next year in Boston programming and designing mini-
computcr controlled telephone switching systems for G'1TE-Sylvania. During that year he lcarned

English Change Ringing from GeofTrey Davies at the Church of the Advent in Beacon Hill,

In 1975. after winning a National Science Foundation graduate fellowship, Neil carolled in Cornel
University. Cornell which was founded in 1865 is nestled in the scenic beauty of the finger lakes
region of upstate New York. Necil began Cornell planning to do a thesis in Mathematical logic, but,

five ycars later, has written his disscrtation in Computer Scicnce.



Acknowicigements

Ever 30 much thanks to Juris Haremanis for his kind advice, concern and suggestions.

Thanks of course to Anil Nerode my chairman for wa_l:hin; out for me whilc at the same time
giving free rein.

Thanks to John Hopcroft, Albert Mcyer, and Michacl Morley for invaluable and enjoyable
technical discussions.

Thanks to Larry Carter for showing me Turing machincs long ago and also for scnding me Roa's
paper.

1t is hard to list all the fellow graduate students and other fricnds and rclations who have beea
supportive technically and otherwise, especially during thuse dark middic ycars when § thought
would never prove anything and would have to be a graduate student forever, but you know who you
are. Thanks.

Thanks to MI'I' who let me visit and type this thesis over the summer of 1980.

Finally thanks to the NSF for l.hc financial support provided by a graduate fellowship and lates by
grant number MCS 78-0041. '



TABLE OF CONTENTS

Chapter 1:

Chapter ):

Chapter 4:

Chaper §:

Chapeer 1:

Definitions and Motivations . . N
Section L1: Review of some notions fmm Io;lc .
Section 1.2: Motivations and definition of Size{Rn)} .
Section 1.3: Size is closcly related to SPACE .

- Variables & Size versus TIME&SPACE . .

Scction 2.1: The Var & Size Mcasure . .

Section 2.2: Reclations of BUVar & Sz to other rnodeh
Section 2.3: Rclations to Altcrnating space and time .
Section 2.4: On Vardk] .

Ehrenfcucht-Fraisse Games e e e s e e
Section ).1: DefinitionoftheGame . . . . .
Scction 3.2: Somc Casy LowerBounds. . . . .
Section 3.3: PIIME and the Size Measure . . .

Altern.:ing PcbblingGames . . . . . .
Section 4.1: Dcfinitionsand Examples . . . .
Scction 4.2: Proofof Thcoremd4.l . . . . .
Scction 4.3: Lower bounds for Var(w.o. Suclik}] . .

Reductions and Complcte Sets . . . .« .
Scction 5.1: Interpretations Between l‘heodes . .
Section $.2: Var & Sz Reductions . . . .

: Towards Lower Bounds With Successor . .. . .

Scction 6.1: Quantificr Rank docsn'tdoit . . .
Scction 6.2: Scparability .. . o o«
Scction 6.3: Playing the scpar.nblhty game . . .
Section 6.4: Other ways to approach successor . . .

Conclusions and Dircctions for Future Research . .

Bibliography . . . . . . . .+ . .+ « .«

L

O - W

12
13
16
18
2

4
4

28

. 38

. 4

&& 3

1

)

s
55
L))

$9
62



Introduction

The main purpose of Computational Complexity is to answer the question, “How difficuk is k 0
perform a given task on a computer?™ An algorithm to perform the task provides an upper bound on
its complexity. However to prove a lower bound one must show that no conceivable algorithm for the

task can run in, say, n!” steps.

In the hope of proving lower bounds wc introduce a new complexity measure. Most measures
count how much of some computational resource (¢.g. time or memory space) is needed to check
whether an input has a certain property, C. Instead, we examine the size of sentences and number of

variables nceded to express C in first order predicate logic.

As we will sce, the minimum size of sentences cxpressing C is closcly related to the space
complexity of C. Also the number of variables ncc;icd is ticd to the logarithm of the time complexity.
Thus the difficulty of expressing conditions in the language of mathematics is a good measure of their
computational complexity. We will exploit Ehrenfeucht-Fraisse games to prove lower bounds on the
number of quantifiers and variables needed. These lower bound techniques arc a nc.w addition to the
more usual mcthods of complexity theory involving complete scts or diagonalization. We believe that
it makes more intuitive sense to prove a lower bound (by induction, say) on the number of quantifiers
necded (o express a certain property, than on the number of Turing machinc tape cells nceded to

check if the property hokds for a given input.

The original stimulus for this disscrtation came from work by Fagin (sce [Fag?4]). He proved the
following:



Theorem (Fagin): A set, S, of structures is in NP if and only if there exists a sentence, F, with the
following properties:
L. F = 3P, .. 3P, &(P, . P,) where P, . P, arc predicate symbols and @ is a first order sentence.

2 Any structure, G is in S iff G satisfies F.

Thus a property is in NP just if it is cxpressible by a sccond order existential sentence. It is difficult
w0 show lower bounds for the expressibility of sccond order sentences. Instead we examine first order
sentences which, we found. mimic computations much more closely. Considering, for example, graph
problems, the length of the shortest sentence which says, "G is connected,” grows as the logarithm of
the size of G. It is not a coincidence that this is also the space needed by a Turing machine to test if G
is connected. To study this growth of sentences we introducc the complexity measure Size which will
be defined in Chapter 1. Informally, a set, S, of structurcs is in Size[fin)] if membership in S for those -

structures of size less than or cqual to n can be expressed by a sentence with f{n) symbols.

These scntcnce; are written in the language of the given structures. For example if we are dealing
with graph problcm§ then the quantifiers range ov.cr the vertices and there is a single relation symbol,
E(--), representing the edge relation. This language scems sufficient to describe “natural” problems
on graphs. but to simulate an arbitrary Turing Machine computation we must give the language access
10 an ordering of the universe. We let Sizc[f{n)] be the family of properties expressible with f{n)
quantifiers in a language that includes Suc(-,-), a successor relation. We can now show mal

NSPACE|f{n)} is contained in Sizc{(f(n))?/logn).

We will say that C is in Size{fln)] only if the sequence of sentences expressing C is casy to generate.
This added assumption of uniformity (in the scnse of Borodin, sce [Bor77]) allows us to prove
Size{g(n)] § DSPACE[g(n)logn), and thus:

NSPACE[in)] € Sizc{(fn))¥/logn] € DSPACE{(Rn))] .

Note that our lower bounds will not consider the uniformity; they may be interpreted in the strongest
possible scnse. When we show that C is not in Size[(n)] we actually prove that no senience with f’n)

symbols cxpresses C for structures of size n.



ln chapter 2 we consider restricting the number of distinct variables used in our sentences. We
define Var &Sz{v(n).2(n)] to be the class of properties uniformly expressible by sentences with exacdy
w{n) variablcs, and Ofz(n)] symbols. Var &Sz corresponds very closcly to Alternating Space &Time. In
particular we show that:

ASPACE &TIMEs(n)(n)] € Var &Sz{k.s(n)/log(m(n)] C ASPACE &TIME[s( n)Un)log(n)]

Once the idca of counting distinct variables was raised it was natural to relax the size restriction.
Define Var{k] to be those propertics expressible with a constant number of variables. It tumns out that
Var{k} is identical to polynomial time! The identity between P and Var{k} is a very plcasing result both
because it indicates that first order expressibility is a fruitful view of complexity, and because it is

another demonstration of the fundamental importance and model independent nature of P.

"The quantificr rank of a sentence T is the depth of nesting of quantificrs in T: thus a sentence with
n quantifiers has at most quantificr rank n. In Chapter 3 we consider a two person game with which

we prove lower bounds for quantificr rank. An Ehrenfeucht-Fraisse game is played on a pair of

structures G.H of the same type. Player I chooses points to show that G and H are diffcrent, while
Playcer 1l matches these points, trying to kecp the structures looking the same. A thcorem due to
Fraisse and Ehrenfeucht says that Player 11 has a winning strategy for the n move game if and only ifG
and H agree on all scntences of quantifier rank n. The original treatment of these games appears ia
(Enr61] and [Frasd). '

Ehrenfeucht- Fraisse games provide a lower bound technique for Size as follows: Given some
property, C, we find stnxtqu G and H of size n such that G satisfics C but H does not. We thea
show that Player il has a winning strategy for the f{n) move game on G and H. It follows that GandH
agree on all sentences of quar;uﬂgr rank f(n) and thus in particular no scntcnce with f{n) symbols caa
express the property C. Thus we have shown that C is not in Size{fln)}. These combinatorial games
provide very sharp lower bounds. We show for cxample that while quantifier rank log n suffices o
express the graph property, “There is a path from point a to point b," quantificr rank log(n)-2 is

InsufMicicnt!

In Section 3.3 we present a more sophisticated game argument. We show that without successor



quantificr rank logh(n) is insufMicient to describe a set recognizable in polynomial time. 1f our proof
went through for the Linguage with successor we would have shown that PTIME is not contained in
U,.12 SPACHlog'(n)}

In Chapter 4 we modify the Ehrenfeucht-Fraisse games to what we call Aliernating Pebbling games.
We show that Player Il wins the k pebbic, m move game on G and H ifand only ifG and H agree on
all sentences with k distinct variables and quantifier rank m. We then play the game, proving lower
bounds on what can be said in Var(w.0. Suc){k] , i.¢. with k variables, but without successor. We show
for example that Clique(k). the set of graphs having a complete subgraph of size k, is not in
Var(w.0.Suc)k-1]. Obviously, however, Clique(k) is in Var(w.o. Suc){k} ‘This may be thought of as
an intuitive argument that testing for a k clique requires looking at all k-tuples of vertices and thus
requires DTIME[nt ].

Making the above results go through with successor is a major gpen problem. We show that
quantificr rank is no longer the right thing to check. In a language with successor, any property
whatsocver of graphs of size n can be expressed by a sentenc? with am quantificrs but quan(iﬂcr rank
only log n . To make mattcrs worse two ordercd graphs G and H satisfy all of the same 3 variable,
3log(n) quantifier sentences in the language with successor only if th_cy arc identical. Thisis as
expected because G and H are indislin#uishablc 10 all log space Turing machincs only if they are
identical. The proof is the same in both cases: the machine or the short sentence can check if vertex 3

is connccted to vertex 17. G and H agree on all such tests only if they are identical

We conclude by propusing a few passible techniques for adding successor to the above result and
thus proving that USizc{log!(n)}DP. The most promising onc at present is a modification of '
Ehrenfeucht-Fraisse games such that Player | wins the k move game if and only if a given property is
apressible with k quantificrs and Suc(-,). This new game is combinatorially much more complex
than the Ehrenfeucht-Fraisse game and so we are by no means proficient at playing it. And yct we
wanted to present, as a point of departure for future research, what may become a viable technique for
proving lower bounds . ' A



Chapter |

Definitions and Motivationy

We propose to study the complexity of a condition, C, by asking, "How difficult is it to express cr
For this expression we choose the natural first order language of the objects under consideration.

This chapter is organized as follows: In Scction: 1 we give the necessary logical definitions. Then ia
Section 2 we motivate the definition for Size{{n)]. Finally, in Section 3 we prove that the size of a first
order sentence needed to cxpress a property, C, is polynomially related to the space nceded to check if
C holds for a given input.

Scction 1.1: Review of some notions from logic.

A siructure, S=<Uc,3 ..., S P,S .. P, consists of a universe, U, certain constants. S¢S, from
U, and certain rclations,P,S .. P, 5, 0n U.

A similarity type, #=<; ... €y.Py - P, is a sequence of constant symbols and rclation symbols.

Asan eumplé lct G be a dirceted graph with two specificd pointssand d. ThusG =
<V,E9,59,4% is a structure of type 7, =<E.5.d>, where V is the set of vertices of G, and E%isG's
edge rclation.

If ¢ is any type then Lfr], the language of v, is the sct of all sentences built up from the symbok of ¢
using 8, or, =, =8, variablcs x.y,... , and the quantifiers 3and V.



A sentence, F, in L{r] is given meaning by a structure, S, of type r as follows: The symbols from ¢
are interpreted by the constants and relations in S. The quantificrs in F range over the elements of the

universe of S.

For cxample, let A =Vx [x=d or 3yE(x,y)}. Aisin L[fl]. Furthermore, G satisfics A (in symbols,
Gh= ) iff cach vertex of G except dG has an edge coming out of it. Henceforth we will omit the
superscript G for the sake of readability.

The guantificr rank of sentence F, ( grfF] ). is the depth of nesting of quantifiers in F. Inductively:

qd(va)B] = qf(3)B] = qrB]+1
qiB&C] = qfBorC] = max(qriBlqrCD.

For example. for A = Vx| (3y P(x.y) ) & Y2V w(Q(x.2) or L(z.w))L qfA] = 3.

The number of clements in the universe of S is abbreviated [SL. For graphs |G} is the aumber of

vertices of G.

We use fairly standard notions from complexity, sec e.g. [AHU74). Definc DTIME[f(n)] to be the
family of problems accepted by a Turing machine in worst case deterministic time f(n) for inputs of
size n. Similarly define NTIME, DSPACE, NSPACE; nondcterministic time, deterministic space, and

nondcterministic space respectively.

“throughout this paper a problem will be some subset of all structures of a particular type, . Some
cxamples of graph problems are Connectivity - the sct of all connccted graphs, Planarity -- the st of

all planar graphs, etc.

We will assume that any given structure has universe 1,2 ... n. Thus an input consists of a table of
all relations and constants placed on a read-only input tape. For graphs, for example, the input is the -
adjacency matrix, a binary string of length nd. For simplicity we will definc the size of a structure to
be n. the size of its universe. Note that we are not restricting oursclves by only considering problems
which are sets of structures: any binary string may be thought of as a structure with one monadic

relation.



Section 1.2: Motivations and Definition of Size{Nn)}

To motivate the definitions for variable and sizc cxpresibility we now consider a sicpwise
refinement of sentences cxpressing a specific problem. Let GAP be the sct of dirccied graphs G with
specificd points s and d such that mcréisapnh inG from stod. In symbols,

GAP = (G|s —°*—d}

GAP is known to be complete for NSPACE[logn] (see [Sav73)). We show in Chaptcr S that GAP is
complete in a very strong sense - every problem C in NSPACE[logn] has a first order sentence

translating all instances of C into instances of GAP.

To express GAP we will write down formulas P (x.y), meaning. “There is a path of length at most 8
fromx to y." We define P, by induction as follows:

(x=y)or E(x.y) )
32[P(x.2) & P(2y)] 12)

Py(x)
PII(‘")

Equation (1.2) dcfines P,, in a way that increascs the quantificr depth by onc cach time k is
doublcd. However Py is writen twice on the right so the size of this Py, is twice the size of ,i’t . Wecan
alleviate this problem u;ing the "abbreviation trick” (sec ¢.g. [FiRa74}). ‘The trick uscs universal

quantifiers to permit us to write P, only once on the right. Thus,
) Pn(x,j) ‘= JzVuvv [u=x&v=2 or u=2&kv=y] = P (u.v) (13)

We have now written P, in size Oflogn], thus proving that GAP is in.Sile(lognl. to be defincd. Let’s
start with a tentative

Definition: A sct C of structurcs of type 7 is eapressible (w.0. successor) in size A(n), (in symbols, C is
in Size(w.0. Suc){#(n)}), if therc exists a constant k, and a uniform sequence of sentences Fy .F, .
from 1 {r] such that: '



a For all structures, G, of type 7. if |G| < n, thea:
GisinC « GM=F,.

b F, has fewer than kez(n) symbols.

As Ruzzo has shown in [Ru79b] uniformity conditions may be greatly varied without significanty
changing a definition. The following conditon will suffic in what follows:

Uniformity Condition (°): The map n:-» F, is generable in DTIME[z(n)}

In the above discussion we have proved:
Theorem 1.1: GAP is in Size{w.o0. Suc){logn}

Although the complete problem GAP is in Size(w.0. Suc){logn] it is not true that NSPACE[logn} is
contained in thisclass As we will see in Chapter 3, this fails in a rather spectacular way: the regular
set. EVEN = { G | G has an even number of vertices }, is not in Size(w.o. Suc)(lo'gn].

To allow them to simulate Turing machines it suffices to give the sentences access to the numbering
of the vertices which the machines alrcady have. Thus we will consider propertics expressible with an
arbitrary successor relation, Suc(-,). Suc(x.y) means that y comes just after & in the numbering of the

clements of the universe.

A similar Suc relation is discussed in [Sav73]. Savitch shows that his pebble autumaia cannot accept
GAP without Suc. However Theorem 1.1 suggests that our sentences do not need Suc (o express

“natural” graph problems.

Definition: A sct C of structures of type 7 is cxpressible in size (n), (in symbols, C is in Sizefz(n)], if

there cxists a constant k, and a uniform sequence of sentences F) F, , ... from L{rU{Suc}] such that:

a For all structures, G, of type 7, if JG| < n, and for all Sucg(-,-) a valid succssor relation
on the universe of G,

GisinC « (GSucp =F,.

b F, has fewer than kez{n) symbols.



Thus a property, C, is in Size{z(n)] if there is a uniform sequence of sentences of size 2(n) from
L{rU{Suc}] which give the same answer for any succcssor relation and express C. We feel that this
addition of Suc is not at all natural but it capturcs the notion of what properties a Turing machine can
check. Itis casy to list the Turing machines which ch&k propertics of ordcred graphs, but we sce no

_ obvious way to list those machincs which happen to check graph propertics independent of the givea
ordering.

Section 1.3: Size is closcly related to SPACE.

Now that we have added Suc 10 our language it follows that NSPACE{logn] is contained in
Sizc{logn). and indced:

Theorem 1.2: Let s(n) 2 log(n). Then:
NSPACEs(n)) €  Sicfs(m?/logn)] €  DSPACEls(m?)

proof: We start with the sccond inclusion. We show that Sizc{g(n)] is contained in
DSPACE[g(n)log(n)]. Given input structure G of size n we can certainly gencrate F in the given space
by the uniformity condition. Check the truth of a g(n) quantificr sentence in DSPACK[g(n)log(n)] as
follows: Cycle through the sentence with all possible valucs ol: the quantificd variables. IfF isof the
form 3xP(x) then we test the truth of P(1), ... P(n). Each variable requircs log n bits and at most g(n)
of them must bc remembered at once. When all the variables in F have been replaced by constants its

truth may be checked as we generate it with no additional space required.

The first inclusion; We will code a Turing machine instantaneous description (ID) of size s(n) with
Ofs(n)/log(n)) variabics. The idea is that cach variable takes on a value from 1 to n and'so may be
thought of as log(n) bits. Details of this coding are given in Lemma 1.2a. An ID consists of a state, the
focation of the input head, and the s(n)/log(n) variable work tape. The read head roquircs a constant

number of variables - for a graph two variables u,v give that clement of the adjacency matrix being
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scanned. llklorﬂmdinguﬁ(uv)ismnumse. One use of Suc is to efficiently code log(n) bits
of workiape into one variable, but the essential use is to say that the read head has moved one space to
the right.

We can now write P (1D,.ID) meaning that ID,, follows from ID, in one step of M. ‘This s justa
constant size disjunction over the possible states, input symbols and work tape symbols. We will sce in
Lemma 2a that the symbol being read by the work tape can be determined with a size log(n) formula.

The rest of Py requires only a constant number of symbols.

As in the proof that GAP is in Size{logn] we can now asscrt that there s a computation path of

length c*™ using Ofs(n)] ID's. Thus the total size of P, is s(n)? /log(n) as required. ]

To finish the proof of Theorem 2 we must show that Oflogn] symbols suffice to calculate with
vertex numbers. We codc an s(n) bit work tape with s(n)/log(n) pairs of vertices (l‘ .yj> . Allofthe
yl‘s but one will bc 0. The nonzero Y will be vertex number 20 when'the work head is looking at bit i

oij.

Lct On(x.y) mcan thaty = 2\ and biti of x is on. We will see in |.emma 2a that On(x,y) may be
written with Oflogn] quantifiers. It follows that Py(-,) may also; just say that some ) is nonzero, the

nonncighboring <x.y> pairs are unchanged, and (l‘ ¥ > and its neighbor (in case the work head

happens to move to an adjacent block) are changed as per the rules of M.
Lemma 1.2a: On(x.y) may be written in Size{logn].

proof: We build up to "On” with a sequence of inductive definitions. repeatedly using the
abbreviation trick as in [FiRa?4). Thus each of the following formulas may be written in Sizcflogn] by -

using the previous one.

[h) P, (xy?) = (SN&G+y=2)

() Qn(‘l'"‘w) = (ll=])&Ao<Km(l“l=l‘+l‘)

© RO Yig) = 3T ( Q01 Tg0) & Agcicugass 0=00r%=1) )

(d S, (zy, - Yl“.) = R.(Y] yw)& 1=y +.+ Yiogs
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© On(z) = 3 Vg ( S %Y} = Yiga) & Voagas1 B =520 )

For example, Plus is defined as follows:
Plus(xyz) = [x=0&y=2] or [x=1&Sucy2)]

Plus,,(x.y.2) = Juvw ( Plus,(u.vx) & Plusy(u.y.w) & Plus(v.wa) )

As before we can use the abbreviation trick to write Plus, only once on the right. Note that we use

the symbols 0 and 1 for convenience but they arc of course definable from Suc.

Note also that to get cach next cquation one cannot simply use the previously defined formula. For
example to get Q, a first try might be:

Qg(x, - Kiogn ) = (=) & Plus(x; x; x, )& .. & Plus.(xh.__l Aioga-1 Floga )
However this requires log¥(n) quantifiers. We must conglomerate Plus, and Q, into
Colky e Rppyq VW) = Q,(x - Roga) & Plus(uv.w)

and define them simultaneously, using the abbreviation trick. ]



Chapter 2
Variables & Size versus Time & Space

Reading some papers by Ruzzo ([Ruz79a}. [Ruz79b]). on simultancous resource bounds, we tried to
find analagous results for first order expressibility. First we recxamincd our proof of Theorem 1.2 for
s{n) = log(n), ie:

NSPACFllogn] €  Sizc{logn] €  DSPACHlogXn)],

and noticed that only a constant number of variables were nceded. Furthermore while the existential
quantificrs range over the elements of the universe of the input. (i.e. ] to n), the universal quantifiers
could be boolcan. Thus we let Var &Sz[v(n).7(n)] be the class of propertics uniformly expressible with
exactly vin) variables and size O{«(n)}. Also lct BUVar &Sz[v(n).#(n)] be the same class with the

additional restriction that the universal quantificrs are boolcan. We show that:
NSPACH[logn)] € BUVar &S4k.logn] C Var &Sz{klogn] C DSPACH|log(n)] .

Savitch's simulation of NSPACF]logn] by DSPACE[logX(n)] may be optimal, but one way of
thinking of the difference between the classes is that DSPACHIugX(n)) can simulate log(n) universal
quantificrs ranging from 1 o n. We conjecture that all three containments in the above chain are
proper, but none arc known to be. (Note that for readability we arc omitting unions over k, for

example Var &S/[k.logn] abbreviates U, _, ,  Var &S/[k.logn].)

It turms out that BUVar &Sz[k.logn} is identical to the natural class Log(CFL.) -- thusc languages
log-space reducible to some contest free language. We will also sce that the third term in the above
chain, Var &S{k.logn}. is cqual to ASPACE &Alt{logn.logn] ~ the class of languages accepted by aa
ASPACH]logn) Turing machine which makes only Oflugn] altcrnations between existential and

universal states.
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Once the idea of counting distinct variables was raised it was natural to relax the size restriction.
Define Varfk] = U, _,, Var &S7k.n*] - those properties expressible with a constant aumber of
variables. It turns out that Vark] is identical to polynomial time!

The identity between P and Var{k] is a very pleasing result both because it indicates that first order
expressibility is a fruitful view of complexity, and because it is another demonstration of the

fundamental importance and model indcpendent nature of P.

Onc wcakn.css of the definition of expressibility size in Chapter 1 is that it makes use of the notion
of Turing machincs in the definition of a "uniform" scquence of sentences. Our fecling at the time
was that the uniformity condition was an imperfect attempt to capture the notion that we really had
one sentence with a variable number of quantifiers, just as we have the notion of one Turing machine
with a variable amount of space. Indecd the usc of constantly many variablcs Icads us to the
realization that there is a syntactic uniformity -+ the nth sentence of a Var &Sz{k.2(n)] property is just
2(n) repetitions of a fixed block of k quantificrs. This new definition of uniformity makes Var{k]

entircly a notion from logic and thus increases the interest of the fact that it is equal to P.

This chapter is organized as follows: In the first scction we continue our refinement of sentences
expressing GAP. This lcads to a definition of Var &SAv(n).2(n)] -- thuse propertics expressible with
v(n) distinct variables in sentences of size 7(n). In the next section we relate BUVar &Sz o other
modcls of computation that happen to charge mor.e for universal moves than cxistential oncs. namely
Aunilliary PDA’s, and Ruzzo’s Tree-Size Bounded Alternation. In Scction 2.3 we gencralize these last
results to show that alternating space s and time ¢ is identical to expressibility with s boolcan variables
and size . From this follows the above mentioned cquality, P= Var{k}, which we explore in Section
24,

Section 2.1: ‘The Var &Sz Mcasure.

Recall that in Chapter 1 we wrote the size Oflogn] sentence, P,(x.y), which says there isa path of
length at most n fromx to y:
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P(ry) = VuVw[u=3&v=2 or u=28v=y | = P_(uv) Q@1

Continuing in our refincment notice that when we write P /y{u.v) we may reuse x,y,z -- their

current valucs are no longer nceded. Teing slightly wasteful for the sake of clarity, write:

P(xy) = 3Vu¥w ([u:x&v=z of u=2&kv=y]=s 3x3y[l=u&y=v&P.,2(l.y)) 2

We have succeeded in expressing GAP by a uniform sequence of sentences, {P(a,b) | n21}, such
that P_ has § variables and size Oflogn]. This suggests the following:

Dfinition: ‘A set C of structures of type r is expressible in v(n) variables and size z(n), (in symbols, C

isin Var &S/[v.2(n)]). if there exists a uniform sequence of sentences F\ Fy ... from L{rU{Suc}] such
that:

a For all structures G of type  with |GI<n, and for all Sucy(-,-) a valid successor

rclation on the universe of G,

GEC « (GSupd=F,

b. F has v(n) distinct variables and a total of Of«(n)] symbols.
As in our uniformity dcfinition for Size, it suffices to require that F is casy to generate, Le.:

Uniformity Condition (*): ‘The map n =+ F, is gencrable in DSPACE{v(n)slogn] and
DTIME[(n)] .
Of course (*) docs not capture our intuitive fecling that the F,'s arc all the same sentence with

vanying numbers of quantificrs. To make the latter notion more precisc abbreviate quantificrs with

restricted domains as follows:
(.M[.] = (Ma.) (read, “There exists x such that M, ...,")
(Vx.M..] = ViM=_]) (read, “For all x such that M, ...,")

.flow we can write Equation (2.2) more compactly as:
P(ay) = 3z2Vu(Vv.M;)3x(3y.M)P,, (xy) ))

Here My = fu=1&v=2z or u=2&v=y} and Mg = [x =u & y =v}. Fyuation (2.) givcs a model
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for the following totally syntactical definition of uniformity for Var &Sz{v.(n)) :
Unifom:\h! Condition (**):  There exist constant ¢ and formulas A,B. and quantifier frec formulas
M, .. M, all of which have variables only x, .. x, such that:
F, . A (@Q3.M)Q1,.M,))cantimes g
We adopt (**) as our definition of uniformity for Var &Sz{v,2(n)] when v is a constant, otherwise we
use (*). It follows that GAP is in Var &S2{S.lugn], NSPACE[logn] is in Var &S/{k logn]. and indced:
Theorem 2.1: For s(n) 2 log(n),
NSPACE[s(n)] € Var&Sz{(kestn))/log(n), s(n)? log(n)] & DSPACEls(n) %)

The proof is the same as for Theorem 1.2, using Equation (2.3), rather than (2.1), to express the

existence of a computation path.

Let's return to Equation (2.2) and notice that in simulating an NSPACFJlogn] property, two
universal quantifi.-rs ranging from 1 to n arc used. Their purpose is only to make a choice between the
first half and the sccond half of the path. 1t makes scnsc to minimize the universal choices when
simulating an existential class so we replace "VuVv" in Equation (2.2) by "Vb", where b is boolean
valued. Thus:

P(ay) = 3vbIudv((b=0&u=x&v=1) or (b=1&u=2&v=y))

& NIyk=uky=v & P (xy) | ) 9

Dcfine BUVar &Sz{v(n),z(n)} to be the family of propertics expressible in v(n) variablcs and size
Of«(n)L. where the existential quantifiers still range from 1 to 0, but the universal quantificrs are
boolcan. Thus it is easy to see that GAP is in BUVar &Sz logn}, and more generally,

Theorem 2.2: For s(n) 2 log(n),

NSPACE[s(n)] C BUVar &Sz{kes(n) Zlog(n) , s(n) 2 flog(n)) .
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Section 2.2: Relations of BUVar & Sz (o other models.

Recall a definition and result of Sudborough [Sud78]:
Definition: AusPDA[s(n)t{n)]is the class of languages accepted by a two way nondeterministic push
down automaton with auxilliary work tape of size (n), running in time t(n). For rcadability we will
write AusPDA[logn, n* Jtomean U, 5 _ AusxPDA[logn, n*}.

Fact (Sudborough): AuxPDA[logn, nt) = Log(CFL).

In [Ruz79a) Ruzzo defincs an accepting computation tree of an alternating Turing machine M to be
a tree whose root is a starting I of M, whose nodes arc intcrmediate ID's, and whose lcaves are all
accepling cunfigurations. Each universal node, u, has all its possible next moves as offspring, while the
existential nodcs. e, lead to exactly onc of ¢'s possible next moves. We say that a language C is in
ASPACE &TS[s(n).2{n)] if all members of C uf sizc n are accepted in a computation tree using space

s(n) and tree size, (number of nodes), (n). Ruzzo relates this new measure to auxilliary pda’s via,
Fact (Ruzzo): ASPACE &TS[s(n).n)t] = AuxPDA[s(n).z(n)*].

Notice that both the tree size model and the AuxPDA charge much more for universal moves than
for existential oncs. The following theorem shows that we get the same classes in our expressibility
measure by restricting all universal quantificrs to be boolcan. In a sensc we charge log(n) times as

much for a universal choice as for an cxistential.
Theorem 2.3: BUVar &Szfkev(n). z(n)) = ASPACE &TS[v(n)log(n) , 2°%"),

proof: (G ): Note that for readability we have omitted the union over k for buth sides of the above
equation. Given an input structure G with n clement universe we can gencerate Fy.the ' sentence ia
our uniform sequence. We must show that in ASPACE &TS{w(n)log(n), 2**® | we can check if

Gi=F,
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To test if G satisfies F,, we read the sentence from leRt to right holding the present values of
variables x, .. (o) in our v(n)log(n) memory. Notc that cach non-boolcan variable may have value 1
10 n corresponding o an clement of G. At existential quantifiers, 3x, , we existentially choose some x;
from the universe of G and at universal choices, Vbj . we universally chouse b‘ . When we come to
atomic predicates, c.g. E(x; x,) orby, =0, we can cheek their truth because we have the current
'valucs of the variables. Note that this accepting procedure has tree size 2X°™™ because we may makea

binary universal split kez(n) times.

(2): Here we follow a proof of Ruzzo [Ruz79a]. We must express the property Accepl(r.i) which
mcans that the alternating Turing machine M will accept in tree size z when started with IDr. We
express Accepl(r,z) by choosing a point p in the middic of the trec whosc subtree is of size between 173
and 2/3 of the original trec. Thus,

Accepra) = 3p (Acceptirp>(2/312) & Acceplp.O.2/31) )

Here Accept(r<q, ... g, >.2) means that there is a computation tree of size 2 starting at r such that
cach leaf is cither an accepting configuration or one of q; .. G, .

Our only trouble is to insure that the list <q, ... q, > stays of constant size. Whenever the list is of
length three we take an extra move to split it in half by finding a point p above two of the three nodes
in the list,

Accepi(r<q; .q,.95>2) = 3p ( Accepiir.<q; .p>.2) & Accep(p<q, .y >.2) )

Note that in the above we can add a boolcan universal quantificr and usc the abbreviation trick to
write Accept{-) only once on the right. Also note that the above is a slight lic since we don't know
which pair of q's p will be above. In fact we would have to say,

3p (35, 5, 35 a permutation of q,;9,q;) ( Accept(r.Cs, .pd.2) & Accepip<s, .s, d2) )

Thus we can write Accept(-) with a constant number of [D's, i.e. W(n) variabics, and the size of the
sentence is Oflogz] . This proves Theorem 2.3. ]
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Corollary 2.4:
a BUVar&SAklogn] = Log(CFL)
b. Vafkt) = Var&SAka‘] = PTIME
proof:
(a): From the above theorem, togcther with the results from Ruzzo and from Sudborough:

BUVar &Sz{k,logn] = ASPACE &TS[logn.a*]
AuxPDA[logn.n* ]

= Log(CFL) .

(b): By our uniformity condition, (°), the " sentence of a Var{k] property can be gencrated in
DSPACE]logn] and so it is of size at most n* . By Theorem 2.3,

Var &S:(k.0*) ASPACE &TS{logn,2¥]

ASPACE{logn) = PTIME. [}

The above corollary rounds out a plcasing relationship between cxpressibility and computation.
We have shown:

1. The size of a sentence necded to express condition C is polynomially related to the amount of
memory space nceded to check if C holds for an input,  and, '

2. Conditions which can be expressed with v variables are just those conditions which can be
checked in DTIME[ROM]

Section 1.3: Relationsto Alternating Space and Time .

The next theorem gencralizes the above results giving a remarkably close rclationship betweea
expressibility and altermating machine complexity. let BVar &S7{v(n).7(n)] be those properties
expressible in a sentence with v(n) boolean variables and size «(n). For cach predicate symbol, E, from
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¢, we add the predicate symbols, E, , E; . where E, (b, ... By, .€) - Cpoq, ) means Fb.c) where b has
binary veries number by ... by, . '

Theorem 2.5: ASPACE &TIME[s(n)n)] = BVar&Sz{kes(n), n)] .

proof: (2 ): Given an input structure G with n clement universe we can generate F the n'® element
in our uniform sequence. We must show that in ASPACE &TIMF{s(n).u(n)} we can check if Gi=F,.

To test if G satisfies F, we read the scntence from Icft to right holding the prescat values of the
variables b, ... b‘n, in our memory. Atquantifiers 3b; or Yb; we make the appropriate existential o
universal choice of a new value for b, . Similarly at &'s (or "or"s) we universally (or existentially)
choose onc branch and procced. We have G and the values of the variables so we may check the truth

of atomic formulas: b=0, or E(b, ... Clogn ), in number of steps a constant times their length.

(C ): Going the other way we must write the scntence, Accept, (r) meaning that altcrnating Turing
machinc M when started at instantancous description r will reach acceptence in tsieps. We accomplish
this by saying that if r is existential then there exists some next step  and Accept, ; (x). whereasifris

universal then for all next steps x, Accept,,, (x) .

A technical difficulty here is that if at cach step we recopy the entire ID then the size of the
resulting sentence will be s(n)i(n). To simplify the problem let us assume that the moves of our Turing

machine alternate at every step and branch into at most two moves. Thus we can write,

AccepliDy] = 3b,V'b,..Q,b, 31D, { 1Dy~ b, b, ID, & AccepdiD;] )

Here " IDg =» b, ... b, = ID, " means that there is a computation whose i™ move makes the b®
choice and lcads from 1Dy to 1D, in s steps. This is a deterministic computation of length s and can be
asserted o cxist with Ofs] symbols. The details of how to simulate DTIME[s}in hSizc(s] are given in
Theorem 2.10. : |

We have demonstrated an exact relationship between alternating Turing machines and quantified
boolcan formulas. If we return to the more natural language of the input structures, i.e. vasiables

ranging from 1 (o n, then the necded number of variables to simulate s(n) space becomes s(n)/log(n).



It is not clear, however. how 10 do better than size in) to simulate time ¥(n) because the machine might
g0 through «(n) alternations. Thus we can only show:

Corollary 2.6: For s(n) 2 log(n),
ASPACE &TIME[s(n).tn)] € Var &Skes(n)/log(n), n)] C ASPACE &TIME]s(n).(n)og(n)] .

Let ASPACE &Altfs(n).a(n)] be thosc problems accepted in alternating space s(n) with at most a(n)
alternations between cxistential and universal states. Then:

Corollary 2.7: Let s(n) 2 a(n)log(n). Then:

ASPACE &Alfs(n).a(n)] C Var &Sz{k.s(n)/10g(n) . (a(n) + sin) )s(n)/log(n) ] ,
- and in particular,
ASPACE &Alflognlogn] = Var&S4klogn] .

proof: To assert the acceptence of an ASPACE &Alifs(n).a(n)] computation we assert the existence of
aln) ID's wherc the alternations occur. Each path between the ID’s has no alternations and so can be
expressed in Var &S4k+s(n)/log(n) . stn)? /log(n) | by Thcorem 2.1. We write ACCEPT, (1D, Jto

mean that 1D leads to acceptence in a alternations:

ACCEPT,, (1D,) = 31D, ( EPan(ID, ID,) & ACCEPT,,(ID,) )

ACCEPT,,,(1D,) = V1D, ( APath(ID, , ID) = ACCFPT,,,(IDy) ) -

Notc that in the above EPath(x.y) and APath(x.y) arc the Var &Sz[k«s(n)/log(n), s(n) flog(n) }
formulas which asscrt the existence of a computation path from x to y all of whose intermediate states
are exisiential, respectively universal. As in the proof of Lemma 1.3 we can use the abbreviation trick
10 conglomerate the two tcrms on the right, making the size of Accept, () equal to:

aes(n).log(n) + Size(FPath)
= (a(n) + s(n) )s(n)/log(n) , as desired. 8

The above corollary intcrested us especially because we now have natural classes, Log(CFL) and
ASPACE &Al{logn.logn] identified with both of the the intermediate terms in the following
containment:
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Corollary 2.8:
NSPACHlgn] € DUVaraSzklogn] €  Var&Sqklogn) C  DSPACHlog? (n)

Corollary 2.8 which comes immediatcly from Theorems 2.1 and 2.2 sheds some light on the
differcace between DSPACE{log? (n)) and NSPACE{logn] . We conjecture that all three containments
above are proper, but it is not even known that NSPACE[logn] # DSPACHlog? (n)]..

Section 2.4: On Vark]. -

We have shown in Corollary 2.4 that PTime = Vark]. In this scction we study this relationship in
more detail. 1t would be lovely if Var{v] were exactly equal to IYTIME[n" | but things are not quite
that nice. The problem is with the size of the v variable scntence. We show in Theorem 2.9 that Var
&S7]v.7] is contained in IYTIME[z+n" log(n)] . Thus we would like a natural way (other than the

.unlfonnily condition) to limit the size of a v variable sentence, ideally ton".

On the other hand we will sce that it makes scnse for a sentence with v variables to be of size 20t
Corollary 2.12 shows that it is possible to interpret Var{k] and ASPACE({logn] in an cxtended scnse
inwhich case they arc both cqual to PSPACE.

Theorem 2.9:
a Var&Sivin)z(n)] € DTIMElz(n)v(n)log(n)en"™]

b. When v(n) is a constant we assume the syntactic uniformity condition (**) in the definition
of Var &Sz Thcn.(a) can be improved to:
Var &Szv.2(n)] € DSPACE &TIME[n" , z(n)og(n)a" )

proof: By the uniformity condition, given input G of size n we can gencrate F, in time z{n). Check
whether Gi=F, as follows: Assume that all ='s have been pushed through to the inside and consider
the parse tree for F, .
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Each of the v(n) variables may take on aay of the n values of the universe of G. Starting at the
leaves of the parsc tree make a list of all the v(n)-tuples of assignments which make the given nodes
true in G. We can pass up the tree toward the root computing the valucs making each node true as we

0.

For example, an "&" nodc’s list is gotten by intersccting the two lists it lcads to, a “Vx, ™ node gets

thosc tuples <-.x, .. X, > which arc in the preceding node’s list with all values of x, .

When we reach the root either our list will have all (™ possibilities or it will be empty, since F,

has no free variables. Gi=F_ if and only if we are in the former case.

On a RAM each of these steps can be done in time lincar in the length of the list, Le. n"® . Onan
“indexing Turing machine”, i.e. a machine which can write the location of a tape cell on an index tape
and immediately see that cell's contents, we can thus acheive log(n)n*™ . This is the time required to

compute each node’s list from the previous lists. Since there are at most 2(n) nodes we have shown (a).

For (b) note that the uniformity condition (**) forces F to have an essentially lincar parse tree,

Thus only one list of size n* nced be remembercd as we pass up the trce. 8
The next theorem gives a converse relation of Var &Sz to DSPACE &TIME:
Theorem 2.10: DSPACE &TIME[s(n).(n)] G BVar &S4Slog(s(n)).t(n)] .

proof: We show how tv describe a computation of Turing machine M running in DSPACE
&TIMHstn).(n)] on input G. We will construct formulas, C, (p,x), meaning, "Symbol  occurs incell

patme” C, (px) will be writtcn with 5log(s(n)) boolcan variables.

The idea is to say that there exists a triple of cell values x; X9 1, in the previous move which lead

10 x in one move of M, and x; occurs in cell p+i at time t-1. In symbols:

C (px) = 3:,11011( x_lxoxl-l-x & /\iﬂ_lml Cl_l(p-i-i.x‘) )

We can usc the abbreviation trick to write C, , only once on the right. Note that although we write

p and x as single variables they are really tuples of boolcans of size log(s) and log(|M]) respectively. A
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problem arises with how 10 expresss “p+L" To write "3q=p+i," requires writing log(s) booleans &8
each siep, making the size of C,, tlog(s). We can get around this by kecping a list of the added bits, iy

- lh'm and once every log(s) steps writing, “3q=p+ ij + "’iiqn . ‘The latter sum can certainly
be written in Size{log? (n)] <s <t symbols. [t nced only be written once in the whole scatence. Thus the
total size is Ofs]. The number of variablcs requircd is 3log(s) to store p. q. i .- iw” . plus log(s) +
log(JM}) to store another p and x. Thus Slog(s) certainly suffices. We suspect that the constant § can

" be greatly reduced. ’ [ ]

Returning to variables ranging from 1 to n, and recalling the coding of log(n) bits into a single

variable we can prove the following:

Corollary 2.11: There is a fixed constant ¢, such that for all s(n) 2 log(n),

DSPACE&TIME[snMn)] G Var &Scylog(s(n))/log(n) , a)}

It makes scnse to consider a sentence with k variables which is of |cn.gth greater than ot . Similary
we can consider an ASPACF[logn] machine which runs for more than nt steps. Generalize the
definition of ASPACE &TIME[s(n),i(n)] to be the family of languages acccpted by an ASPACE[s(n)}
machinc with a (n) clock. Such a machine's accepting configuration is an accept state with the clock
equal to 0, however the machine is never allowed to look at its clock. With this definition Theorems
2.5,2.9, and 2.10 make scnse and arc true for all ((n). It is now possible to ask, "What is ASPACE
&TIME[s().A(n)] with in) > 249 7 '

Corollary 2.12:
a Uyai. ASPACEATIMEflognat] = Uy, Var&Sfka‘] = PTIME
b Uiz ASPACE&TIMEllogn20k] = U,,,, Var&Syk2nk] = PSPACE

Right now line (a) is what we call ASPACE{logn] and Var{k] but it is not clcar whether or ot line

(b) deserves at least the latter name.

We have already shown linc (a) in Corollary 2.4 . The lcf hand equality of line (b) follows from
Corollary 2.6. The two containments of the second equality follow from Theorems 2.9 and 2.10.



Chapter 3
Ehrenfeucht - Fraisse Games

In this chapter we will employ Fhrenfeucht-Fraisse games o obtain lower bounds for the quantifier
measure. These games are duc 1o Fraissc and Ehrenfeucht. (Sce [FraS4] or [Ehr61] for discussion and
proof of Thevrem 3.1 .) Two persons play the gamec ona pair of structures. Player | trics to
Jdemonstrate a difference between the two structures, while Player 11 trics to keep them looking the

same.

In Scction 3.1 the games arc defined and an cxample is given. Scction 3.2 includes two casy lower
hound proofs using the games. Finally in Scction 3.3 we prove thata certain PYIME property is not in
SIZE(w.0. Suc)log® (n)] for any k. ‘This proof should probably be omitted on a first reading.

Section 3.1: Definition of the game,

Given two structurcs. G and H, of the same finite type, 7, we define the n move game on G and H
as follows:

Player | chouscs an clement of G or 1 and Player } chooses a corresponding clement from the
other unc. “This is repeated n times. At move i, g, and h; , clements of G and 11 respectively, are
chosen.

We say that Player 1| wins if the map [ which takes the constants from G to the constants from H,
and maps g, W h,. isan isumorphism of the induced substructurcs, (‘That is f prescrves all of the
symbots of . For cxample. if G and H arc of type 7 =1, then E(s.g, ) holds in G justif F(sh ) holds
mH)

u



We say that two structures of type r arc n-cquivalent if they satisfy all the same sentences in {{r]of
quantifier rank n. ‘The fundamental fact about Ehrenfeucht-Fraisse games is

Theorem 3.1 (Iraissc, Fhrenfeucht) : Player [T hasa winning strategy for the n move game on A and B
if and only if A is n-cquivalent to B.

We will prove a gencralization of this result in Theorem 4.1 For now we just give an cxample.
Cunsider the graphs G and H of Figure L. G has the property that cach of its vertices has an cdge
feading o it, but this is not true of vertex a in H. Thus G and H disagree on the sentence, S =
Va3yk(x.y). By Theorem 3, Player | has a winning strategy for the game of length 2. Indecd. on the
first move Player | chooses a. 11 must answer with a point from G, say d. Now 1 can pick f from G. 1l

will losc because there is no point in H with an edge toa.

Figure 3.1: An Fhrenfeucht-Fraisse game.

G H
d o C ]
R
b
| d a
2 f

Section 3.1: Some Easy Lower Bounds.

Recall that in Theorem 1 we showed an upper bound of Sizc{logn] for GAP. The following
thcorem proves that this is a lower bound as well. Note that we can cxpress GAP in quantificr rank
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exactly login), and so the Ehrenfeucht-Fraisse game is a ool fine enough to decide cxpressibility up to

an additive constant!

fhevrem 3.2: GAP is not cxpressible in quantificr rank log(n) -2.
proof: Fix nx and ket m = (n-4)72. We constnuct the graphs A B, as follows: Each graph consists
of two lincs of m 4+ 2 vertices as in Figure 3.2, In both graphs s is the top left vertex; but, d is the top

right vertex in A, and the bottom right vertex in B . “Thus Ay isin GAP, but B, is not.

Figure3.2: A and B,

A, B,
so..o_.o_.o_.o..od ’u...._.._.._.._.. R
L o~ eesseoseo-e R L ce—2capepoape = d

We will now show that A is (logn -2)-cquivalent to B, . Fron this it follows that no scatence of
quantificr rank lugn -2 can express the property, “Ihere is a path from sto d.” '

By ‘Theorem 3.1 it suffices to show that Player 1 wins the logm inove gameon A B, . Indceed, the

following is a winning stratcgy for 11

1 Player | plays the it™ vertex in some row of A (or 1), 11 will always answer with the i vertex of
onc of the rows in B (or A). ‘The initial constraint ls that the endpoints s.d.1.,R arc answered by the
similarly labelled cndpoints. With k moves to go, if Player | chooscs vertex x within 2% steps of an
endpoint (or previously chosen vertex, a), then Il must answer with a vertex on the same row as the
corresponding cndpoint (or b, ), and at the same distance. If x is not within 2% steps of such a point

then 1l may a_.swer with any point not within 2% steps of an endpuint or chosen point.

.- A proof by induction will show that if 11 follows the above strategy for logm moves, then a contlict
(i.c. two points on different rows, buth within 2 steps) will never arise. “Uhus Player 1 wins the logn -2

move game. ]
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Theorem 3.2 remains true for ordered graphs. The proof is similar, but the graphs require three
suws cach so that d is not the last vertex in B

{t is interesting to note that in the above case our measure docs aot distinguish between
deterministic and nondeterministic space. The lower bound of Oflugn] is shown for graphs with at
most onc cdge leaving any vertex. ‘The gap problem for such graphs, (called GAPL and discussed in
(11IM78] and [Jon75)), is in DSPAC{lugn).

As promiscd we now show that l.lr'l. the language of graphs without Suc, is insufTicicnt for
describing all graph problems. Our counterexample consists of a towlly disconnccted graph. The
same example could be built with connected graphs of unbounded degree. ‘The idea is that the cdge

relation is of no usc and s we inust name all the points inorder to count them.

Piuposition 3.3: EVEN, the sct of graphs with an cven number of vertices, is in DSPACHlogn). (in
fact it's in DSPACE[0}), but it is not in Size(w.0. Suc){h(n)] for any hin) asympatically bess than n

proof: We alrcady know by Theorem 1.2 that EVEN is in Sizc{lugn]. ‘To pruve Propasition 3.3 let
‘), be the totally disconnccted graph with n vertices. We show that TD, , is n-1 cquinalent w 1D, .

It fullows that quantifier rank n is nceded to express EVEN.

We only need to show that Player 1 wins the n-1 move game onTD,_; and T . Her obyvious
winning strategy is to match a chosen vertex with any vertex from the other side subject w the
condition thit a point chosen twice will be answered with the same paint both times. Since the cdge

relation is always false in both structurcs, the resulting scquences of points arc isomorphic. [ ]

‘The proposition ;lalmvc concerns itsclf with the difference between Size{w.0. Suc) and Size . In the
next section we will produce a more natural graph problem in P-Time, which is not.in Sizce{w.0.
Suc)log¥(n)). ‘The graphs there are connected and of bounded degree. We feel that the lauer cxample

concerns itself with time versus space.
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Scction 3.3: P-TIME and the Size measure.

1.ct an alicrnating graph be a dirccted acyclic graph whose vertices are marked "&” of “of”.
Suppusc that a and b are vertices of alternating graph G, and a has cdges o x, ...x, . Wesay thatbis
reachable from aiff:
1. a=b: or
2. aismarked "&", n2 1. and b is reachable from all the x;s; of,
3. aismarked "or” and b is reachable from some x; .

Note that if all vertices are marked "or” then this is the usual notion of reachability. (See Figure
33 where b is reachable from a. but nut from ¢.) Note that we could gencralize this definition to
include infinite graphs or graphs with cycles by saying that *b reachable from a™ is the smallest relation
satisfying 1-3.

Figure 33: An Alternating Graph

a * b
c< i o
& or or

Now dcline AG:\.P w be the sct of alicrnating g'raphs inwhich d is reachable from s.
Propusition 3.4: AGAP is complete for polynomial time with repect to log-space reducibility.

prouf: Tosce if G is in AGAP we start at d and procceding backwards mark all the points from which
d is reachable.

A deailed prouf of completencss is omitted; the idea is that AGAP is complcte in a natural way for
aliernating log space, which is known to be cquivalent to P-TIME. (Sce [ChS176] or [Koz76}.)
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Boulcan circuit value problems which are very similar have previously been shown to be complete for
P. Sce for cxample [Gol77). 8

We must now add the predicate A(x) meaning that vertex x is marked "&". Lot Te= CF.AS.D,
be the type of alternating graphs. Our next theorem shows thatin | lf“' the polynomial time property
AGAP is not expressible with quantificr rank log*(n). If this went through with the addition of

successor then we would have shown that P is nut contained in SPACK[logh(n)).

"Theorem 3.5: Let f{n) be any function that is asymptotically less than 206% | Then AGAP is notin

Size(w.0. Suc)in)}. In particular, AGAP is not in Size(w.o. Suc){log®(n)] for any k.

proof: For all sufficiently large m, we pruduce graphs G and 1 with the following propertics:

L Gl =11} = n.and n<m!*1%™ Thus log(n) < logtmXlogtn) + 1), and puR. UL T
2 G,, ism-cquivalentio H,, .

3 G, isin AGAP, but H_ is not

When these conditions are met we will have shown that anything less than quantificr rank 2(0neni'

docs not suflice to express the Alternating Graph Accessibility Preblem without successor.
The first step is to intruduce the building block out of which G and H, will be constructed:

L.emma 3.5a: 1.ct X be the alicrnating graph pictured in Figure 3.4. ‘Ihen X has automorphisms g,
and h, with the following propertics: .

L f swiches 3&4 and &2, leaving S5&6 fixed.

2 g switches 1&2 and S&6. lecaving &4 fixed

) h switches 3&4 and S5&6, leaving 1&2 fixed



Figure 3.4: Swikch X

proof: The idca is that when X is pliced in our graphs cach pair, 1,2 34 5.6 will consist of onc point
which can reach d and one which cannot. Think of puints which can reach d as “true,” and those

which cannot as "falsc.” ‘Then in symbolic notation:

1 = [©@ud] = [B&Sor(4&6)]
2 = (o)) = [Q&Ord&S)]
Ihe proufof the lemma is an casy computation. ]

We will say that a pair u,s isoff ifuis truc and v is falsc. [fu is false and v is truc then the paicis

on. Thus. X is a switch whusc top pair is on just if cxactly one of its buttom pairs is on.

‘The prouf of Theorem 3.5 procecds as follows: First we produce exponcntially targe graphs P and
Q,, built up from swiich X. Py and Q, differon the AGAP property but we will sce in |.emma 3.5b
that they are m-cquivalent. The final and most technical part of the proof is to reduce P and Q,, to

G, and H_. graphs uf size about m'*$™ which retain the above propertics
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Figure 35: P, (ifs=A), Q, (ifs=8) Row

2mlog(2m)

Figure 3.5 shows 2!+ 2m4eCm) .1 cpics of the switch X. arranged in a binary tree. 1.ct P be the
graph picturcd in Figure 3.5, with s=A. 1.et Q_, be the same graph, but with s= B ThusPisin
AGAP while Q, is not. However,

Lemma 3.5h: P, is m-cquivalent 0 Q, .

proof: We will show that Player [l wins the m length game on P and Q, . Onc way o express the
difference between P, and Q, is to say that they are the same eacept that the top pair inQis
switched. Another way of thinking uf it is that in Q, unc of the bottwn pairs, for cxample y.2. is
switched. ‘Thatisin Py isconnected w d, butin Q, zis connccted o d. X has the property that
switching onc pair on the bottom will résull in the top pair being switched.

‘e idea behind Player I1's winning strategy is that the difference between P and Q) could be
removed by switching any of the 22™o¢2™) pujirs on the bottom ruw. With only n moves, Player |

cannut climinate all of these possibilitics.

“To simplify the proof lct us first consider a different game. et 'l‘hmh) be the binary tree of
height 2mlog(2m). ‘Ihis is a schematic version of P and Q, where cach point represents the switch,

X, and cach line represents a pair of lines.

We play a inudificd Ehrenfeucht-Fraisse game on mem, L call it the “on-off” game. On cach
move of this new game, Player | picks a puint and Player 11 must answer “on” or “off™. Player Il must
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atsu obey the rules that the top vertex, if chusen., is on. and any chosen vertex on the bottom is off.
(Inwitiscly “off” corresponds to matching the twp left vertex of the chosen switch in P, to the same
verter in Q. : “on” mcans matching it to the tup right vertex.) We say that Player 1l wins if for any
triple of chusen points. 1.M.N . such that M and N are the two offspring of L, 1. is on iff cxactly onc of
M and N is on. This rule capturcs the behavior of the switch X.

Lemma 3.5c: Supposc that cach vertex in row rof T is labelled on or off. Then any 2¥ -1 points on
o below row r+ k may be labelled in any sclf-consistent fashion and there will still be a labelling of the

rest of the graph which gencrates row r.

pruof: By “scif-consistent™ we mean that with the labelling of row r removed, the labelling of the 2|
_ points may be extended to a consistent labelling of the entire tree. The proof is by induction on k:

Ifk =1 then no matcer which point is chosen we are free to label its sibling as we please inorder to
girve the desired labcel to its parcat.

Inductively supposc that 2% -1 puints arc lahelled on or below row r+k. 1.t 1. be the sct of left
offspring in row r+ 1, R the sct of right offspring. Clearly at most onc of these scts, say [., has more
than 2" -] of its descendants labelled. Label all of the vertices in | in any consistent fashion. Now by

induction we may label the puints in R as we chouse, ‘Thus we may label row r as desired. [}

It follows that Player Il wins the 2m-muove on-off game on Tz:uw:u» . Her strategy is to answer
“ufT” whenever pussible. 1.emina 3.5¢ shows that no point can be forced on in fewer than m moves
unlcss a point less than lugm rows above is labelled on. Thus 2m moves do not suflice to force on a

puint in row 2mlog(2m).

We can now play the original m-move Fhrenfeucht-I raisse game as follows: (Sce Figure 3.5.)
When Player | chooscs a puint, for example ¢ in P, . 1 moves according to the strategy for the on-off
game. If the point corresponding o c's switch is declarcd "off™, then 1 answers ¢, if "on”, then ¢, the
oppaosite puint in the pair. Ifa point inside a switch is chosen then |1 may simulate the moves of the
on-off game for the switch's two descendants. If cither of these descendants is “un™ then the moves
induce onc of the automorphisms of switch X listed in 1.emma 3.5a. Player Il should perform this

automorphism on the switch in qucstion and answer accordingly.

We claim that this is a winning strategy for Player I1, i.c. there is an isomorphism between the
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chosen points from the two graphs. ‘The rule that in the on-uff game Player 1] must call the tp point
on and the bottom polnts ofT assurcs that s will be answered by s and any point touching dwillbe
answered by a puint also touching d. The Fact that Player [l wins the on-off game indicatcs that any

triple of ncighboring switches is matched up correctly. “This proves L.ctnma 3.5b. L}

‘The final step of the prouf is t introduce the graph Dlow to replace the binary tree in the above
construction. Dlwn has about m'°™ vertices above row m but still has the property that no point in
bluck k can be forced un before the k™ move. We define D, below algebraically , but plcase refer to
Figures 3.6, 3.7, and 3.8, which show portions of D, , D, . and Dy respectively.

Vertices(D, ) =
{<x) x| r=bek +p, p<k, 0Sxy,Sb+1 for1Kigp & 0<x;<b forp<i<k |}

Fdges(D,) =
(<R} e 2 DGy xy 1+ D) | 120} U
1(( RS TN X C FOWE TR PS4 L. xy F+ 1) | r=p madk)}

Thus the vertices are k dimensional vectors and cach row stretches the range of onc of these

dimensions by one. ‘These graphs have k degrees of freedom, allowing us to prove:

f.omma 3.5d: Suppose that row ruf 1D, is entircly labclied. Then any 28 -1 points on or below row
¢+k may be labelled in any scif-consistent fashion and there will still he a labelling of the rest of the

graph consistent with row r.

proof: We break the proof into two parts. First assume that the 28 -1 chusen points licon row 14k,
The proof is by induction on k.

16k = 1 then we must show that any one point may be chosen in row £+ 1 without affecting row r.
“Ihis is truc because any configuration in row r is gencrated by a configuration in row r+ | and by its

complement. Clearly onc of these marks the chosen point correctly.

Lt the j block of 13, be the k consccutive rows numbered jok 10 jok +k-1. Notc that in passing
from the i row of onc bluck to the i row of the next block the range of cach coordinate is stretched
by 1. Assume for convenicnce that row r is at the bottom of block j.
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Figure 3.7: Four Blocks of D,
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Figure 38: Three Blocks of D
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Letthe i® column of 13, be those points with K™ courdinate cqual to I, Note that the i* column

of 1), isacopy of 1), ; with every k™ row repeated. In particular the i column of the j*" block of
1, isacopy of the j block plus the first row of the j+ 1% bluck of D, .

Inductircly consider any labcelling of row £ of Dy together with a choice of 2% -1 fabclled points on
row r+k. Clearly at most onc of the columns of row r+k has 241 chosen puints. Let this Io"' column
of row r+ 1 be chusen in any consistent fashion. All the other columns have at most 2%1 -1 chosen
points in row r+k. Thus by induction all the other columns of row £+ 1 may be chosen as we please,
Thus we can countcract the io"' column and choose row r as we plcase: Choose column iy -1, ;ow r+l
10 be the sum of the desired column iy -1, row r, and of column iy, row r+ 1. Nextchoose columns

ip +1.ij-2. and soon.
To complete the full kmma we must gencralize our inductive assump(ion.:

Claim: Supposc that row r of D, is entircly labelled. Further assume thit some of the cdges are
marked =" mcaning that the signal guing through that cdge is reversed. ‘Then any 2t -1 points on or
below ruw r+k may be labelled in any consistent fashion and there will still be a kibelling of the entire
graph giving the desired row r.

proof: Asabove at most one column of 1, say iy . has at least 2% chusen puints. Consider the
wedge, W. above the io"' column of cow r+ 1. W consists of column iy block j + 1, columins ip iy + |

bluk j +2. und su on. Sce Figure 3.9 for a scheniatic view of W,

Labcl the points of W in any fashion consistent with the labelling of the 2*-1 chasen puints, taking
#nw account the cdges marked "=". Now consider columin i1, For cach cdge e fromato b in
-column ig-1 it may be the casc that there is also an cdge from ¢ v b where ¢ is a point in W libelied

“on”. If sn we mark ¢ "= because the value of b will be the opposite of the value of a.

Next merge the repeated pair of rows in cach block of colmnn ig-1, thus making a true copy of
D,.; - By vur inductive assumption column ig1 with the added " ="s may be filled in as we plcase.
Similurly we can usc the diagunals to the right of W to fill in columns ig+ L ig+2, .. of row r+ 1. ‘Thus

we can gencrate row ras we please. ]

It follows from Lemma 3.5d that Player 1 wins the 2 move un-off game on the tirst 2X blocks of
D, . Her strategy is to say ~oft” until a puint is forced un. No point p can be forced on unless more

than 2%-1 puints have been chosen or there is a point marked on within k rows of p. “Thus 2% moves do
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not suflice o force on a point in the bottom row.

Lot G and H be the graphs arising from the first 2m blocks of DW m) DY replacing vertices by
the switch X, just as P and Q, aruse from the binary tree of height 2mlogt2m). As before we let s be
the top left point of G, and the top right point of H . Thus G, is in AGAP and 1, isnotin AGAP.

Our above remarks imply that Player H wins the 2m move on-olf game on l)h‘um'. Thus. as in the
proofof |.emma 3.5b, G, is n-cquivalent to H .. “This proves Theorem 3.5. ]

‘Theorem 3.5 does not go through if we add "Suc®. In the log(n) move game on numbered graphs if
Player | chooses vertex i in A, then Il must respond with vertex iin B. If Player Il answers differencly,
then in the remaining moves Player | can keep cutting the successor path from the initial point to
vertex i in half, thus exposing that this path is not the same length on the left as on the right. Clearly if
G and H are not identical graphs there must be a pair of indices i.j such that there is an cdge from v, to
Y in onc of the graphs but not the other. Thus Player | wins the log(n) + | move game on G and H.
His stratcgy is to play vertices v; and Y of G on the first two moves. As we have seen Player 1 is forced
to answer with v; and Y from H. Now she has lost because the mip between the first two clements is

alrcady not an isomorphism.

‘Thus two numbered graphs of size n are log(n)+ 1 cquivalent only if they arc identical. This is as
expected because a pair of graphs G. 11 is indistinguishable to all log space Turing machines only if
G=H.

Somctime after proving Theorem 3.5 we discovered to our surprise that with Suc we pl‘;!l\.lhly can
write a sentence of length Oflogn] which distinguishes G, from . This is done as fullows: Ina
numbered graph a pair of vertices is cndowed with an oricatation. ‘Thus a numbered copy of switch X
is cither right (oricntation preserycd) or wrong (oricatation of the top pair is switched). Thus given a
numbcered graph which is cither P or Q,,, we can tell which by adding up the numbecr of wrong

switches and sceing if it is odd or cven.

“I'his does not guite work for distinguishing G, from 1, because some of' the switches in D, have
no cffect -- that is their signals Icad to the top an even number of times. (See for example vertex 10 in
row 3 of Figure 3.6.) We belicve (although we haven't written out the details) that the pattern of which
vertices count is simple cnough to admit cxpression via a log(n) quantificr formula C(x). Ifso then G
can be distinguished from H, | with log(n) quantificrs by adding up the number of wrong switches y
such that C(y).
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To alleviate this problem we can replace the switch X in the above construction with a switch with
m points. Thus to remember its oricntation requires m bits rather than one. As above we can build
graphs G "and H" which are Pl UL cquivalent without successor. We conjecture that even with Suc

they are indistinguishable.



Chapter 4

Alternating Pebbling Games

In this chapter we present a new pebbling game to obtain lower bounds for Var &Sz(w.0. Such
This game is a modification of Ehrenfeucht-Fraissc games discussed in Chapter 3. In Scction 4.1 we
define the alternating pebbling game and give an cxample. We will sce in Theorem 4.1 that Player [
wins the p pebble, m move game on structures G and H if and only if G and H agree on all sentences

with p distinct variables and quantifier rank m. This theorem is proved in Scction 4.2

In Scction 4.3 we usc the pebbling games to prove lower bounds for Var(w.o. Suc)k} We show that
without a successor rclation the Hamilton Circuit property and the graph isomorphism property
cannot be cxpressed with only a constant number of variables. Furthcrmore the existence of aclique
of size k as a subgraph of a given graph cannot be expressed with k-1 variables. (Of course k variables
do suffice).

These results give further evidence (although they do not pruve) that the above problems are not in
PrIME.

Section 4.1: Definitions and Examples.

We now define the akernating pebbling game on G and H. The idea is that Playes | will place
pebbles on vertices in G or H and Player 11 will answer by pebbling coresponding points from the
other structure. Player 11 will win if in the m moves of the game a difference is exposed between G
and H. Esscntially we have a modification of the Ehrenfeucht-Fraissc game inwhich only k points

may be remembered at once rather than all m points in the m move Ehrenfeucht-Fraisse game.

1n
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Definition: The p pebble. m move game on G and H is defined as follows: Initially the pebbles, g, ...
|,.h|_.h' . are off the board. On mave i, Player | picksupapcbble;.(orh,). 1<j<p. and places it
oa a vertex of G (or H). Player Il answers by placing hj (or ‘1) on a corresponding point of H (or G).
Let 8 (i) be the point on which 8 is sitting just after move . After cach move i, 0<i<m, define the
map f, as follows:

f: O gm0

The map f; takes the constants in G to the constants in H, and chosen points in G to the respective
chosen points in H. We say that Player 1l wins if for cach i, 0<i<m, f is an isomorphism of the
induced substructures.

Theorem 4.1: Player Il has a winning stratcgy for the p.m game on G.H if and only if G and H agres

oa all sentences with p variables and quantifier rank m.

We will give the proof, a minor modification of proofs in [Fra$4] and [Ehr61), in the next section.
First we will give an example. Consider the 4 pebble, d+ 1 move game on undirected graphs G and H

where H is disconnected while G is connected with diamete: d.

Player | wins the game as follows: On the first two moves he puts pebbles hy, hy on verticcsab
such that a and b are in distinct components of H. Player Il must place g, . §; on some vertices ef
from G. There is a path of length at most d from e to f. Player I now uscs the next d-1 moves to walk
along this path with pcbbles gy and g, . Player I must answer with a path in H starting at a, and thus
never reaching b. Thus at move d+ 1, two pebbles will coincide in G but not in H and Player I wins.



Figere d.1: The 4,d+1 gamconGand H. -

G H

Notice that Player I's strategy was (o follow the following scatence, truc in G but ot in H: (Let

M(uy) = F(uv)oru=v)

Damd = Vava, 3,3 (Moyag) & 3,5, (Mog.xy) &

35, (May.ag) 8. & 35,5 (Mo, 2 & My 1)) )

Also note that there is a seatence equivalent to 1iany(d) whith only 3 variables and log(d) +1
quantificr depth which Player | would have played had he knuwn about it.

Section 4.2 Proofof Theorem 4.1 .

proof: (=» ): Supposc there is a sentence S with p variables and quantificr rank m such that G
satisfics S but H docs not. We must show that Player | wins the p pebble, m mave game on G and H.
This is proved by induction on m:

base case: If m=0 then G and H differ on a quantificr free scatence, i.c. the constants in G satisfy

a formula that the constants in H do not. Thus they arc not isomorphic sv Player | wins the 0 move

game.
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inductive step: IfS is of the form A, or A&B, then G and H must disagree on onc of A or B.
Thus we may assume that S is of the form 31, Mix, ). Here Player I places pebble 8, 0n some vertex
8, (D) from G so that G M(g, (1) ). No matter what {1 answers we will have Hie =Mh, (1)). Thus

by induction Player | will win.

Note that in the inductive step we have placed pebble g, so we must consider what happens if we
Luter nced g, again. The answer is that in M(g, (1) ). the substitution of g, (1) is made for all free
occurrences uf x . If later on in the game we need to place 8, again it will be for sume sentence =
Qa; N(x; ). Insidc S’ all accurrence of x; arc bound by Qx, , thus g, (1) dues not occur and pebble 5

may be safcly reused.

( = ): Converscly suppose that G and H agree on all scntences with p variables and quantificr rank
m. We must show that Player 1l wins the p pebble, m inove game on G and H. ‘To facilitate an

inductive prouf we must slightly strengthen our claim. We prove the following:

Chim: Letk<p and suposc that (G.clG c.G >and<H, cl" -y H, agree on all sentences S with
fncw constants ¢, ... ¢, . variables x| ... L quantificr rank m, and such that nowhere in S docs ¢; occur
within the scope of a quantifier for x, . ‘Then Player Il has a win for the p pebble, m move game on G

and H when started with the first k pcbbles on clG ckG andc l" - Cy n respectively.
Note that with k =0 the claim reduces to what we nced to show.

We prove the claim by induction on m. For m =0 the map from the constants in G to the constants
in H and c.G ctc' W c." €y H mustbean isomorphism or clsc there would be a quantifier free

sentence un which the two structures disagree.

For the inductive stcp asume that the premisc of the claim holds and let Player | move placing, let

ussay. pebble g, on g, (1).

Consider the (finite) collection of sentences S, (x, ) ... S, (x, ). in the language of G together with

constants ¢, ... ¢, such that <G.clc - ckc’ >k S, (g (1) LetSa I ( /\i=l e S‘ (xy) ) . Thus
Gl 0o tms.

Thus by our assumption <H, ¢! ..¢, Hy also satisfics S. Lcth 1 (1) bea witness for x, in S. Now
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(0.|‘(l).c2°...ct°)and(ll.hl(l).c,“,.c,“)nneonansenumes.k.ofquanuﬂamta-l

lndvnrhuax‘_x.su:hlhanocioecunwiminmescopeohqnamiﬁeffon.. This is because any
such R(c, ) satisfied by G would be an S; above and therefore also satisfied by H.

Our inductive asumption now shows that Player 11 wins the remaining m-1 moves of the game,

proving the claim. This proves Theorem 4.1. L}

Before we apply Theorem 4.1 it is uscful o give a slightly diffcrent characterization of G:V"N H
What does it mcan when G and H agree on all k variable sentences without successor? The idea is that
if Player I chooses any r-tuple of points from G, r<k, then there is a corresponding isomorphic r-tuple
from H. Furthermore if Player I adds a point to the wple in G, and <k, then there is a corresponding

point in H which may be added preserving the isomorphism.

We have thus deduced the existence of a relation R on pairs of r-tuples from G and r-tuples from
H,1e.RC U, o  G* X H , satisfying:
'Y R(O0)

b. R(gh) => g=h

REM & ke )= (V2€G 3y€H Ricgad.hy») & (Vy€H 1EG RO My))

c
d Ifg =<g,...|,>.lct’ii =<8, . 8;-1 84y ~& > bethe -1 wple with g, removed. Thea
Rgh). = REA) i=l.r
Proposition 2.2: G!v“m H if and only if there cxists a rclation R satisfying (a - d) above.

proof: It should be clear that R corresponds to Player II's winning strategy in the & pebble game 0a G
and H. Thus if such an R exists then Player 11 can always win by maching chosen r-tuples in G with
R-rclated r-tuples in H. Assume R(<g, ($) .- 8, (5)7 . <hy (5) .. hy () . ie. the choscn points after
move s are R-related, Think of Player I's moving of pebble g, as two actions. First he picksup g, . By
(d) we know R('g\i (s)./\hi (s))>. Nexthe places g, back on some new point g, (s+ 1). By (c) there exists y
in H preserving the relation, i.c. with h, (s +1) =y, R(g(s+1).h(s+1)). In particular g(s+1) and

h(s+1) arc isomorphic, and Playcr Il wins.
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Converscly, if Gmy 4y I then define R from Player Il's winning strategy as follows:
y.5) | ‘The k pebble game on G and H started with
1

R = [((xl..x,'l(yl...
18(0)=x,.h(0)=y, i=1 ..r, isaforccd win for Player Il

The fact that Player 11 has a winning strategy for the k pebble game on G and H gives us (a). (b),
(c). and (d) follow from the rulcs of the game. [

Section 4.3: L.ower Bounds for Var(w.o. Suc)k].

Following [Fag76] and [BIHa79}, we write certain axioms for graphs. First:

Ty, = Y1 Vy ( “E(xx) & ([Flvy) = E(yx)] )
Ty s3)s that G is loup free and undirccted. We will assume in this section that all graphs satisty Ty .

Fixk and.lct 1€j<k-1. The following sentences, S, 4 Sy that for any choice of distinct vertices, &,
- and LT e there cxists a vertex y different from the x; s with an edge to cvery vertex in

the first group and no cdge to the sccund group.

L LIRS ) Y ( (Agcicrcx /i * )= ’
3yl Apcigjas FlYa) & Aggey (y2x & DHyx)] )

Sy

We use the Su ‘s to write T, . an axiom which says that cvery conccivable extension of a

configuration of k-1 points to a configuration of k points is realizable.

T. = Aum SU

A counting argumcnt shows that almost all graphs satisfy T, . Definc P, (S), the probability that a

graph of size n satisfics a scntence S, as follows:
P,(S) = #{ G| Gm=S, G a graph of sizc n} / #{ G| G a graph of size n}

Theorem 4.3 ([Fag76), [BHa79]): For any fixed k0, limy_y o0 P, (Ty) = 1.



proof: Given jCk, and distinct vertices x, ... £, what iS the probability that a random venex yisa
witness for S, J‘l It's just the probability that the k-1 possible cdges E(x; .y) are correctly present of
absent, Le. 17241,

‘Thus the probability that none of a random n-(k-1) vertices is a witness for Su is:

(,.(mt-l))ll-(l'l) < o,
The probability that any of the fewer than nt scquences, X} Ry o] couse T, to fail is less than
nteat
and this last probability gocs to 0 as n gocs to infinity. | 8
We are interested in T, because of the next result:

Theorem 44: Forany twographsGand H, (G =T, AHm=T,) = G By .H .

proof: T, says that every k-1 tuple may be cxtended to a k tuple in any conccivable way. It follows
that the relation:

R = {(<a;...a,>4b; ... b ) 10Sr<k, 2,€G, b, €EH. and <2y ...y > = <, by > }
satisfics (a) - (d) of Proposition 4.3 . Therefore G By H. 8
Corullary 4.5: Graph Isomorphism is not in Var(w.o. Suc)(k].

proof: 1fGraphlso were in Var(w.o. Suc){k] then there would be sentences Fy Fy - with k variables
cach such that for graphs G and H of size n,

GH> == F, - G=H

By Theorem 4.1 there cxist two non-isomorphic graphs G, and H, both satisfying T,. Clearly
<G, .G, de=F, . Butby Theorem 4.2, G, By H. follows that Player Il wins the k pcbblc game
on <G, .H, > and <G, G, >. Her strategy is to answer points in the first component with the same
point in the other copy of G, , and to use Player II's winning stratcgy for the k pebble game on G, and
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H, w answer moves in the right component. Thus,
<G, Hy>m=F, .but G, isnotisomorphicto H, .
This contradiction proves the corollary. -}

Almost all graphs have a Hamilwn circuit; however, in [BIHa79) it is shown that for any k there is a
graph H, which satisfics T, and yct has no Hamilton circuit. It fullows that there cxist two graphs,
G, .H, . both sutisfying T, and yct diffcring on the property of having a Hamilton circuit. Thus:

Theorem 4.6: “Hamilton Circuit” is not in Var(w.o. Suc){k], for any k.
Using similar technigues we can show the following:
Theorem 4.7: Cliquetk +1) is notin Var(w.o. Suc)k].

proof: Recall that Clique(k + 1) is the sct of graphs with a complete subgraph of size k + |. Clearly
any graph sutisfying T, , | is in Clique(k +1). We show that there exists a graph H, b= T), such that H,
has no k+ 1 clique. Define the graph A, = (V,, E, ) as follows:

Ve (G.pl1gigk 1gjSn}
E, = {02000 | =y}

Notice that A has no k + 1 clique because any sct of k + 1 vertices will have two with the same first

coordinate.

LetA = (V, .E ) bearandom subgraph of A, i.c. cach edge of E, has probability 1/2 of being
in E,". Nowlim_, o0 Prob(A,’ =T, ) = L. (This follows from the same argument as in the proof of
Theorem 4.1, noting that every k-1 tuple from V_ has n points potentially satisfying T, ) l.ct H,be
such a random A", Thus H,_ satisfics T, but has no k + 1 clique. (]

In a scnsc the above lower bounds secm 100 casy -- they may have more to do with how little can be
said without successor than with why P#NP. We feel, however, that it would be very interesting to
determinc preciscly which problems are in Var(w.o. Suc){k]. In chapter 6 we will touch upon some

idcas concerning lower bounds for expressibility with successor, or approximations there of,



Chapter §

Reductivns and Complete Scts

In this chapter we define a reduction that honors the expressibility measure Var&Sz. Our definition
comes from the notion of Interpretations Between Theories. The idea is that problem A is reducible o
problem B if there is a uniform translation of all instances of A to instances of B. A similar reduction

for gencralized spectra is studicd in [Gal.o77].

Scction 5.1: Interpretations Between Theories.

We first give a short discussiun of Intcrpretations Between Theories. For more detail one might
read Scction 2.1 of [End61] . Given similarity types 7, and 7, it is often possible to translate structurcs
of type r into structures of type 7, . Suppose 7, = <R, ... R’ >, where R; is an m; -ary relation
symbol. L.et k> 1 be a constant and suppasc that we have formulus U(x, ...x ). @ (x) Yoy )e
? () - lbmp ), from 1.{r, ] with the indicated free variables. Thus U picks out certain k-tuples of

points and @; is an m; -ary relation on these k-tuples.

“Ihese formulas induce a map £ from structures of type 7, to structurcs of type 7, . ‘The definition

for fis:

UniversefiS)] = {<t,...t,> € S* |Sk= UL, .y) }
R"s’ {(u .. u“i) | Sk o, (v ... uq) }

u

In words, the universe of AS) consists of thosc k-tuples from the universe of § which satsfy U. ‘The
relation R, is intcrpreted in (S) as those m; -tuples of k-tuples from S which when concatenated satisfy

the k; om; -ary formula g, .
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We define a k-ary interpretation between structures (o be such amap : Mod(r, ) =» Mod(r, ),
induccd by formulas U. 9, . @, - Recall that Mod(r) is the class of all structurcs of type 7.

Somctimes we want to consider only thosc structures of type = which fit a certain format. For
crample we might consider those graphs <V.E.< such that < is alincar ordering of V. Wecan
express this property with a scatence | and let Mod(r.1) be the class of structures of type 7 which
satisfy L ’

Iff: Mod(r; ) ~» Mod(r,) is an intcrpretation between structures and satisfics the condition:

Shl, = AS)mI,

then we call f an interpretation between theorics (IBT) 1, and 1, .

Example: Letr, = <H--)\SFEUPand 7, = CE(-)AC)LB() . Weare thinking of v, as
a&md graphs with first point satisfying I and last point satisfying L. We want 7, W be the type of
graphs having unique puints satisfying A(-), and B(-). Informally define liand I, as follows:

ll - =< is a total ordering and F(x) holds iﬂ"x is first and L(x) holds iff x is last under €.°

L = “Mhere exist unique points a and b with A(a) and R(b).”
[ ]

Define an interpretation between thevrics, f: Mod(r 1, ) — Mod(r, 1) . as follows:

U(ll.lz.l’) Aa (x,=x))

P23 ny) = Ry =y &=y, & By or
(‘1 =1y & Y=Yy & smlhl .l,.y..y;)l

’2“! 121,) = F(ll) & F(ll) & F(l’)

93 (x; X, xy) = Lixy) & Uxy) & 1(xg)

Ulx) always holds so Universc{(S)] =(UniverscSD® . In the definition of @, . Suc, (8 .83y ¥3)
means that <y, .y, > is the immediate successor of <x; %, > in the lexicographical ordering. In
symbols:

s'ﬁ(‘l R4} -Yz) = “1 =Y|&s“dll-yl)|°’ lull)&F(h) & Slt(ll -’1)‘

Suc(x,y) = Sy &2y & Vix$z = yStorx=z |
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‘e Idea is that RS) consists of n? copics.of S. one for cach pair of vertices <u.v>. Each cupy may be
entered at <u,v,ud and cxited from <u.v,v>. Thus there is a path from a to b in RS) if and only if there
Is a path between cach pair of vertices from S. ‘That is for cach S in Mod(r, .1, ). RS) is in Mod(r, 1, ),
and S is connected iff {S) has the GAP property. “Thus we have used an interpretation between
theorics to reduce connectivity to GAP.

Section 5.2: Var &Sz Reductions.

Let f: Mod(r, ) = Mod(r, ) be an Intcrpretation Retween Structures. Notice that f induces a map
F:1{r,) = Llr;]. F replaces each variable x by the k variables x, ... x, . and cach relaton symbol R;
by the formula ;. fn symbols:

F[R|| = ®
FlaxM@(x)] = Iy xy Uxyoxy) & FIMKxg . xy)
HYAM@) = Yoy, UGy oy ) = HIMK %)

Itis casy to sce that If S is in Mod]r }. then
SmFM] « RS)=M .

Suppose that INT Fis determined by U.p, ... Pp- ‘Then thesize of fis the sum of the si}cs of Up,

-Pp- Also the pumber of variables of fis the maximum number of variables in any of U, ... -

Definition: Let A and B be subscts of Mod{r, | and Mod{r, ] respectively. We say that A is Var
&Svfv(n)2(n)] reducible to 1} (in symbols, A Svar &SArim.any ) iF there cxists a constant k and a
uniform scquence, f, , f; ..., of k-ary IFT"s from Mod[r; ] to Modfr, | such that:

(a): Size{f, ] < 2(n) and Varf, ] < v(n) n=12 .

®:  VSEModir, I(1S1Sn = [SEA + M9 €D])

Thus our reductions consist of a uniform sequence of intcrpretations of structurcs of type v, a3

structures of type r, . These reductions honor Var &Sz in the following scnse:
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Theorem 5.1: Let A and B be problems with B in Var &Sz{v(n).z(n)] . Suppose A Sy,, asjumsinl B.
Then A is in Var &Sz[keu(n® )+ u(n) , 2(n* )+s(n)] where k is the arity of the reductions.

prooi: LetPy P, . bethe Var &S/[v(n).z(n)] scntences that express property B. Lot SEMod{r, ], IS

= n. Then using the o™ BT, £, we have:

SEA o  [(S)EB
AT N
- Sthan.]

Thus{ F, [P.. J1n>1} is a uniform scquence of sentences expressing property A Computing
Size and number of variables nceded we get:

Sz F, [P 1] = Ofz(n* ) +s(n)]
Va Fo [P 1) = kev(n*)+u(n)

Note that in the computativn of the size we usc the abbreviation trick to only write out cach @,

once. Otherwise the stn) would bea multiplicative factor. ]
Here are two cascs of Theorein 5.1 with values substituted in for u, 8, v, and z:

Curollary §.1a:
L IFASy,Band BE Var{k]. then A € Vark].
2 AL, uga) B and BE Sizeflogi(n)} . then A € Sizc{logi(n)] .

In ‘Theurem 1.2 we cssentially gave a Size{lugn] reduction of an arbitrary problem in NSPACHlogn]
w GAP. Recall the construction. L.t A be any problem accepted by Turing machine M in
NSPACH[logn] . Suppuse that problems of size n require at most c«log(n) bits for the work tape.
“Then an 11 of M can be coded with k =2c+3 vertices, <t ... t by .. he rp.rp @), wheret) .. 8 record
the contents of the work tape, hy ... h, record the head pusition, ry and r give the input head position

and q gives the swate.

The edge relation, @, (1D, D, )is a formula saying that 1), fullows from 1D, in onc move of M.

We showed in Theorem 1.2 and L.emma 1.3 that g may be written in Size{togn] . ‘The predicate U



saying that the k-tuple is of the correct form, and the monadic predicates A and B picking out the
initial and final configurations can all be expressed in Sizc{logn] . We have shown:

Pruposition 5.2: GAP is complete for NSPACF]logn] via Sizc{logn] reductions.

OF course this proposition is somewhat silly because NSPACE{logn is contained in Sizc{logn]. ie.
the reductions are alrcady strong cnough to solve the problem A. In some sensc the log n quantificrs
for the reduction aren’t nceded at all. If we had the predicate ON[x.y] meaning that bity of vertca & is
On, in addition to the predicate Suc to indicate the ordering of vertices. then a single IBT would

transkate all instances of A to instances of GAP.

Note also that Propusition 5.2 as well as the above remark go through for reducing P TIME w0
AGAP. The only difference is that another predicate Or(-) must be added to indicate the “oc™ nodes.

Or(11D) will be truc just if the associated state is an existential statc of M.

"The idea of translating one prublem into another scems a natugal notion for reductions. This
chapter only touches the suface of the subjcct. We hope tha: someone may be interested (o study the
relations between 151™s and other reductions, and to study some of the implications of the cxistence of

non-cxistence of certain 1BTs.



Chapter 6

Towards L.ower Bounds with Successor

In chapters 3 and 4 we have demonstrated some lower bounds on cxpm}ibilily without successor
{cf. Theorems 3.5.4.5.4.6.4.7 ) Our tools were Ehrenfeucht-Fraissc games to prove quantificr rank
fower bounds, and alternating pebbling games to also prove lower bounds on number of variables
needed.

In this chapter we discuss attempts to extend these results in include successor. Scction 6.1 give
some ncgative results and shows in particular that for ordered graphs quantificr rank lower bounds will

no longer be 6( an; help

Section 6.2 suggcests anuther modification of Ehrenfeucht-Fraisse games which we call the
Scparability game. We give evidence in Scction 2 that these games may be a reasonable combinatorial
wol W pruve the desired lower bounds with successor. Sectivn 6.3 then gocs on to give cxamples and
discussion of the scparability game. Finally in Scction 6.4 we list somce other ideas for proving things

about successor.
Section 6.1: Quantificr Rank Docsn't Do It.

By an ordered graph we mean a graph which comes with a valid successor relation. ‘The following
proposition shows that any property whatsoever of ordered graphs can be expressed in quantifier rank
log(n)+1. ’

51
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Proposition 6.1: Let C be any st of ordered graphs. Then for all n there exist sentences S, of
quantifier rank log(n) +3 and with three distinct variahlcs such that for all ordcred graphs G of size S
n,

GEC « GhmsS,.

@[z First we show that for any iy < n, we can write the formula Nig(x). which means, "1 is vertex
number iy in the Suc ordering,” in quantifier rank log(n)+ 1 and with three distinct variablcs. Thisis
done by inductivcly defining the formulas P,(x.y) to mean that there is a successor path of length
exactlyi fromzx toy.

P (xy) = Suc(ry)
Py (y) = 3P, (x2) &P (2y)] -
Pury) = 3P (x2) &P (y)} )

Now we identify the I point by saying that therc is a path of ldi;lh:'irrom the first point to it
Nx) = 3P, (zx) & Vy(~Suc(y.)) |

N,(x) has quantificr rank log(n)+ 1 and could also be written with Oflogn] quantificrs using the
abbreviation trick. : *

Now using Ny(x) we can completcly describe any graph G as follows :
Fg = Ajjmla Y [NE&N(N& E¥y) |

Here E'x.y) is F(x.y), or VEi(x.y) according as F{v,v)) holds or docs not hold in G. Note that Fg has
quantifier rank log(n)+3. 1.ctC, = {G|GEC& [GISn }. We define S asthe disjunction over all
GinC, of Fg, Le.

S, = Vg, Fa

This is the desired complete description of C, . Although it may have kength n? S, has quantificr
rank only log(n)+3. [}
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Section 6.2 Scparability.

1n spite of the above proposition there is still hope. Recall that from Theorem 3.5 we have a pairof
suuctures G’ and H,' which are 2008218 cquivalent but differ on the AGAP property. We conjecture
that AGAP is not in Sizef20os'8),

Consider the sct of all posssible orderings of a graph G:

S(G)

{<G.Suc) | Suc; is a successor relationon G. }

Thus (G, and S(H,") are familics of ordered structurcs which we suspect cannot be scparated by 8

sentence with 290808 quangifiers. To make the notion "scparated™ precisc we give the following

Definition: Let M and N be families of structures of the same finite type, 7. We say that M and N are

k-inscparable if there is no sentence, F, from Lir] with k quantificrs such that:
M= F and NiE==F,
i.e. every structure in M satisfies F and no structure in N does. Otherwisc M and N arck-scparable.

Clearly if we could show that S(G,") and S(1 1) are log¥(n) inscparable it would follow that AGAP
is not in Sizeflugttn)]. The notion, "AGAP, and =AGAP,, arc Off(n)]-scparable,” would be the same
as the condition, "AGAP is in Sizc{fin)].” if we had omitted the uniformity requirement in the

definition of Size. ‘Thus the following gencralization of Theorem 2 holds:
Propusition 6.2: Let C be any sct of ordered graphs. Then:

a Supposc Cis in NSPACE{logn) for some sparsc oracle set T. ‘Then Cis Oflogn}-scparable

from —C, foreveryn.

b. Suppuse C,, is Oflugn]-scparable from —C_, for every n. ‘Ihen there is a sparsc oracle, T, such
that  Cisin DSPACE{log}(n)}.

proof: T is a sparse set if there are at most n® objects in T of length n. A SPACET[f(n)) muchinc has a
size {{n) query tape on which it may write words and ask if they arc in T. The prouf of this proposition
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is similar (0 that of Theorem 2. The differences are:

For part (a), we must code into F, the nf clements of T that the logn space Turing machine can
look at. Thus the formula, P(ID 1Dy ). saying that 1D, follows from ID), in onc step of MT must
include the disjunction over n¥ possible questions to the oracle. However all quantificrs may be placed
outside this disjunction so the number of quantificrs is unchanged. and this is what scparability

measures.

For part (b), let F be the log(n) quantificr sentence which scparates C, from —C, . We must code
F inlo TN {w Jiwl = 2log(m }. Note that any scntence with f{n) quantificrs and binary predicatcs is

equivalent to some sentence of length 2fn), 8

Proposition 6.2 is encouraging because it suggests that PTIME complete properties may be Oftogn}
inscparable from their complements. We close this section with a modificd version of Ehrenfeucht-

Fraisse games which test for scparability:

Definition: Given familics of structures, M and N, of the same finitc type. we definc the k-move

separability game on M and N as follows:

On cach of the k moves Player I chooscs a point from cach structure on onc sidc or the other.
Player 1l then chooscs a corresponding point from cach structure on the other side. 11 is allowed to

make copics of structures so that she may choosc several different answers from the same structure.

We say that Player 1l wins if there is a pair of structures and sequences of moves, <Gm,} .. m D>
and (H,,n l‘ nk‘) one from cach side such that the map which scads constants from G, w constants

from |IJ and maps m" 0} n,' is an isomorphism of the induccd substructures.

‘Theorem 6.3: Player I1 has a winning stratcgy for the k move game un M and N iff M and N are k-

inscparable.
proof: By induction on k.

k=0. Here if Player I wins then there is a pair of structures GEM and HEN whosc constants are

isomorphic. It follows that G and H satisfy all the same quantificr free formulas and so Mand N are
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0O-inscparable. Converscly if there is no such pair then the quantificr free formula, Fo, whichisa
disjunction of all the isomorphism types of constants from M is satisfied by all of M and none of N.

Inductively. assume that the r+ 1 quantifier formula 3xP(x) is truc in M and false in N. Then
Player I's first move will be to choose a point mli from each G,€M in such a way that Gii-l’(ml'). No
mater what I docs, no structure HjGN will satisfy P(nlf). Think of the language as now having a new

constant symbol ¢;. Thus <M.m>k=P(c,) and <N.nXk==P(c;) so by induction Player | wins.

Converscly assume that M and N are r+ 1-inscparable and let Player | choose “‘1' from cach G,€M.
LetF, _F bealistofallther quantifier formulas with the new symbol ¢, that are truc for each

structure in M, that is:
<M.m> k= F(c,) i=l.s .

Thercfore, M= 3x F(x) i=l.s .

Since 3F (1) cannot scparate M from N there must be some H; in N such H;#=3xF(x). Thus Player Il
can play these s witnesscs from the appropriate H;’s and forget about the rest of N. Note that this is
wherc the making of copics is nccded in case H;= H‘ for some i#j. Thus Player 1 can prescrve the

condition that M and N are r-inscparable and so by induction she will win. [ ]

Section 6.3; Playing the Scparability Game.

As a first example of the scparability game consider structures S = <{1 ... n} , M, £ > consisting of
aa n point universe {1 — n} with its usual ordcring. <, and a monadic relation M. S can be thought of

‘asabinary string of length n with a | in the i place whenever M(i) holds.

Let Even, = {S=<{1..n}.M. <>||M]|iscven}
and Odd, = (S |IM]isodd}
be the scts of these structures inwhich M holds on an even (resp. odd) number of points. Let's play the
scparability game on ODD, and Even, . The game procecds as follows:



Figure 6.1: A Scparability Game

Even Odd

G,.n2,.. H b
ﬁh"""

G,.n2, Hy,one

Player | chooses point n/2 in each structure on the left side. Player UI's optimal strategy is always 0
choose each possible point in every structure on the other side.

Notice that after the first move cach structure, <G; ¢, > on the ket has the property that either
(L.c, Jand [c, + L.n] are both even (.e. have an cven number of points satisfying M) or they are both
odd.

Player [ can mark cach structure on the leR which is in the first category. For example. Player [ can
make the first chuice cqual to the sccond choice for all the structurcs he wishes to mark. and not forthe -
others. After Player |1 answers. the only possible isomorphisms willl be between marked structurcs

(those for which ¢, =c, ) and between unmarked structures.

“Thus on the sccond move Player | marks those structurcs on the left so that {L.c, Jand [c, + Lo} are
both even. Player [ answers by making a copy of cach structure on the right and marking vac copy of

each pair.

Note that on the right at lcast one of (L, land [c,+ 1.n} is wrong. ‘That is the stnucture is marked

and onc of the intervals is odd, or the structure is not marked and onc of the intervals is cven.

Player | now marks all the structurcs on the right for which {L.c; ) has the wrong parity. After Il
responds the game has been broken into four parts such that for cach part all the choscn intcrvals on
the Ich arc of length th and of a fixcd parity. All the matching intcrvals on the right are. ofa
different parity.

Plafer [ has succceded in breaking the problem in half using 3 moves. Thus 3log(n) moves suffice
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for Player | 10 win the gamc: when the differing intervals are of length 1 on the left there can be no
isomorphisms betwecen the Icft and the right.

The above samplc game exposes certain differences between the separability game and the usual
Fhrenfeucht-Fraisse game. For one thing the idea of marking is crucial in the scparability game.
What Player I accomplishes in the above 3log(n) moves is to subdivide the game Even,, versus Odd,
into a large number of subpicces su that each pair at the bottom, P,Q , has the property that for some

sclected point i, M(i) holds for all of P and none of Q or vice-versa.

Notice that the separability game emphasizes the need to alternate quantifiers when their number is
restricted. Recall that the alternation of quantificrs coresponds to Player | switching sides of the board
for his moves. Clearly if Player | can only play on one side then n moves are required because any

configuration of n-1 points uccuring in some structurc in Even occurs also in a structure from Odd.

At this point we have only scattered bits of information about the scparability game. We leave it
here as a jumping off point for further rescarch. We urge others to study it, hoping that the

scparability game may become a viable tool for ascertaining lower bounds.

Scction 6.4: Other Ways to Approach Successor.

We feel that proving lower bounds on expressibility with successor is very difficult but also very

imporant. Herc is a list of scveral possible approaches to this problem:

1 Scparmbility Game: Alrcady discussed in this chapter.

2 Average Successor: Graphs G and H, of Theorem 3.5 can be distinguished by a special
ordcring. For cxample, if the given ordering happenced to plac.c all points from which d is
reachable in front of the points from which it is not, then this fact could be asserted by a fixed
first order sentence. Thus “smant™ successors can check polynomial time complete problems.
We suspect, however, that the short sentences true for an average ordering of G are the same

as for an average ordering of H, . Perhaps counting techinigues such as those in Section 4.3



could help prove such a conjecture.

3 Generic Successor: A similar idca 10 (2) would be to get at the average successor from a
syntactic point of view. Perhaps one could modify the notion of forcing in model theory (2a
adaption by Abraham Robinson of work of Paul Cohen) to determine which short sentences

arc truc for a “generic” successor.

4 Approximation of Successor M Delow: The crucial bad property of Successor is that it
enables us to pick out a point by number and thus distinguish any two objccts with logn
quantifiers. However, when we throw it away we also losc certain dcsirable things such as the
ability to count a bunch of indistinguishable points, and the ability to add up the parities of a
bunch of switches. These last two things are tasks which a DSPACHlogn] Turing machine caa
of course perform. Throwing them away makes our lower bounds suspicious. Perhaps we caa
add 10 our language such things as the ability to count, ¢.g. we could add the quantifiers:

(3 mx's)A(x), mcaning, *There exist at least m distinct points, x, such that A(z).”
A study of upper and lower bounds for expressibility in launguages between 1 {r] and
L{rU{Suc}] would be intcresting, and a step towards achciving the desired bounds on Var &Sz

with successor.



Chapter 7

Conclusions and Dircctions for Furture Research

We have shown that first order expresibility is an alternate view of computational eo;npkxlty. In
particular, the number of symbols and of distinct variables nccded to express a property, ., s closely
* tied w the space and to the logarithm of the time nceded to check if C holds for a given input. This
realization leads to several cxciting possibilities:

First there is hope for proving that particular propertics are not expressible without a certain
aumber of symbols or variables. In Chapters 3 and 4 we proved some lower bounds on expressibility
without successor. It would be interesting and worthwhile to learn just which graph properties are

easily expressible in the language without successor.

As we saw in Chapter 6, when successor is added the problem of proving lower bounds becomes
much more dificult. Some possible methods of attack were mentioned there. We fecl that even if such
approaches as the scparability game ncver lead to the desired lower bounds they will still provide new

insight into elpms.;ibilily and the power of alternation.

The fact that complexity is closely ticd to expressibility suggests an approach to algorithm design: -
all onc has to do is to cfficicntly express the condition o be checked for. Much work towards this goal
has alrcady been done, a good cxample is the SETL programming language. (Sce {KeSc75).) This
disscruation provides some theoretical justification for such an approach. An cfficiently cxpressed
condition lcads to an cfficient algorithm. Furthermore we have discussed combinatorial games which
give lower bounds on the cficiency of expressions. They may be used to help design optimal
descriptions of the tasks to be performed. First order descriptions are most closcly ticd to parallel

algorithms, for example, "A & B” is an instruction to split into two processors, one checking A, the

L



other D. We anticipate rescarch connecting expresibility and parallel algorithms, hopefully leading to
efficicnt algorithms, and/or lower bounds on time, space, and number of processors needed.

In this thesis we have compared the complexity of computations with the case of cxproessibility in
the language of mathematics. We have obscrved that the classic complexity questions may be viewed
a8 natural problems in mathematics unaffected by the quirks of a particular modcl of computation
such as the Turing machine. We hope that such work may lead to more contact and cross fertilization

of idcas between Theorctical Computer Science and the rest of mathematics.
We close with a list of some of the open problems we would like to sce solved:

L Improved Bounds Relating Expressibility to Turing Machine Complexity (cf. Chapters 1, 2).

a. How many variables are nceded to simulate DTIM E[nf]? We suspect that corollarty 2.11
could be improved to something like DTIM E[n*] € Vark+3).

b. Improve the simulations of section 2.4 . Once they arc improved try to prove optimality.
¢. Study corollary 2.8 trying to amass some evidenc: concerning which of the containments

are proper.

2 L.ower Bounds Without Successor (cf. Chapters 3, 4).

a  In theorem 3.2 we showed the NSPACK]log n] C Size{log n is a tight bound. Try to prove
similar results for NSPACE[R(n)] G Size{f(n)2/log(n)] © DSPACH[Rn)}.

b. Theorem 3.5 gives a lower bound for AGAP of Size(w.o. Suc)2(' ®'%] whercas the best
upper bound we know of is Size[n] . Try to lessen this descrepency.

¢. Find uﬁpcr and lower bounds on Size(w.o. Suc) for other problems besides AGAP.
Possibilitics abound: planarity, graph homcomorphism, vertex matching, three

colorability, etc.

d. Asin (c) find upper and lower bounds for Variables(w.o. Suc).
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Reductions and Complete Sets (cf. Chapter S).

a

Relate the power of Interpretations Between Theories to the power of other reductions
between problems.

The universal games studied in [ChSt76) and [Rei79] scem to provide natural complete
problems for certain expressibility classes. So do instances of the Ehrenfcucht-Fraisse
games. Make the above two statements more precise and find other complete sets as well.
The private alternation and multiple alternation studied in [Rci79] and [PeRe79] suggest the
analagous notion of "private quantificrs.” Does this approach add insight into Reif and

Peterson’s new altemation classes?

Dcaling With Successor (cf. Chapter 6).

Learn to play the Scparability game, well.

1.cam about which sentences are true for an average or generic SUCCessor.

Study expressibility with features weaker than Suc, e.g. the ability to count.

Study the notion of adding an arbitrary relation with a certain property, as for example
adding a Successor relation. In particular we can add a deterministically defined relation
called a "marking™ which allows us to express PTIME propertics such as AGAP. What else

can be said? Do relations weaker than Suc still allow us to simulate Turing machincs? Can

others give us more than PTIME?

Other Things.

a Rclate Paralicl Algurithms to expressibility. Find optimal expressions of graph propenieg

What measure of expressibility (if any) corresponds to number of processsors?

Pursue the notion of designing efficient expressions as an altcrnative to designing cfficient

algorithms.
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