Reachability Logic: Efficient
Fragment of Transitive Closure
Logic

Natasha Alechina, School of Computer Science and IT, University of
Nottingham, UK, email nza@cs.nott.ac.uk

Neil Immerman, Computer Science Dept., UMass, Amherst, USA,
email tmmerman@cs.umass.edu

Abstract

We define reachability logic (RL), a fragment of FO2(TC) (with boolean variables) that admits effi-
cient model checking — linear time with a small constant — as a function of the size of structure being
checked. RL is expressive enough so that modal logics PDL and CTL* can be linearly embedded
in it. The model checking algorithm is also linear in the size of the formula, but exponential in the
number of boolean variables occurring in it. In practice this number is very small. In particular,
for CTL and PDL formulas the resulting model checking algorithm remains linear. For CTL* the
complexity of model checking — which is PSPACE complete in the worst case — can be read from
the face of the translated formula.

Keywords: graph query languages, model checking, PDL, CTL*

1 Introduction

Many problems in computer science can be reduced to asking questions about paths
in a graph: for example, is there a path from one vertex to another; is the graph
connected; is it acyclic; is there a path comprised of a certain kind of steps (e.g.
described by a regular expression). We are interested in a logical language that can
express these kinds of path queries, or reachability queries, and at the same time
where expressions can be efficiently evaluated.

The complexity of query evaluation which we are striving for is linear time in the
size of the query times the size of the graph (that is, the number of vertices plus the
number of edges in the graph). The graphs under consideration are usually large and
sparse.

Several different modal logics have been proposed for talking about paths in a graph,
for example, PDL, CTL, CTL*, modal u calculus and others. It is not surprising that
modal languages are appropriate for expressing reachability queries. They are usually
less complex than a ‘classical’ logic which encompasses them (e.g. basic modal logic
vs first order logic) but they can quantify over reachable objects and thus express
reachability queries.

We believe that a natural ‘encompassing’ logic for path queries is first order logic
extended with the transitive closure operator [9, 10]. We are looking for a fragment of
it which admits efficient model checking and which can express both PDL and CTL*

L. J. of the IGPL, Vol. 0 No. 0, pp. 1-13 0000 1 © Oxford University Press

2 Reachability Logic: Efficient Fragment of Transitive Closure Logic

expressible properties of graphs (note that these two logics are complementary in the
sense that neither is more expressive than the other) [5].

In the next section, we formally introduce transitive closure logic and the structures
it is interpreted on. Then we introduce a ‘modal’ fragment RLg of FO?(TC) where
quantifiers are restricted by path descriptions and which admits linear time model
checking. However, PDL and CTL* cannot be linearly embedded in it.

In order to express all interesting reachability queries (and provide a linear embed-
ding for PDL and CTL*) RLo needs to be extended with additional variables, which
range over the set {0,1} and are called boolean variables, or booleans. The resulting
fragment is called Reachability Logic (RL). The model checking algorithm for RL
is linear in the size of the formula and the size of the model, but exponential in the
number of booleans in the formula.

We show that PDL and CTL* can be linearly embedded in RL, which results in a
new model checking algorithm for these logics. There is no polynomial embedding of
CTL* in RLy, i.e., without the booleans [1]. The booleans are an important indicator
of the complexity of a given CTL* query: they make it possible to distinguish ‘difficult’
queries (which require lots of booleans) from the ‘easy’ ones just by looking at the
syntax of the query.

It can be shown that there is no embedding of PDL in RL without the booleans.
However, embedding PDL uses at most logarithmically many booleans. We show that
the model checking algorithm which translates a PDL formula to RL and evaluates
the result is still linear time in the size of the initial PDL formula. The subset CTL of
CTL* can be linearly embedded in RLg so a linear model checking algorithm results
in this case as well.

2 Transitive Closure Logic

The structures of interest to us in this paper are finite labeled graphs, sometimes called
Kripke structures. Let L = {a,b, - --} be a finite set of edge labels and ® = {p, q, p1, ¢1,
...} be a finite set of propositional symbols (vertex labels).

The language £(®, L) consists of first-order logic with unary relation symbols {p :
p € ®}, binary relation symbols: {R, : a € L} and equality =.

A Kripke structure of vocabulary (®, L) is a finite labeled directed graph:

K = (S;p*:ped RF:acL)

where S is the set of states (vertices), each p* C S is a unary relation on S and each
RX C §2 is a binary relation on S: the set of edges labeled a. Sometimes when it is
clear which graph we are talking about we will omit the superscript *.

For any first-order formula ¢, we will write K |= ¢ to mean that ¢ is true in K.

The following first-order formula says that there is an edge labeled a from the vertex
z to some vertex that satisfies p: Jy(Rq(z,y) A p(y)).

Since the reachability relation is not expressible in first-order logic, we cannot yet
write such simple formulas as,

“There is a path of a-edges from z to a vertex where p holds.” *)

We next add a transitive closure operator to first-order logic to allow us to express
reachability, cf. [9].

Reachability Logic: Efficient Fragment of Transitive Closure Logic 3

Let the formula ¢(z1,... 2k, y1, ... yx) represent a binary relation on k-tuples. We
express the reflexive, transitive closure of this relation using the transitive-closure
operator (TC), as follows: TCz35¢(Z,7) (or TCy if no confusion is likely to arise).
Strict transitive closure is denoted by TC®. Note that strict transitive closure is
definable in terms of TC.

Let FO(TC) be the closure of first-order logic under the transitive-closure operator.
For example, the following formula expresses (*):

Fy((TCy yRalz,y))(z,y) A p(y)).

Let FO?(TC) be the restriction of first-order logic with transitive closure in which
only two variables may appear in a formula (we call them z and y).

3 RL, a Modal fragment of FO?*(TC)

To illustrate the idea behind the reachability logic RL we first introduce a weaker
fragment RLy. In RLy, quantifiers are restricted by formulas describing paths. More
precisely,

DEFINITION 3.1

An adjacency formula (without booleans) is a quantifier-free formula that is a disjunc-
tion of conjunctions where each conjunct contains at least one of z = y, R.(z,y) or
R,(y, z) for some edge label a; in addition, the conjuncts may contain unary atomic
formulas of the form p(z).

Observe that an adjacency formula necessarily implies that there is an edge from z
to y or an edge from y to z, or z is equal to y. We allow quantification restricted by
an adjacency formula or by a transitive closure of an adjacency formula.

DEFINITION 3.2
RLo is the smallest language that satisfies the following:

1. Boolean constants T, L are members of RLy.
2. If p is a unary relation symbol, then p € RL,.
3. If p,9 € RLy, then ~p € RLy and ¢ A9y € RLy.
4. If p,9 € RLy and q is a new unary predicate symbol, then (let ¢ = ¢ in ¢) is in
RL.
5.If p € RLy and 4 is an adjacency formula, then the following formulas are in RLy:
(a) NEXT(6)p
(b) REACH(d)y
(c) CYCLE(S)

Semantics of RLy; : We give the semantics of RLy by interpreting each RL,
construct (on the left) by its meaning in FO?(TC) on the right. Here the free variable
x always refers to the current position.

p = p(z)
(let ¢ = ¢ in ¢) Yle/dq]

4 Reachability Logic: Efficient Fragment of Transitive Closure Logic

NEXT(d)y = Fy(d(z,y) A ply/z])
REACH(8)p = 3Fy(TCo)(z,y) A ¢ly/z])
CYCLE(§) = (TC*6)(z,z)

The idea behind the logic RLy is that we may speak about the current vertex (z),
steps out of z, paths out of z, and cycles from z back to itself. RLy may be thought of
as a modal logic, or as a fragment of FO?(TC) in which only the variable may occur
free. Clearly RLy is a proper fragment of FO?(TC) because RLy may not discuss
vertices unreachable from the current vertex. For example, the following formula is
not expressible in RLy,

Vy(TC Ra)(z,)

The let construct allows for simpler and more modular formulas. It allows us to
use a new symbol ¢ for a formula ¢ and thus may save space in a formula in which we
had to write out ¢ several times. Furthermore, without the let construct we could
not restrict adjacency formulas to be quantifier free.

The following are a few sample RLy formulas and their meanings. Note that the
third formula asserts that there exists an infinite chain. Thus RL, does not have the
finite model property. However, we do restrict our attention in this paper to finite
structures.

1. - REACH(R(z,y))CYCLE(R(z,y) A p(z) A ~g(z)) means that there is no reach-
able cycle along which p is always true and q is always false. Over finite structures
this expresses weak fairness, i.e, there is no infinite path along which a resource is
always requested (p) but never granted (q).

2. - REACH(R(z,y))(pACYCLE(R(z,y)A—q(z))) means that there is no reachable
cycle along which p occurs at least once but g never holds. Over finite structures
this expresses strong fairness, i.e., there is no infinite path along which a request
is made infinitely often but granted only finitely often.

3. "-REACH(R(z,y))(-NEXT(R(z,y))T V CYCLE(R(z,y))) means that every
reachable point has a successor and is not involved in a cycle.

4.let r = REACH(R,(z,y))p in REACH(R(z,y) Ar)CYCLE(R(z,y) Ar) means
there is an infinite path for which at all times we can take a path of a-edges to a
point where p holds.

R Ly is unexpectedly similar to other ‘bounded quantifier fragments’ (see [3]). How-
ever, instead of quantifying over objects accessible by an atomic step, in RLg we quan-
tify over objects reachable by a path. The reason for restricting quantifiers in RLg is
not the quest for decidability, as in bounded fragments, but for efficient evaluation.
The following theorem illustrates this point.

THEOREM 3.3
There is an algorithm that given a graph G and a formula ¢ € RL; marks the vertices
in G that satisfy ¢. This algorithm runs in time O(|G||¢]|).

ProOF. We inductively mark the vertices of G according to whether they satisfy each
subformula of ¢.

We assume that G is represented by a sorted adjacency list. That is, for each vertex
s we have the list of all adjacent vertices, v1,...,vq. For each v; on the list we have a

Reachability Logic: Efficient Fragment of Transitive Closure Logic 5

label indicating exactly which edge relations hold, e.g. R4(s,v1) and Ry(v1,s). This
structure is linear in the size of G (number of vertices + double the number of edges).

We also assume that we have a list of all subformulas of ¢ in the order of increasing
complexity. We iterate through the list, and for every vertex s mark it according to
the following rules:

1. Base case: Mark vertex s for p, iff s € p©.

2. Mark s for —¢p iff s is not marked for . Mark s for ¢ A ¢ iff s is marked for ¢
and s is marked for .

3. There are three cases in the remaining part of the marking algorithm:

(a) Mark s for NEXT(6(z,y))p iff there is an edge from s to a vertex s’ that is
marked for ¢ and such that §(s, s') holds. Note that the time required to check
all adjacent vertices for every vertex is at most the size of § times the size of the
adjacency list.

(b) Mark s for REACH(§)¢ iff there is a j-path to some vertex s’ that is marked for
©. This can be tested in linear time by doing a depth first search of G starting
from all points marked for ¢ and proceeding backwards along edges for which §
holds.

(c) Mark s for CYCLE(6)(z, z) iff s is in a non-trivial strongly connected compo-
nent of the d-graph. This can also be checked in linear time using depth first
search of G [2].

Although we feel that RL is an interesting fragment of FO?(TC) in itself, and it
admits linear time model checking, we need to show that RLy can express interesting
queries. Unfortunately, we cannot show this by (linearly) embedding modal logics
PDL and CTL* in RLy. Indeed, we next show that that PDL is embeddable neither
in RLo nor in full FO?(TC) without booleans.

PROPOSITION 3.4
PDL cannot be embedded in RL, nor in FO*(TC) without booleans.

PRrOOF. Consider the PDL formula EVEN = ((a; a)*)—(a) T meaning that there is an
even length path of a’s from where we are to a point that has no a-edge out of it. If
FO?(TC) without booleans is interpreted over finite successor structures, then every
FO?(TC) formula is equivalent to a two-variable first order formula with order. (Note
that no such formula can express the property that the distance from z to y is two.)
But over finite orderings, EVEN is not expressible in first order logic *.

4 Reachability Logic

In order to provide linear embeddings of PDL and CTL* in FO?(TC) we need to intro-
duce additional expressive power. In addition to ordinary (or domain variables, which
range over the domain of the input structure, we allow boolean variables b, c,d, by,
Boolean variables are essentially first-order variables that are restricted to range only
over the first two elements of the universe, which we fix as 0 and 1.

1We thank the anonymous referee who suggested this simpler version of our original proof.

6 Reachability Logic: Efficient Fragment of Transitive Closure Logic

In what follows, we will assume that FO?(TC) may contain boolean variables.
We modify the definition of an adjacency formula as follows:

DEFINITION 4.1

An adjacency formula (with booleans) is a disjunction of conjunctions where each
conjunct contains at least one of z = y, R, (z,y) or R,(y,z) for some edge label a; in
addition, the conjuncts may contain expressions of the form (—)(b; = bs), (b1 = 0),
(by = 1) and p(z), where b; and b2 are boolean variables.

DEFINITION 4.2
RL is the smallest fragment of FO?(TC) that satisfies the following:

. If p is a unary relation symbol then p € RL; also T, L € RL.
I p,p € RL, then —p € RL and o Ay € RL.
.If p € RL and b is a boolean variable, then Jbp € RL.

.If p,90 € RL and ¢ is a new unary predicate symbol, then (let ¢ = ¢ in ¥) is in
RL.

5.If ¢ € RL and 6(z,b,y,b') is an adjacency formula (a binary relation between two
n-tuples (z,b1,...,b,—1) and (y,b},...,b!,_;)), then the following formulas are in
RL:
(a) NEXT(6)p
(b) REACH(d)¢
(c) CYCLE(Y)

W N =

Semantics of RL : The semantics of RL is similar to that of RLy, the only
difference being the use of booleans in adjacency formulas. In each case below assume
that 6(z,b,y,?’) is an adjacency formula.

p = p(z)
(letg=¢piny) = Plp/q]
NEXT(6)p = Fy(6(z,0,y,1) Aply/z])
REACH(8)y = 3Fy(TC6)(z,0,y,1) A ¢[y/z])
CYCLE(§) = (TC?4)(=,0,z,0)

Here are some examples of formulas in RL:

e REACH(§)p where §(z, b1, ba,y, b, b)) is
(Ra(z,y) A bibe = 00 A bby = 01) V (Rp(z,y) A bibe = 01 A byby = 11) (this is
(a; byp of PDL, see Section 6).

e o1 = REACH(R)p (EFp of CTL*, see Section 5);

e 9o = REACH(§)CYCLE(6), where 0 is R(z,y) A q(z) (EGgq of CTL*);

e (let ¢ = 1 in ¢2) (EGEFp of CTL*).

RL is a logical language and it is a fragment of FO?(TC). However, because of the
‘let’ construct, when we talk about size in the representation of RL, we are really
talking about circuits. Thus the size of an RL-circuit may be logarithmic in the size
of the smallest equivalent FO?(TC) formula. This allows the linear size embedding of

Reachability Logic: Efficient Fragment of Transitive Closure Logic 7

CTL* which presumably does not hold for FO?(TC) (without a circuit representation
or an extra domain variable cf. [10]).

Boolean variables however add extra complexity, which is not surprising since model
checking CTL* is PSPACE complete [13].

THEOREM 4.3

There is an algorithm that given a graph G and a formula ¢(z) € RL marks the
vertices in G that satisfy ¢. This algorithm runs in time O(|G||¢|2"*) where n; is the
number of boolean variables occurring in .

PROOF. As for RLg, we inductively mark the vertices of G according to whether they
satisfy each subformula of ¢. For subformulas that include a free boolean variable,
we include this subformula with both substitutions of the boolean variable, thus with
ny booleans there could be as many as 2™ copies of some subformulas.

In RL, formulas talk about transitions between tuples of the form (node, sequence
of booleans). In addition to G, we need to maintain an adjacency list corresponding
to the extended graph G, where nodes correspond to old nodes followed by sequences
of Os and 1s of length n;. G is exponentially (in the number of booleans) larger than
G.

We also assume that we have a list of all subformulas of ¢ in the order of increasing
complexity. We iterate through the list, and for every vertex s mark it as we did for
RLy. The new cases are:

e Mark s for (3b)y iff s is marked for at least one of ¢(0/b) or ¢(1/b).

e For the formula (let ¢ = ¢ in v), we have inductively marked states according to
whether they satisfy ¢. Thus, our Kripke structure is expanded to interpret the
new predicate symbol ¢, true of those states marked for ¢. Now we evaluate the
smaller formula 7 on this expanded structure.

e The cases of NEXT(6)p, REACH(0)¢, and CYCLE(S) are the same as for RLo,
but we do depth first search of G instead of G. For the last clause, we check that
5,0 is in a non-trivial strongly connected component of the §-subgraph of G.

It is easy to see that the above marking algorithm is correct and runs in the required
time. [|

5 Embedding CTL* in RL

A popular and quite expressive language for Model Checking is computation tree logic
CTL*. CTL”* is a version of temporal logic that combines linear and branching time.
CTL* has two kinds of formulas: state formulas, which are true or false at each state,
and path formulas, which are true or false with respect to an infinite path through
K. The following is an inductive definition of the state and path formulas of CTL*.

DEFINITION 5.1

(Syntax of CTL*) State formulas & and path formula P of CTL* are the smallest
sets of formulas satisfying the following:

State Formulas, S:

the boolean constants T and L are elements of S;

if p; € @, then p; € S;

if o € P, then Ep € S.

8 Reachability Logic: Efficient Fragment of Transitive Closure Logic

Intuitively, Ep means that there exists an infinite path starting at the current state
and satisfying .
Path Formulas, P:
if « € S then a € P;
if p,9 € P, then =, p A, Xy, and Uy are in P.

Intuitively, X¢ means that ¢ holds at the next moment of time and U1 means
that at some time now or in the future, ¢ holds, and from now until then, ¢ holds.

Next, we formally define the semantics of the above operators. A path p = pg, p1, - - -
is a mapping of the natural numbers to states in K such that for all ¢, I |= R(p;, pit1)-
We use the notation p* for the tail of p, with states pg, p1,- .., pi—1 removed.

DEFINITION 5.2

(Semantics of CTL*) The following are inductive definitions of the meaning of CTL*
formulas:

State Formulas:

(K,s) Epi iff K pils)
(K,s) EEp iff 3 path p(po = s A (K,p) F)

Path Formulas:

(K,p) Fa iff

(Kip) Epny iff
(K,p) E e iff X
(K,p) EXp iff P Ey

(K,p) E ¢Uy iff 32((’C,/)") E YAV <i)(K,p') E o)

(K,po) Ea foraeS
(K,p) E ¢ and (K,p) =9
(K, p)

(K,

THEOREM 5.3

There is a linear-time computable function g that maps any CTL* formula ¢ to an
equivalent formula g(p) € RL. While g(¢) has only two domain variables, it may
have a linear number of boolean variables.

PROOF. We review the proof from [10] that CTL* is linearly embeddable in FO?(TC)
and show that the embedding lands in RL.

Let E(p) be a CTL* formula in which the “=”s have been pushed inside as far as
possible subject to the fact that all path quantifiers should be Es. For this purpose
we will need the temporal operator B, the dual of U,

By = —(=pU—)

The intuitive meaning of B is that “p holds before ¢ fails.

Inductively assume that we have computed g(a) for every state subformula of .
We can then use the “let” rule of RL to replace g(a) by a new unary relation symbol.
We can thus assume that ¢ has no path quantifiers.

92

20ther authors use “R” for the dual of U and say that, “p releases v,” (from the obligation of holding in the
future).

Reachability Logic: Efficient Fragment of Transitive Closure Logic 9

Define the closure of ¢ (cl(¢)) to be the set of all subformulas of ¢. We introduce
a boolean variable b, for each « € cl(y). Intuitively, we use the boolean variables to
encode the state of the automaton that runs along a path and checks that the path
satisfies a path formula (see [14]). We do not need booleans for state formulas but we
use them just to make the following inductive definition simpler.

Let b be a tuple of all the boolean variables b, for a € cl(p). Define the transition
relation 63 (y,b,y',b") as follows. In each case, the comment on the right is the con-
dition under which the given conjunct is included in the formula. (We assume that ¢
is written in positive-normal form.)

R(z,y)
A bo =1 = g(a)(z) for any state formula a € cl(y)
A barg =1 = by =1Abg=1 for any path formula a A 8 € cl(yp)
A bovg =1 = by =1Vbg=1 for any path formula oV 3 € cl(yp)
A bxa =1 = b, =1 for any path formula Xa € cl(p)
A baug =1 —=bg =1V (bog =1Ab,ys=1) for any path formula o U € cl(p)

AN baBg=1 —=bg=1A(ba =1Vb,gg=1) for any path formula aBS € cl(y)

It follows that if b, = 1, then an infinite §g—path starting at (b,) may satisfy ¢.
However, there could be some booleans b,ug that are true, promising that eventually
[will become true, but in fact as we walk around a cycle, o remains true but 8 never
becomes true.

In order to solve this problem, let m be a tuple of bits mg, one for each “Until”
formula, aUB € cl(y). We use the “memory bit” mg to check that 5 actually occurs
by starting it at 0 and only letting it become 1 when 8 becomes true.

Let d be a set of |cl(p)| “destination” bits and let cy,c; be “control” bits. Define
the adjacency formulas §; and d> as follows. They imply that 6; starts with b, =1
and ends at b = d. Similarly §; starts with b = d and the memory bits all zero and
ends with b = d and the memory bits all one:

s1(c, bz, b)) = (c=00Ac =01Ab, =1Az=y)
V (€= =01A8)(Db,z,b,y))
V (€=01Ad =11Ab=dAY =TAz=1y)

8 (¢, b,m,z,c,b/,m') = E=00Ac =01Ab =dAm=0Az=y)
Y (6:9:01/\5 (b,z,b',y)
A(mg=1— (mg=1Vbg=1)) forany aUS € cl(y))
V E=01Ab=dAcd =0Am' =t =0Az=y
A (bqug =1 —=mpg=1) for any aUB € cl(p))

We define the desired mapping g from CTL* state formulas to RL as follows:
g(Ep) = IdREACH(6;)CYCLE(6s)

By construction, g(E¢p) asserts that there is an infinite path along which ¢ holds,
as desired. [|

10 Reachability Logic: Efficient Fragment of Transitive Closure Logic
6 Embedding PDL in RL

Propositional Dynamic Logic (PDL) was introduced in [12] as a logic to reason about
programs. The language of PDL includes two sets of primitive symbols: a set of
propositional symbols and a set of atomic transitions. Propositional symbols stand
for properties that can be true or false for a node in a graph (in the original interpre-
tation of PDL, they are properties of states in the execution of a program). Atomic
transitions (edge labels) are interpreted in PDL as basic instructions, e.g., assignment
statements.

DEFINITION 6.1

(Syntax of PDL)

Transition terms, 7:

elements of L (edge labels) are transition terms;

ift € T, then t* € T;

if t1,t2 € T, then t¢1;%¢2 and ¢; Uty are in T;

if ¢ is a formula, then ©? € T.

Intuitively, ‘;’ corresponds to sequential composition, ‘U’ to non-deterministic choice,
‘x’ to finite iteration of unspecified length and ‘p?’ to test for .
Formulas, F:

the boolean constants T and L are elements of F;

if p; € @, then p; € F;

if o, € Fandt e T, then —p,p A, (t)p are in F.

The formula ()¢ means ‘after some transition ¢, ¢ holds’ .

For example, (ax)—(b) T means that after 0 or finitely many a links, one can reach
a node that has no outgoing links labeled b.
The language of PDL is interpreted by Kripke structures.

DEFINITION 6.2

(Semantics of PDL)

The meaning of transition terms is given by the following function ¢r:
tr(a) = R,

tT’(tl @] tz) = t’f‘(tl) @] t’f‘(tz)

tr(t«) is the reflexive, transitive closure of ¢r(t)

tr(ts; t2) = {(u,v) : Fz(tr(t1)(u, 2) A tr(t2)(z,v))}

tr(p?) = {(u,u) : @ is true at u}

The following are inductive definitions of the meaning of PDL formulas:

(K,s) Epi it KEpi(s)
(K,s) Feny iff (K,s)F¢and (K,s)F9y
(K,s) E-p iff (K,s)Fe
(K,s) E () iff 3s'((s,s') € tr(t) and (K,s') E ¢)

PDL model checking is linear time, i.e., O(|K|-|¢|). This follows from the fact that
PDL can be linearly embedded into alternation-free mu-calculus circuits [5], and the
latter can be model checked in linear time [4]. In this section we show how to linearly
embed PDL into a portion of RL which admits linear time model checking.

Reachability Logic: Efficient Fragment of Transitive Closure Logic 11

We begin by informally showing how to model check PDL in linear time and then
how to preserve this linear-time algorithm as we first map PDL to RL and then
model-check the resulting formula.

We are given a PDL formula ¢, and a Kripke structure, . We want to mark each
state of KC according to whether it satisfies each subformula of (.

The only tricky case is ()1, where we assume that we have inductively marked all
states satisfying ¥. The formula « is a regular expression which can be translated to
an NFA N, of size |No| = O(|e]).

Next, we can mark all states of & such that a string in £(N,) can take them to a
state marked 1. This is just a depth-first search of K x N,, taking time O(|K|-|N|).3
The desired time O(]K]| - |¢|) model checking algorithm for PDL results.

The above linear-time model checking algorithm for PDL suggests a natural way
to translate PDL to RL. Define a linear translation h from PDL to RL as follows:

h(p) = p
h(aAB) = h(a)Ah(pB)
h(-a) = -h(a)
h({a)y) = REACH(0a)h()

The only interesting case in the above definition of A is the last. Here, §, is a
translation of the transition relation of N, using log|a| + O(1) pairs of booleans to
encode the state. Clearly d, can be written in disjunctive normal form in size and
time that is linear in the size of N,.* Each clause of §, is of the form

a==¢ A a =dA R,(z,y)

where N, has a transition from state ¢ to state d reading the letter a. We encode the
start state as 0 a tuple of zero’s and similarly we can have N, have a unique final
state and encode it as 1.

It is easy to see that,

LEMMA 6.3

The mapping h from PDL to RL defined above is computable in linear time. Fur-
thermore, for all PDL formulas ¢, and Kripke structures K with states s, we have
that,

’C,S':QD < ’C,S':h((p),

It is intuitively clear that the resulting formula h(p) € RL can be model checked
in linear time.
LEMMA 6.4
Model checking for formulas in the image of PDL under the mapping h is linear.

PRrROOF. Let ¢ € RL be a translation of a PDL formula. Observe that all adjacency
formulas § in ¢ are in complete DNF, meaning that for each clause ¢, and each boolean
variable b, one of b = 0 or b = 1 occurs in ¢t.

3Note that if o includes a subformula of the form “~4?” then inductively we have marked the states of IC according
to whether or not they satisfy 7. For a state that satisfies v, ¥? is a possible move that leaves the state of /IC fixed,
whereas for a state that does not satisfy v, ¥? is not possible.

4Here we are assuming that the size of an equation of the form a = ¢ is O(1) where a and ¢ are log n-tuples
of booleans. This is consistent with the unit cost for operations on log n-bit words that underly most linear-time
algorithms [2].

12 Reachability Logic: Efficient Fragment of Transitive Closure Logic

The model checking algorithm is simpler than the algorithm for the full RL with
no free boolean variables. Again the only interesting case is (5). We know that for all
formulas which are translations of PDL formulas under A, there are no occurrences
of NEXT or CYCLE, and all occurrences of REACH are of the form

¢ = REACH(8,)h(v)

We may assume that we have inductively marked the states satisfying h(y)). As in
the model checking algorithm for RL, we replace the graph G with a larger graph G
where each node is an original node of G followed by a sequence of Os and 1s. Note
that § = G x N, is of size at most O(|G| - |§]). The linear-time model checking
algorithm results. L

7 Conclusions

We have shown that PDL and CTL* can be embedded in reachability logic, RL C
FO?*(TC). RL can be efficiently model checked in time O(|K||@|2™): linear in the
size of the structure and the formula, but exponential in the number of booleans in
the formula. Furthermore, for PDL and CTL this algorithm is linear, i.e., O(|K||¢|)-

This is useful, both because n; tends to be tiny, and because the language involved
is closely tied to reachability queries which are the bread and butter of model checking.
One nice feature is that we can look at the formula, count the number of booleans,
and automatically say whether the query can be checked efficiently or not. (Recall
that model checking CTL* is PSPACE complete [13]. Thus there presumably are
some CTL* queries that are not feasible. An advantage of translating to RL is that
we can see whether or not it is feasible on the face of the resulting query.)

We believe that model checking using RL may be more efficient than using the
p-calculus in many practical cases. The following directions should be investigated
concerning model checking via transitive closure logic:

e Dynamic model checking strategies are needed, i.e. we should often be able to
efficiently recompute a model checking query after a small change in the design
being checked.

e We have only shown that explicit model checking for RL is efficient. We believe
the same will be true of symbolic model checking but this needs to be investigated.

e From Savitch’s theorem, we know that reachability is contained in DSPACE[log® n].
The time/space tradeoff for computing reachability should be investigated and ex-
ploited in model checking.

Acknowledgement:
This research was supported in part by NSF grant CCRR-9877078.

References

[1] M. Adler and N. Immerman. An n! Lower Bound On Formula Size. Manuscript, 1999.
[2] A.V. Aho, J.E. Hopcroft and J.D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

Reachability Logic: Efficient Fragment of Transitive Closure Logic 13

[3] H. Andréka, J. van Benthem, and I. Németi, Modal Languages and Bounded Fragments of
Predicate Logic. Technical Report ML-96-03, ILLC, University of Amsterdam, 1996.
[4] R. Cleaveland and B. Steffen. A Linear-Time Model-Checking Algorithm for the Alternation-
Free Modal Mu-Calculus. Formal Methods in System Design 2, 121-147, 1993.
[5] E.A. Emerson and C.-L. Lei. Efficient Model Checking in Fragments of the Propositional Mu-
Calculus. In Proc. LICS’86, 267-278, 1986.
(6] K. Etessami and N. Immerman. Tree Canonization and Transitive Closure. To appear in
Information and Computation. A preliminary version appeared in Proc. LICS’95, 331-341, 1995.
[7] K. Etessami and T. Wilke. An Until Hierarchy for Temporal Logic. In Proc. LICS’96, 1996.
[8] N. Immerman. Descriptive Complezity, Springer Graduate Texts in Computer Science, New
York, 1998.
[9] N. Immerman. Languages that capture complexity classes. SIAM Journal of Computing,
16(4):760-778, 1987.
[10] N. Immerman and M. Vardi, Model Checking and Transitive Closure Logic. Proc. 9th Int’l Conf.
on Computer-Aided Verification (CAV’97), Lecture Notes in Computer Science, Springer-Verlag
291 - 302, 1997.
[11] N. Immerman, DSPACE[n*|=VAR[k + 1]. Sizth IEEE Structure in Complexity Theory Sympo-
stum, 334-340, 1991.
[12] V. R. Pratt, Semantical considerations on Floyd-Hoare logic. In Proc. 17th IEEE Symposium
on Foundations of Computer Science, pages 109-121, 1976.
[13] A. P. Sistla and E. M. Clarke. The Complexity of Propositional Linear Temporal Logics. In
JACM, 32(3):733-749, 1985.
[14] M. Y. Vardi and P. Wolper. Reasoning about Infinite Computations. In Information and
Computation, 115(1):1-37, 1994.

Received February 22, 2000

