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In Descriptive Complexity one analyzes the complexity of a language in terms of the com-
plexity of describing the language. It is known that the quantifier depth and number of
variables needed to express the membership property of a language is closely related to the
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parallel time and amount of hardware needed to check whether an input is in the language.
For a long time, the basic question of complexity—namely what are the trade-offs between
time and hardware—has remained open. We have been attempting to understand this ques-
tion in terms of the trade-off between number of variables and quantifier depth. In this paper
we tighten the known relationship between number of variables and deterministic space.

This paper is organized as follows. Section 2 gives the relevant background, definitions,
and references. Section 3 proves our main result. Section 4 includes potential applications
of this result and suggests some attacks on the difficult questions in complexity theory, from
the descriptive point of view.

2 Background and Definitions

In this section we sketch the relevant background and definitions. More detail can be found
in [12].

2.1 First-Order Logic

A vocabulary T = (R{*,...,R{*,¢1,...,¢.) is a tuple of relation symbols and constant sym-
bols, where each R;* is a relation symbol of arity a;. In the sequel we will often omit
the superscripts to improve readability. A finite structure with vocabulary 7 is a tuple
A={0,1,....n—1},R{*, ..., R}, ¢f, ..., c), consisting of a universe UA = {0,...,n — 1}

)T

and relations R{, ..., RkA of arities aq,...,a; on U# corresponding to the relation symbols
R, ..., Ry* of 7, and constants e, ..., ¢t from U4 corresponding to the constant symbols
¢, .., ¢ from 7. We write |A| to denote U#, the universe of A, and we write |.A| to denote

n, the cardinality of the universe. Let STRUC|7| denote the set of all (finite) structures of
vocabulary 7.

For example, if 7, consists of a single binary relation symbol E (standing for edge) then
a structure G = ({0,...,n — 1}, F) with vocabulary 7, is a graph on n vertices. Similarly
if 7, consists of a single unary relation symbol S, then a structure S = ({0,...,n — 1},5)
with vocabulary 7, is a binary string of length n.

Let the symbol ‘<’ denote the usual ordering on the natural numbers. We will include <
as a logical relation in our first-order languages. This seems necessary in order to simulate
machines whose inputs are structures given in some order. For convenience we also include
the constant symbols 0 and maz referring to the first and last elements of the structure
respectively, and the logical relation s(x,y) true whenever y is the immediate successor of z
in the ordering <. For technical reasons, we also include the logical relation BIT, where
BIT(z,y) holds iff bit  of the binary expansion of y is 1.

We define the first-order language L£(7) to be the set of formulas built up from the
relation and constant symbols of 7, and the logical relation symbols and constant symbols:
=, <, s, BIT, 0, maz, using logical connectives: A,V,—, variables: z,y, z, ..., and quantifiers:
V,3. A sentence is a formula with no free variables. Every sentence ¢ € L(7) is either true
or false in any structure A € STRUC|[r]. We write A = ¢ to mean that A satisfies ¢. Let



MOD]|¢p]| denote the set of all models of ¢:
MOD[yp] = { A€ STRUC[T] | AE=¢}.

Here either 7 is previously specified, or it is the vocabulary of all nonlogical symbols occurring
in .

We will think of a problem as a set of structures of some vocabulary 7. It suffices to only
consider problems on binary strings, but it is more interesting to be able to talk about other
vocabularies, e.g. graph problems, as well. For definiteness, we will fix a scheme for coding
an input structure as a binary string. If A = ({0,1,...,n — 1}, R, ..., R, ¢, ..., ch), is
a structure of vocabulary 7, then A will be encoded as a binary string bin(.A) of length
I.(n) = n® + --- + n% + rllogn|, consisting of one bit for each a;-tuple, potentially in
the relation R;, and [logn| bits to name each constant, ¢;. (In this special case that the
vocabulary is empty we encode a structure of size n as the string of n zeros.)

Define the complexity class FO to be the set of all first-order expressible problems. FO is
a uniform version of the circuit class AC® [1] and it is equal to the set of problems acceptable
in constant time on a polynomial size concurrent parallel random access machine [10].

On notation: We reserve n to indicate the size of the universe of the input structure. We
will denote the length of the input string by n = I, = |bin(A)|. The length 7 is polynomially
related to n, and in the case where 7 consists of a single unary relation (and thus inputs
are binary strings) we have n = I, (n) = n. In the case of graphs, n = I, (n) = n®
Our main result says that DSPACE([n*] = VAR[k + 1]. Thus, for binary-string problems
this would imply that DSPACE[n] = DSPACFE[n] = VAR[2]. However for graph problems,
DSPACE[n] = DSPACE[n?] = VARJ[3]. (In our notation a graph algorithm that uses space
linear in the size of the adjacency matrix is a DSPACE[n?| algorithm.) Since variables are
fixed to range over the size-n universe, a standard first-order variable always describes logn
bits of information.

2.2 Inductive Definitions

A useful way to increase the power of first-order logic without jumping all the way up to
second order logic is to add the power to define new relations by induction. For example,
consider the vocabulary 7, = (E) of graphs. We can define the reflexive, transitive closure
E* of E as follows. Let R be a binary relation variable, and consider the formula

o(R,z,y) = (xr =y) V F2(E(z,2) AN R(z,y)) (2.1)

The formula ¢ gives an inductive definition of £* which may be more suggestively written
as

E*(z,y)=(x=y) vV Jz(E(z,z) N E*(z,y)). (2.2)

For any structure 4 with vocabulary 7,, ¢ induces a map from binary relations on the
universe of A to binary relations on the universe of A,

SOA(R) = { <av b> | A ): QO(Rv a, b) }



Such a map is called monotonic if for all R, S,
RCS = @a(R) C pal9).

Note that since R appears only positively in ¢ in Equation 2.1, ¢4 is monotonic. Let ¢}
denote @y iterated r times. With ¢ defined as in Equation 2.1, A any graph, and r > 0,
observe that

o (0) = {(a,b) € | A | distance(a,b) <r—1}.

In particular, if n = || A, then ¢%(0) = E* is the least fixed point of @4, i.e., the minimal
relation T such that ¢4(T) = T. This is a general situation as we now show in the finite
version of the Knaster-Tarski Theorem.

Theorem 2.3 (Knaster and Tarski [15, 14]) Let R be a new relation symbol of arity k,
and let Y(R,xy,...,x1) be an R-positive first-order formula (i.e., R occurs only within an
even number of negation signs). Then for any finite structure A, the least fized point of 4
exists and is equal to ¥ (D), where r is minimal so that ¥ (0) = ¥} (0).

Proof Since 1 is R-positive, 14 is monotonic. Each application of ¥4 at a non-fixed point
adds at least one new k-tuple to the relation. Since there are only n* possible k-tuples, a
fixed point must be reached with » < n* applications.

Thus ¢4 (0) is a fixed point of 4. Let T be any other fixed point, and let R; = ¢(0) for
0 < ¢ <r. It is easy to see by induction on 7 that R; C T. Of course Ry = () C T. Assuming
R; C T, the monotonicity of ¢4 implies that ¥4(R;) C ¥4(T), i.e. Rit1 € T. Thus ¢4(0) is
the least fixed point as claimed. i

Theorem 2.3 tells us that any R*-positive formula ¢(R*, z1,...,7;) determines a k-ary
least-fixed-point relation. We will write (LFP g, ,, ©) to denote this least fixed point. The
least-fixed-point operator (LFP) thus formalizes the definition of new relations by induction.

Definition 2.4 Define FO(LFP), the language of first-order inductive definitions, by adding

a least-fixed-point operator to first-order logic. If o(R¥, z1,. .., x}) is an R*-positive formula
in FO(LFP), then (LFPgk,, ,, ) is a formula in FO(LFP) denoting the least fixed point
of p. N

Immerman and Vardi independently characterized the complexity of FO(LFP) as follows.
Theorem 2.5 ([8, 16]) FO(LFP)=P

The number of iterations until an inductive definition closes is called its depth.! Inductive
depth turns out to be linearly related to parallel time, cf. Theorem 2.11.

'In the logical literature where structures are usually infinite this is called the closure ordinal, cf. [14].



Definition 2.6 Let p(RF zy,...,7;) be an R-positive formula, where R is a relation symbol
of arity k, and let A be a structure. Define the depth of ¢ in A, denoted |p4|, to be the

minimum r such that
Ak (&' « ¢ (D).

As we saw in the proof of Theorem 2.3, |p4| < n*. Define the depth of ¢ as a function of n
equal to the maximum depth of ¢ in A for any structure A of size n:

ol (n) = max { Joul | 1A =n }.
O

Definition 2.7 Let IND[f(n)] be the sublanguage of FO(LFP) in which we only include
least fixed points of first-order formulas ¢ for which |p| is O[f(n)].? i

2.3 [Iterating First-Order Formulas

Theorem 2.3 shows that the least-fixed-point operator amounts to a polynomial iteration
operator. This is even more apparent when we put the inductive definitions into the following
simple normal form. (The notation (Vz. M)y means (Vz)(M — ), and (Jz. M)y means

(3z)(M Ap).)

Lemma 2.8 ([14, 8]) Let ¢ be an R-positive first-order formula. Then ¢ can be written in
the form

O(R,z1,...,x5) = (Qr21. My) ... (Qszs . M)(Fzy ... 2. Msi1)R(zq,. .., 2)

where the M;’s are quantifier-free formulas in which R does not occur.

Proof This is a straightforward induction on the structure of . We will show that the
lemma holds with M, in the following restricted form.

Megpw = (ti=2i, NTa=2i, N ... Nz = 2;,).
The only nontrivial case is the inductive step when ¢ = a A ; suppose

a = (Qiy1-N1)...(Quye- Ni)(3zq ...z . Nyp1)R(zq, ..., )
5 (lel . Ml) Ce (Qszs . Ms)(Ele o L Ms+1)R(.T1, ce ,ﬂfk)

where we may assume that the y’s and 2’s are disjoint. Let

R@B1 = (Quyr-N1)...(Quye.Ny),
QBQ = (QIZI‘MI)“'(QSZS‘MS)‘

20f course it may not be decidable whether a given formula is in some IND|[f(n)]. This is analogous to
the definition of complexity classes where it is not decidable if a given Turing machine always runs in a given
time or space bound.




Let 1(u/Z) denote the formula 1) with variables u1, ... uy substituted for z; ...z and define
the quantifier-free formulas,

S = (b=0A Nea(u/2)) V (b=1 N Msy1(2/T)),
T = (=21 A ... N up = xp).

In this case we have that

o = (Ybb < 1)(QB:)(QB:)(3a.S)(3z.T)R(x, . .., 1)

0
The above requantification of the z;’s means that these variables may occur freely in
M; ... M, but they are bound in M, and R(zy, ..., z;). The same variables may now be re-

quantified. We write @B to denote the quantifier block (Q121 . My) ... (Qszs . M) (Fzy ... 2y . Myyq).
Thus, in particular, for any structure A, and any r € N,

A= (@4(0)) < ([@B] (false)) -

Here [QB]" means @B repeated r times (literally). It follows immediately that if ¢ =
l¢] (n), and A is any structure of size n then

A = (LFP ¢) + ([QB]'(false)).

We define FO[t(n)] to be the set of properties defined by quantifier blocks iterated ¢(n)
times.

Definition 2.9 A set C C STRUC|7] is a member of FO[t(n)] iff there exist quantifier-free
formulas M; (all 0 < ¢ < k) from L(7), a tuple ¢ of constants, and a quantifier block

such that if we let o, = [QB]*"™ My(¢) (all n > 1), then for all A € STRUC|7] with |A| = n,
AceC & AEp,.

[

In the proof of Lemma 2.8 we introduced quantified boolean variables into the quantifier
block to replace logical “and”s and “or”s. In Theorem 3.1 we will be carefully counting
the number of domain variables. The following lemma shows that the number of domain
variables need not be increased to take care of conjunctions and disjunctions.

Lemma 2.10 Suppose that we have two quantifier blocks with identical domain quantifiers
in identical order (ignoring any boolean quantifiers):

QB = [(Q1U1 . Ml) e (sts . Ms)]
QBx = [(Qiv1.Ny)...(Qsvus.Ny)]

Then the conjunction and disjunction of these quantifier blocks may be written in the same
form.



Proof Forexample, the conjunction can be written with an additional universally quantified
boolean variable as

[QBi]e A [@Bo]p = [(V0)(Quo1-Ry) - .. (Qsvs - Ra)lp

where

[

Inductive depth and first-order iterations are intimately connected with parallel complex-
ity. Let CRAM[t(n)] denote the set of problems accepted by concurrent, parallel random
access machines in parallel time O[t(n)] using polynomially much hardware.[10]

Theorem 2.11 ([10]) For all polynomially bounded and constructible t(n),
CRAM|[t(n)] = INDI[t(n)] = FO[t(n)].

Example 2.12 ([10])We show how to transfer a logn depth inductive definition of the
transitive closure of a graph to an equivalent FO[logn| definition.

Let E be the edge predicate for a graph G with n vertices. We can inductively define
E*, the reflexive, transitive closure of GG, by

E*(z,y) = z=y V E(z,y) V (32)(E*(z,z) A E*(2,y)).

Let P,(z,y) mean that there is a path of length at most n from z to y. Then we can
rewrite the above definition of E* as

Pn(x,y) = =y V E(x,y) V (Elz)(Pn/2(.’L‘,Z) /\Pn/2(zay))
= (Vz.M)(32)(Paja(z, 2) A Popa(2,9)),

where M; = —(x =y V E(z,y)). Note that there is no free occurrence of the variable z
after the Vz quantifier. Thus in this case (Vz. M)« is equivalent to (M; — «). Next,

P.(z,y (Vz. My)(32)(Vuv . M3)(Prj2(u,v)),
where Mo=(u=xz A v=z

P.(z,y) = (V2. M;)(3z)(VYuv. Ma)(Voy . M3)(Pp2(z,y)) ,

y) =
)V (u=2 A v=y). Now,
where M; = (z =u A y=wv). Thus,

Po(z,y) = [@B] " (Pi(2,y)),
where QB = (Vz. M;)(32)(Vuv . Ms)(Vzy . Ms). Note that

Pi(z,y) = [@QB](false).

It follows that
Pu(z,y) = [QB]™%") (false)

and thus E* € FO[logn| as claimed. 0



2.4 Unbounded Iterations

As we saw in Theorem 2.3, inductive definitions must close after at most polynomially many
steps because of their monotonicity. Now we generalize inductive definitions to terative
definitions in which the requirement of monotonicity is removed.3

Definition 2.13 Define ITER|[t(n), arity k] to be the set of properties definable by iterating
t(n) times, the simultaneous first-order definitions of a set of ¢ relations of arity k, for some
constant ¢. Of course, after t(n) = 2" iterations, these relations will either reach a fixed
point, or be in a cycle. Thus, define

ITER[arity k| = | JITER[2™, arity k]

c=1

Similarly, we define arbitrary iterations of quantifier blocks.

Definition 2.14 Define FOlt(n)]- VAR[E] to be the set of properties definable in the form

[QB]"™ My
for some quantifier block @B containing domain variables from the set {zy,...,z;}, and
some boolean variables by, ...,b;. The formula M, contains only boolean variables. As in

the definition of ITER[arity k], the truth assignment of all the variables will cycle or stabilize
after at most t(n) = 2" iterations. Thus, define

VAR[k + 1] = G FO[2°™]-VAR[k + 1]

c=1

[

We can extend the above definition of FO[-]-VAR][-] by allowing restricted domain vari-
ables. Let f : Z* — N be such that for all n € Z*, f(n — 1) < n*. In this case, for
ce€{0,1,...,n—1}, f(c) can be represented as a k-tuple of elements from {0,1,...,n — 1}
in n-ary notation.

We say that f is first-order representable iff there exists a first-order formula By using
only the numeric relations and constants: <, BIT,0, max such that for all structures A and
k-tuples @ € | A",

AEB@) & a<f(Al-1),

that is ¢(Z) says that z < f(maxz).
As examples, the functions f(n) = n + 1,2n,n?, [logn] are all first-order representable
[12]. The following formula represents [log(n)]:
Bpogi(z) = () (BIT(maz,y) A (z <y V s(y,z)))

3This is equivalent to the addition of a “while” operator [16].
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A restricted variable is one that only occurs bound by a quantifier of the form (Qz . (B (z))A
M), where By is a bounding formula. The size of a restricted variable is [log(f(maz))] + 1,
the number of bits required to write its maximum value.

Let FO[t(n)]- VAR[k;r], for r < logn, be the set of properties definable as above with a
quantifier block @) B containing at most k& unrestricted domain variables and some restricted
domain variables whose total size is at most r + O(1) bits. Define

VAR[k + 1;7] = | ] FO[2'™"]- VAR[k + 1;7].
c=1

In a similar way, we define ITER[arity k;r| to be the set of queries definable by an
iterative definition of a relation of arity k + 1 whose last argument is bounded to values of
size at most O(2"), i.e., those that can be described using r + O(1) bits.

3 The Equivalence of Space to Number of Variables

In this section we prove our main theorem, relating the descriptive complexity of a problem
to its computational complexity. As usual, we encode structures as strings when considering
them as input to a Turing machine. A structure of cardinality n and maximum arity a has
an encoding of length 2 = I(n) = ©(n®).4

Theorem 3.1 For any space bound s(n) satisfyinglogn < s(n) < n°M letk = |log,(s(n))].
If A < O(n**1) then,

DSPACE[s(n)] = VAR[k + 1;log(s(n)/n*)] = ITER[arity k;log(s(n)/n*)]

The condition that 7 < O(n**!) — equivalently a < k + 1 — is needed so that the
VAR[k+1;log(s(n)/n*)] formula may read its input. Note that when we restrict our attention
to string problems, 7 = 7, a = 1 and thus this condition always holds.

Restricting to the case that s(n) is a power of n we have,

Corollary 3.2 For any k =1,2,..., if n < O(n*F*1), i.e., the arity of the input relations is
at most k + 1, then

DSPACEn*| = VAR[k + 1] = ITER]arity k] .

Another interesting special case occurs when s(n) < n and thus & = 0. In this case,
DSPACE][|s(n)] consists of queries expressible with one ordinary domain variable and one
restricted to log(s(n)) bits. This is also equal to those iteratively defined relations of arity
one over a variable whose domain is limited to size s(n).

We first prove Corollary 3.2. We prove three lemmas showing the following containments:

DSPACE[n*] C VAR[k + 1] C ITER|arity k] C DSPACE[n"] .

Then we will show how to generalize to obtain a proof of Theorem 3.1.

“Thus to interpret Theorem 3.1 using input length instead of n, we can replace s(n) by s(72) and n by
~1/a
atle.



Lemma 3.3 DSPACE[n*] C VAR[k +1].

Proof Let M be a DSPACE|n*] Turing machine. M’s work space consists of n* tape cells
each of which holds a symbol from some finite alphabet, .

The contents of M’s tape at time ¢ + 1 are a deterministic, local transformation of the
contents at time ¢. Namely, the contents of cell p at time £ + 1 is a function of the contents
of cells p—1,p,p+ 1 at time ¢.

We write a logical formula Cy(Z,b) meaning that after step t of M’s computation, the

cell at position Z is b. Here T = z1,...,x) is a k-tuple of variables ranging over the set
{0,...,n — 1} and b is a tuple of boolean variables coding an element of ¥.
The following is an iterative definition of Cj:
Ci1(Z,0) = < \ > E(C’t(f —1,a 1) N Cy(Z,a9) N Ce(Z + 1,&1)) (3.4)
a—1,00,01)—

Here, the disjunction is over the finite set of quadruples (@ 1, @o, a1, b) such that the first
three symbols lead to the fourth symbol in one move of M. Note that this set of quadruples
is exactly a representation of M’s state table.

It is straightforward to write Cy with k domain variables. Our assumption that i < O(nk)
means that the input fits on the work tape. To tell whether Cy(z1, x2, b) holds, we just have
to know what the input symbol would be at location nx; + x5. For example, if the input is
a graph, then Cy(x1, 2o,b) would hold if E(x1,25) holds and the booleans b encode the tape
symbol “1”, or if E(z1,2) does not hold and b encodes the type symbol “0”.

Furthermore, M accepts its input iff it eventually reaches its accept state. Let 1 code
the appropriate accept symbol. Thus M accepts its input iff eventually C;(0, 1) holds.

The lemma will be proved once we show the following:

Claim 3.5 There is a quantifier block QB containing k + 1 domain variables such that
Equation (8.4) may be rewritten as: Cyy1(Z,0) = [QB]Cy(z,b).

The proof of Claim 3.5 is purely symbol manipulation. We first write quantifier blocks
@B, and @B_ whose job it is to replace z by ¥ + 1 and  — 1 respectively, i.e., for any
formula ¢, we have,

S
—_
|

S
oS!

I

5

\&_B/I

p(—1) = [QBJp(z) .

These quantifier blocks can be written with £ 4+ 1 domain variables. The idea is to add one

to z by replacing z; with its successor, or, if 5, = max, by replacing z; by 0 and x;_; by

its successor, or, etc. We existentially quantify a tuple of boolean variables, ¢, to guess for

which 7, 1 <1 < k, z; will be incremented. For j > i, it must be that x; = maz and :13; =0.
The form of the quantifier block will be as follows,

10



KoM

The quantifier-free conditions P, N; and M; are as follows. Here “s” is the successor
relation.

k

P = \/(E:z’/\xﬁémax A Ziy1 = Tijpo =+ = Ty)
=1

N; = (i<5/\ yzgjk) V; (Z ;A S(xk,y))

V (i >¢ A y=max)

Thus, we have @B, QB _, and, trivially, () By, Observe that the desired () B of Claim
3.5 is a positive boolean combination of these three quantifier blocks. It follows from Lemma
2.10 that @B exists and has k£ + 1 domain variables, as desired. This completes the proof of
the Claim and thus of Lemma 3.3. ]

Lemma 3.6 VAR[k + 1] C ITER]arity k].

Proof Here we have a quantifier block of the form

QB = [(Quzi,.-M1)(B1) ... (Qrxi, . M,)(B,)],

where each i; € {1,...,k+ 1} , the M; are quantifier-free, and the B; are blocks of boolean
quantifiers over boolean variables {bi,...,b.}. We can convert the iteration of QB into an
iterative definition of a relation R of arity k. R takes as arguments k£ domain elements, plus
a bounded number of boolean arguments.

The reason that arity £ suffices is that the variable x;, does not occur freely in a formula
beginning (Qx;,.M7). Thus, our iterative definition is essentially,

R(x2a"'7xk;b17"'ab0) = [QB]R(x27-"7$k;b17"'7b6) (37)

The only problem with Equation 3.7 is that we haven’t said how to begin. The answer
is that at the beginning we use [QB]M, and every other time we use Equation 3.7. Thus,
the iterative definition is

R(xy,...,z1;0) = (V2)(Vb)(~R(Z,b)) — [@B]M, A

(32)(3b)(R(%,b)) — [QB|R(z,b) (3.8)

It is immediate that the iterative definition of R captures the meaning of the iterated
quantifier block and that it has arity k. Notice that allowing extra boolean variable argu-
ments in R means that we only need a single iterative definition. Without this feature we
would need to define 2¢ relations simultaneously, corresponding to all the possible values of
the booleans b, .. .b.. ]

Lemma 3.9 ITER[arity k| C DSPACE[n*].

11



This last inclusion is obvious because O[nF] bits suffice to record the current meaning
of the bounded number of relations of arity k. Each bit of each relation in the next itera-
tion may then be computed by evaluating a fixed first-order formula. This can be done in
DSPACE(logn] and thus certainly in DSPACE[n*]. This completes the proof of Corollary
3.2.

To complete the proof of Theorem 3.1, we have to do two things:

1. Extend the proof to the case where s(n) < 2 < O(n**!). That is the input is longer
than the worktape. In this case we need a separate read-only input tape.

2. Extend the proof to the case where s(n) is not an exact power of n.

It is easy to see that Lemmas 3.6 and 3.9 are unaffected by (1), and easily modified to
allow (2). It thus suffices to reprove the following strengthening of Lemma 3.3.

Lemma 3.10 For any space bound s(n) satisfying logn < s(n) < n°M) | letk = |log, (s(n))].
If A < O(n*1) then,

DSPACE[s(n)] C  VAR[k + 1;log(s(n)/n*)]

Proof Let M be a Turing machine using space s(n). We assume that M has a read-only
input tape and that the location of the read head, h, is included on a special section of the
work tape. Note that log(n) = O(logn) < O(s(n)), so keeping the head position does not
affect the space bound.

As in the proof of Lemma 3.3, we will write a logical formula Cy(z, b) meaning that after
step t of M’s computation, the cell at position Z has symbol b. Here 7 is a k-tuple of domain
variables plus one variable restricted to size s/n¥, and b is a tuple of Boolean variables coding
an element of ¥. We will also write H;(i) meaning that bit ¢ of the read head position at
time ¢ is a one. Here 7 is a variable restricted to be less than log(), thus using loglog n bits.

It is straightforward to write C\y and Hj representing the input configuration, using just
the variables Z and b. We simply encode the facts that the work tape is blank, M is in its
start state and h = 0.

We now want to write the iterative definition of C;,; and H;,; using C; and H;. The
new work is to write the formula ONE; meaning that the bit being scanned by the read head
at time ¢ is a one.

Claim 3.11 If7 < O(ns(n)/log(n) then ONE; is expressible in VAR[k+1;1og(s/n*)] using
C; and H;.

To prove Claim 3.11 let us first assume that 7 = 7, i.e., there is a single unary input
relation symbol, S. In this case,

ONE; = (Jy) “y is the position of the read head at time t” A S(y)
Where,

“y is the position of the read head at time t” = (Vi.Biogn)(7))(BIT (y,1) <+ Hy(7))
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If 7 is a more complicated type, then it is easiest to think of each relation of 7 residing
in its own input tape. In this case we use a family of read head predicates. If relation R;
is of arity a, then we split the head positions in R; into a blocks. The formula Hgk(z) will
mean that the read head is in relation j at time ¢ and bit ¢ of block k of the head position
is one. A bounded number of bits will tell us which relation we are looking at. Suppose we
are currently reading a relation R; of arity a. ONE; is expressed as follows.

ONE; = (Jvyi,...,%s) “¥ is the position of the read head at time t” A R;(y1,...,Ya)

Where,

a

“g is the position of the read head at time t” = /\(Vz’.Blog(n)(z'))(BIT(yk, i) < HP*(3))
k=1

Recall that a < k + 1. If the arity, a, is one, then ONE; has been written using one
domain variable plus a variable restricted to loglogn variable bits. If a > 1, then instead
of a new restricted variable i, we can use y, to say that y; is correct and y; to say that the
other y’s are correct. Thus in either case VAR[k + 1;1og(s(n)/n*)] suffices to express ONE;.

Next we use the following iterative definition of Cj.

Cii1(7,0) = \/ (C’t(a_c — 1, 1) A Cy(Z,a0) A Co(Z + 1,a;) A (ONE; h)) (3.12)
(h,@_1,80,31)—b

The disjunction runs over the finite set of tuples (h,a_1, G, @1, b) such that h is a boolean
indicating whether the read head is looking at a one and the next three symbols lead to the
last symbol in one move of M. This set of tuples is exactly a representation of the state
table.

Observe similarly that the next head position relation H;,; can be written in terms of
H; and Cy: we determine as part of the definition of C;,; in Equation 3.12 whether the read
head moves to the left or right. Then we must express the fact that H;,, is the successor or
predecessor of H;. In the 7 # 7, case successor may also involve going from a head position
of n® — 1 in one relation to a head position of 0 in the next.

Once we have determined whether H;,; is one more, one less, or equal to H;, we can
express the appropriate condition using two variables restricted to loglogn bits each.

This completes the proof of Lemma 3.10 and thus of Theorem 3.1. []

4 Conclusions and Directions

The fundamental challenge in computational complexity theory is to understand the trade-
off between parallel time and hardware. An exact relationship between quantifier-depth
and parallel time on a CRAM was previously known (Theorem 2.11). Now we have shown
an exact relationship between number of variables and deterministic space. Further work
is needed to determine a meaningful, nearly exact relationship between simultaneous de-
scriptive measures and simultaneous parallel time and hardware. This is a tricky problem
because it depends on the interconnection patterns and the conventions for concurrent reads
and writes. (See [10] for further discussion.)
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One instance of the above tradeoff problem seems particularly worthy of study. Consider
the following very different characterizations of PSPACE.

Theorem 4.1 ([9])
PSPACE = FO[2"°"] = SO[n'M]

Thus, the descriptive power of a bounded number of first-order variables (i.e., O(logn)
bits) and exponential quantifier depth is equal to the descriptive power of a bounded number
of second-order variables (i.e., no bits) and polynomial quantifier depth. We would like to
know if there is anything in between. For example, what quantifier depth is necessary and
sufficient when logn first-order variables are available?

To make this problem more concrete, consider the following problem. Define a k-local
graph to be a graph on vertex set {0,1}" such that for each vertex u there is a unique next
vertex v, and the ¢*" bit of v is determined by bits i — k,i —k +1,...,7 + k of u. Note that
a k-local graph can be presented as a table of size O[n].

Define the local graph reachability problem (LREACH) to be the set of local graphs such
that there is a path in the graph from the vertex with all zeros to the vertex with all ones.

The following proposition is clear:

Proposition 4.2 LREACH is complete for DSPACE|n| via simultaneously logspace and
linear time reductions.

Furthermore, as in Theorem 4.1, the LREACH problem can be expressed in FO[2"]- VAR|2]
and also as a second-order sentence with three unary relation variables (i.e. 3n bits) and
quantifier depth Oln].

Now we hope to challenge many people to work hard on the following:

Problem 4.3 What is the tradeoff between number of variables and quantifier-depth for
describing LREACH?

The main tool currently available for studying Problem 4.3 is the sort of communication
complexity game introduced in [13]. A similar game called the separability game is described
in [6]. These games as stated only consider circuit depth, and quantifier-depth, respectively.
However, one can add a notion of number of variable bits, k, by forcing the players to have
only k bits of active memory between rounds, or equivalently, to have at most 2* different
piles to split all the different structures into.

Acknowledgments. Thanks to Sushant Patnaik for asking the question whose answer
is the main theorem. Thanks to Bill Hesse for an observation that simplified our proof of
Lemma 3.6.
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