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Abstract

Traditionally� computational complexity has considered only static problems� Clas�
sical Complexity Classes such as NC� P� and NP are de�ned in terms of the complexity
of checking � upon presentation of an entire input � whether the input satis�es a certain
property�

For many applications of computers it is more appropriate to model the process as
a dynamic one� There is a fairly large object being worked on over a period of time�
The object is repeatedly modi�ed by users and computations are performed�

We develop a theory of Dynamic Complexity� We study the new complexity class�
Dynamic First�Order Logic �Dyn�FO�� This is the set of properties that can be main�
tained and queried in �rst�order logic� i�e� relational calculus� on a relational database�
We show that many interesting properties are in Dyn�FO including multiplication� graph
connectivity� bipartiteness� and the computation of minimum spanning trees� Note that
none of these problems is in static FO� and this fact has been used to justify increasing
the power of query languages beyond �rst�order� It is thus striking that these prob�
lems are indeed dynamic �rst�order� and thus� were computable in �rst�order database
languages all along�

We also de�ne �bounded�expansion reductions� which honor dynamic complexity
classes� We prove that certain standard complete problems for static complexity classes�
such as REACHa for P� remain complete via these new reductions� On the other hand�
we prove that other such problems including REACH for NL and REACHd for L are
no longer complete via bounded�expansion reductions� Furthermore� we show that a
version of REACHa� called REACHa

�� is not in Dyn�FO unless all of P is contained
in parallel linear time�

� Introduction

Traditional complexity classes are not completely appropriate for database systems� Unfor�
tunately� appropriate Database Complexity Classes have not yet been de�ned� This paper

makes a step towards correcting this situation�
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In our view� the main two di�erences between database complexity and traditional com�
plexity are�

�� Databases are dynamic� The work to be done consists of a long sequence of small
updates and queries to a large database� Each update and query should be performed

very quickly in comparison to the size of the database�

�� Computations on databases are for the most part disk access bound� The cost of
computing a request is usually tied closely to the number of disk pages that must be
read or written to ful�ll the request�

Of course� a signi�cant percentage of all uses of computers have the above two features� In
this paper we focus on the �rst issue� Dynamic complexity is quite relevant in most day
to day tasks� For example� texing a �le� compiling a program� processing a visual scene�
performing a complicated calculation in Mathematica� etc� Yet an adequate theory of

dynamic complexity is lacking� �Recently� there have been some signi�cant contributions in
this direction� e�g� 	MSV
��� Note that dynamic complexity is di�erent although somewhat
related to on�line complexity which is receiving a great deal of attention lately�

We will de�ne the complexity class Dyn�FO to be the set of dynamic problems that can be
expressed in �rst�order logic� What this means is that we maintain a database of relevant
information so that the action invoked by each insert� delete� and query is �rst�order ex�

pressible� This is very natural in the database setting� In fact� Dyn�FO is really the set of
queries that are computable in a traditional �rst�order query language�

Many interesting queries such as connectivity for undirected graphs are not �rst�order when

considered as static queries� This has led to much work on database query languages such
as Datalog that are more expressive than �rst�order logic�

We show the surprising fact that a wealth of problems� including connectivity� are in

Dyn�FO� Thus� considered as dynamic problems � and that is what database problems
are � these problems are already �rst�order computable� The problems we show to be in
Dyn�FO include� reachability in undirected graphs� maintaining a minimum spanning forest�
k�edge connectivity and bipartiteness� All regular languages are shown to be in Dyn�FO�

In 	P
�� it is shown that some NP�complete problems admit Dyn�FO approximation algo�
rithms� Dong and Su 	DS
�� showed that reachability in directed� acyclic graphs and in
function graphs is in Dyn�FO� The static versions of all these problems are not �rst�order�

Related work on dynamic complexity appears in 	MSV
��� In 	DST
�� �rst�order incremen�
tal evaluation system �FOIES are de�ned� A problem has an FOIES i� it is in Dyn�FO� In
	TY�
�� Tarjan and Yao propose a dynamic model whose complexity measure is the num�

ber of probes into a data structure and any other computation is free� A log n� log log n
lower bound on a dynamic pre�x multiplication problem was proved in 	FS�
�� Other lower
bounds 	M
��� 	R
�� have been proved using these methods�

Other work on dynamic complexity for databases includes the theory of maintaining materi�
alized views upon updates �	J
��� 	GMS
��� 	Io���� and in integrity constraint simpli�cation
�	LST���� 	N���� The design of dynamic algorithms is an active �eld� See� for example�
	E�
��� 	E�
�b�� 	R
��� 	CT
��� 	F���� 	F
�� among many others� There is also a large

amount of work in the programming language community on incremental computation� see
for example 	RR
�� LT
���
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This paper is organized as follows� In Section �� we begin with some background on Descrip�
tive Complexity� In Section �� for any static complexity class C� we de�ne the corresponding
dynamic class� Dyn�C� The class Dyn�FO is the case we emphasize� In Section �� we present
the above mentioned Dyn�FO algorithms� In Section �� we describe and investigate reduc�

tions honoring dynamic complexity� Finally� we suggest some future directions for the study
of dynamic complexity�

� Descriptive Complexity� Background and De�nitions

In this section we recall the notation of Descriptive Complexity� See 	I�
� for a survey and
	IL
�� for an extensive study of �rst�order reductions�

In the development of descriptive complexity it has turned out that �natural� complexity

classes have �natural� descriptive characterizations� For example� space corresponds to
number of variables� and parallel time is linearly related to quanti�er�depth� Sequential
time on the other hand does not seem to have a natural descriptive characterization� We
like to think of this as yet another indication that sequential time is not a natural notion�

simply an artifact of the so�called �Von�Neumann bottleneck�� As another example� the
class P� consisting of those problems that can be performed in a polynomial amount of work�
has an extremely natural characterization as FO�LFP � �rst�order logic closed under the

ability to make inductive de�nitions�

It is reassuring that our notions of naturalness in logic correspond so nicely with naturalness
in complexity theory� In the present work we venture into the terrain of dynamic complexity�

What is natural is not yet clear� We use the intuitions gained from the descriptive approach

to aid us in our search�

We will code all inputs as �nite logical structures� i�e�� relational databases� A vocabulary

� � hRa�
� � � � � � Rar

r � c�� � � � � csi is a tuple of input relation and constant symbols� A structure

with vocabulary � is a tuple� A � hjAj� RA
� ���R

A
r � c

A
� ���c

A
s i whose universe is the nonempty

set jAj� For each relation symbol Ri of arity ai in � � A has a relation RA
i of arity ai de�ned

on jAj� i�e� RA
i � jAjai � For each constant symbol� cj � � � A has a speci�ed element of its

universe cAj � jAj� We use the notation jjAjj to denote the cardinality of the universe of A�

Since we are only interested in �nite structures� we let STRUC	� � denote the set of �nite
structures of vocabulary � � We de�ne a complexity theoretic problem to be any subset

S � STRUC	� � for some � � A problem is the same thing as a boolean query�

For any vocabulary � there is a corresponding �rst�order language L�� built up from the
symbols of � and the numeric relation symbols� �� �� and BIT� and numeric constants

min�max using logical connectives� ������ variables� x� y� z� ���� and quanti�ers� ���� ��
represents a total ordering on the universe which may be identi�ed with the set f�� �� � � � � n�
�g� The constantsmin�max represent the minimum and maximum elements in this ordering�

BIT�x� y means that when x is coded as a log n bit number� the yth bit of this encoding is
a one�

In static complexity� the entire input structure A is �xed and we are interested in deciding

whether A � S for a relevant property� S� In the dynamic case� the structure changes over
time� The actions we have in mind are a sequence of insertions and deletions of tuples in
the input relations� We will usually think of our dynamic structure� A � hf�� �� � � � n �
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�g� R�� � � � � Rr� c�� � � � � csi� as having a �xed size potential universe� jAj � f�� �� � � � n � �g�
and a unary relation R�� specifying the elements in the active domain� The initial structure
of size n for this vocabulary will be taken to be An

� � hf�� �� � � � n��g� f�g� 	� � � � � 	� �� � � � � �i�
having R� � f�g indicating that the single element � is in the active domain and all other

relations are empty�

��� First�Order Reductions

Here we brie�y describe �rst�order reductions� a natural way of reducing one problem to
another in the descriptive context� First�order reductions are used in Section � to build new

reductions that honor dynamic complexity� Furthermore� reductions are used in Section � as

a motivation for the de�nition of Dynamic Complexity� More information about �rst�order
reductions can be found in 	IL
��� Recall that a �rst�order query is a �rst�order de�nable
mapping from structures of one vocabulary to structures of another� A �rst�order reduction
is simply a �rst�order query that is also a many�one reduction� We give an example and

then the formal de�nition�

Example ��� Let graph reachability denote the following problem� given a graph� G� and
vertices s� t� determine if there is a path from s to t in G� We shall use REACH to denote
graph reachability on directed graphs� Let REACHu be the restriction of REACH to
undirected graphs� Let REACHd be the restriction of REACH in which we only allow

deterministic paths� i�e�� if the edge �u� v is on the path� then this must be the unique edge
leaving u� Notice that REACHd is reducible to REACHu as follows� Given a directed
graph� G� let G� be the undirected graph that results from G by the following steps�

�� Remove all edges out of t�

�� Remove all multiple edges leaving any vertex�

�� Make each remaining edge undirected�

Observe that there is a deterministic path in G from s to t i� there is a path from s to t in

G��

The following �rst�order formula �d�u accomplishes these three steps and is thus a �rst�

order reduction from REACHd to REACHu� More precisely� the �rst�order reduction
is the expression Id�u � �xy��d�u� s� t whose meaning is� �Make the new edge relation
f�x� y j �d�ug� and map s to s and t to t��

��x� y 
 E�x� y � x �� t � ��z�E�x� z� z � y

�d�u�x� y 
 ��x� y � ��y� x

�

Id�u is a unary �rst�order reduction� it leaves the size of the universe unchanged� Now we

de�ne k�ary �rst�order reductions� These map structures with universe size n to structures
with universe size nk�

De�nition ��� �First�Order Reductions� Let � and � be two vocabularies� with � �
hRa�

� � � � � � Rar
r � c�� � � � � csi� Let S � STRUC	��� T � STRUC	� � be two problems� Let k be

�



a positive integer� Suppose we are given an r�tuple of formulas �i � L��� i � �� � � � � r�
where the free variables of �i are a subset of fx�� � � � � xk�aig� Finally� suppose we are
given an s�tuple� t�� � � � � ts� where each tj is a k�tuple of constant symbols from L���
Let I � �x� ���xdh��� � � � � �r� t�� � � � � tsi be a tuple of these formulas and constants� �Here

d � maxi�kai� Then I induces a mapping also called I from STRUC	�� to STRUC	� � as
follows� Let A � STRUC	�� and let n � jjAjj�

I�A � hf�� � � � � nk � �g� R�� � � � � Rr� t�� � � � � tsi

Here each cj is given by the corresponding k�tuple of constants� The relation Ri is deter�

mined by the formula �i� for i � �� � � � � r� More precisely� let the function h� � � � � i � jAjk �
jI�Aj be given by

hu�� u�� � � � � uki � uk � uk��n�   � u�n
k��

Then�

Ri � f�hu�� � � � � uki� � � � � hu��k�ai���� � � � � ukaii j A j� �i�u�� � � � ukaig

Suppose that I is a many�one reduction from S to T � i�e�� for all A in STRUC	���

A � S � I�A � T

Then we say that I is a k�ary �rst�order reduction of S to T � �

� Dynamic Complexity Classes

We think of an implementation of a problem S � STRUC	�� as a mapping� I� from
STRUC	�� to STRUC	� � where T � STRUC	� � is an easier problem� The map I should be a

many�one reduction from S to T meaning that any structure A has the property S i� I�A

has the property T � �Actually� in our de�nition below� the mapping I will map a sequence
of inserts� deletes� and changes �r to a structure� In the interesting special case when I��r
depends only on the corresponding structure A and not which sequence of requests created
it� we call I memoryless�

The idea is that I�A is the data structure � our internal representation of A� We are
thinking and talking about a structure A � STRUC	��� but the structure that we actually
have in memory and disk and are manipulating is I�A � STRUC	� �� In this way� each

request to A is interpreted as a corresponding series of actions on I�A� The fact that I
is a many�one reduction insures that the query asking whether A � S can be answered
according as whether I�A � T � In order for this to be useful� T must be a problem of low

dynamic complexity�

Next we give the formal de�nition of dynamic complexity classes� The issue is that the
structure I�A can be updated e�ciently in response to any request to A� In particular� if

T � FO and all such requests are �rst�order computable� then S � Dyn�FO�
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��� De�nition of Dyn�C

For any complexity class C we de�ne its dynamic version� Dyn�C� as follows� Let � �
hRa�

� � � � � � Rar
r � c�� � � � � csi be a vocabulary and let S � STRUC	�� be any problem� Let

Rn�� � fins�i� �a�del�i� �a� set�j� a j � � i � r� �a � f�� � � � � n� �gai � � � j � sg ����

be the set of possible requests to insert tuple �a into the relation Ri� delete tuple �a from
relation Ri� or set constant cj to a� Let R�

n�� be the set of �nite sequences from Rn���

Let evaln�� � R�
n�� � STRUC	�� be the naturally de�ned evaluation of a sequence of requests�

initialized by evaln���	 � An
� �

De�ne� S � Dyn�C i� there exists another problem T � STRUC	� � such that T � C and
there exist maps�

fn � R�
n�� � STRUC	� �� gn � STRUC	� ��Rn�� � STRUC	� �

satisfying the following properties�

�� For all �r � R�
n��� �evaln����r � S � �fn��r � T 

�� For all s � Rn��� and �r � R�
n��� fn��rs � gn�fn��r� s

�� jjfn��rjj � jjevaln����rjj
O��� �

�� The functions gn and the initial structure fn�	 are uniformly computable in com�

plexity C �as a function of n�

Note that the condition �� says that each single request s � Rn�� can be responded to
quickly� i�e�� with complexity C� According to the de�nition of Rn��� the kind of updates
allowed are single inserts or deletes of tuples� and assignments to constants� Of course it
would be interesting to consider other possible sets of updates�

We will say that the above map f is memoryless if the value of f��r depends only on

evaln����r�

In the above� if no deletes are allowed then we get the class Dyns�C� the semi�dynamic
version of C� One can also consider amortized versions of these two classes� Furthermore�
there are some cases where we would like extra� but polynomial� precomputation to compute

the initial structure f�	� If we relax condition �� in this way� then the resulting class is
called Dyn�C� � Dyn�C with polynomial precomputation�

We have thus de�ned the dynamic complexity classes Dyn�C for any static class� C� Two
particularly interesting examples are Dyn�FO and Dyn�TIME	t�n� for t�n less than n�

where the latter is the set of problems computable dynamically on a RAM �with word size
O�log n in time t�n�

Example ��� Consider the simple boolean query� PARITY� which is true i� the input
binary string has an odd number of one�s� This is well known not to be in static FO

�This expects that the complexity class C is closed under polynomial increases in the input size� For more
restricted classes C
 such as linear time
 we insist that jjfn�r�jj � O�jjevaln���r�jj��
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	A��� FSS���� The dynamic algorithm for PARITY maintains a bit b which is toggled after
any change to the string� We also remember the input string so that we can tell if a request
has actually changed the string�

The vocabulary of thePARITY problem is � � hM�i consisting of a single monadic relation
symbol� Let Aw be the structure coding the binary string w� Then Aw j� M�i i� the ith

bit of w is a one� Let � � hM�� bi where b is a boolean constant symbol� The problem T �

obviously in FO� is given as follows�

T � fA � STRUC	� � j A j� bg

The initial data structure fn�	 � hf�� �� � � � � n � �g� 	� falsei consists of a string of all ��s�
with the boolean b initialized to false�

To show that PARITY is in Dyn�FO we need to give the �rst�order formulas that compute
gn�B� s for any request s � Rn��� The cases are the setting of a bit of w to � or �� Let M� b
denote the relations in the data structure B before the request� and M �� b� are their values

afterwards�

ins�a�M�

M � 
 M�x� x � a

b� 
 �b �M�a� ��b � �M�a

del�a�M�

M � 
 M�x� x �� a

b� 
 �b � �M�a� ��b �M�a

�

Note ��� In the de�nition of Dyn�C we assumed that our problem S had only the basic
requests Rn�� �Equation ��� de�ned� The de�nition of Dyn�C remains valid when we allow

an arbitrary set of operations On�� to be performed on the input structures� It thus makes
sense to ask whether any data structure with a given set of operations is in Dyn�C�

� Problems in Dyn�FO

It is well known that the graph reachability problem is not �rst�order expressible and this
has often been used as a justi�cation for using database query languages more powerful
than FO 	CH���� Thus� the following two theorems are striking�

Theorem ��� REACHu is in Dyn�FO�

Proof We maintain a spanning forest of the underlying graph via relations� F�x� y and
PV�x� y� u and the input relation� E� F�x� y means that the edge �x� y is in the current
spanning forest� PV�x� y� u means that there is a �unique path in the forest from x to y
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via vertex u� The vertex� u� may be one of the endpoints� So� for example� if F�x� y is true�
then so are PV�x� y� x and PV�x� y� y� We maintain the undirected nature of the graph
by interpreting insert�E�a� b or delete�E�a� b to do the operation on both �a� b and �b� a�

Insert�E� a� b�� We denote the updated relations as E�� F� and PV�� In the sequel� we shall

use P�x� y to abbreviate �x � y� PV�x� y� x� and Eq�x� y� c� d to abbreviate the formula�

��x � c � y � d� �x � d � y � c�

Maintaining the input edge relation is trivial�

E��x� y 
 E�x� y� Eq�x� y� a� b

The edges in the forest remain unchanged if vertices a and b were already in the same

connected component� Otherwise� the only new forest edge is �a� b�

F��x� y 
 F�x� y� �Eq�x� y� a� b� �P�a� b

Now all that remains is to compute PV�� The latter changes i� edge �a� b connects two
formerly disconnected trees� In this case� all new tuples �x� y� z have x coming from one of
the trees containing a and b� and y coming from the other�

PV��x� y� z 
 PV�x� y� z � ��uv	Eq�u� v� a� b � P �x� u � P �v� y

� �PV�x� u� z� PV�v� y� z�

Delete�E� a� b�� If edge �a� b is not in the forest �� F�a� b� then the updated relations are
unchanged� except that E��a� b is set to false� Otherwise� we �rst identify the vertices of

the two trees in the forest created by the deletion� and then we pick an edge� say e� out of

all the edges �if any that run between the two trees and insert e into the forest� updating
the relations� PV and F� appropriately�

We de�ne a temporary relation T to denote the PV relation after �a� b is deleted� before
the new edge� e� is inserted�

T�x� y� z 
 PV�x� y� z� ��PV�x� y� a� PV�x� y� b

Using T� we then pick the new edge that must be added to the spanning forest� New�x� y

is true if and only if edge �x� y is the minimum� edge that connects the two disconnected
components�

New�x� y 
 E�x� y� T �a� x� a � T �b� y� b �

��uv	�E�u� v� T �a� u� a � T �b� v� b � �x � u � �x � u � y � v�

E�� F� and PV� are then de�ned as follows�

E��x� y 
 E�x� y� �Eq�x� y� a� b

We remove �a� b from the forest and add the new edge�

F��x� y 
 �F�x� y� �Eq�x� y� a� b� New�x� y � New�y� x
�Note that this uses an ordering on the vertices� If no such ordering is given
 then we can order edges by

their order of insertion� In the presence of an ordering relation
 we can modify the construction to always
maintain the minimum spanning forest as in Theorem ���� This is then memoryless�
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The paths in the forest� from x to y via z� that did not pass through a and b�
are valid� Also� new paths have to be added as a result of the insertion of a
new edge in the forest�

PV��x� y� z 
 T�x� y� z � 	��u� v�New�u� v � New�v� u � T�x� u� x
� T�y� v� y � �T�x� u� z� T�y� v� z�

�

In 	PI
�� we asked if the proof of Theorem ��� could be carried out using auxiliary relations
of arity two instead of three� Quite recently Dong and Su have shown that the answer is yes

	DS
��� They show that the arity three construction of PV can be replaced by a directed
version of F and its transitive closure� They also use Ehrenfeucht�Fra��ss e games to show
that arity one does not su�ce�

We next give a new Dyn�FO algorithm for the following result of Dong and Su� By REACH
�acyclic we mean the REACH problem restricted to queries in which the input graph is
acyclic during its entire history�

Theorem ��� �	DS
��� REACHd and REACH �acyclic� are in Dyn�FO�

Proof That REACHd is in Dyn�FO follows from Theorem ��� together with the fact that

REACHd is reducible to REACHu �Example ���� We defer the details of this until the
proof of Proposition ����

For the REACH �acyclic case� the inserts are assumed to always preserve acyclicity� We

maintain the path relation P �x� y which means that there is a path from x to y in the
graph�

Insert�E�a� b��

P ��x� y 
 P �x� y� �P �x� a� P �b� y

Delete�E�a� b��

P ��x� y 
 P �x� y � 	�P �x� a � �P �b� y �

��uv�P �x� u� P �u� a� E�u� v � �P �v� a � P �v� y � �v �� b � u �� a�

In the case where there is a path from x to y using the edge �a� b� consider any path not
using this edge� Let u be the last vertex along this path from which a is reachable� Note
that u �� y because the graph was acyclic before the deletion of edge �a� b� Thus� the
edge �u� v described in the above formula must exist and acyclicity insures that the path

x� u� v � y does not involve the edge �a� b� �

For G� a directed acyclic graph� the Transitive Reduction� TR�G� is the minimal subgraph

of G having the same transitive closure as G�

Corollary ��� Transitive Reduction for directed acyclic graphs is in memoryless Dyn�FO�






Proof We maintain the path relation� P � in a way that is quite similar to the proof of
Theorem ����

Insert�E��a� b�� If P �a� b already holds� then there is no change� Otherwise� we may have

to remove some edges from TR�

TR��x� y 
 ��P �a� b � x � a � y � b � 	TR�x� y � ��P �x� a � P �b� y�

Delete�E��a� b�� We have to determine the new edges that might be added in TR� For an
edge �x� y� New�x� y holds if there was a path from x to y via �a� b and no path of length

greater than one remains in the graph when �a� b is deleted�

New�x� y 
 E�x� y� �TR�x� y� P �x� a � P �b� y

� ��uv��P �x� u� P �u� a �E�u� v � �P �v� a � P �v� y � �v �� b � u �� a

TR��x� y 
 �TR�x� y � ��x � a � y � b � New�x� y �

Theorem ��� Minimum Spanning Forests can be computed in Dyn�FO�

Proof The general idea is to maintain the forest edges and non�forest edges dynamically
and to maintain the relations PV�x� y� e and F�x� y as in the case of REACHu� Let W�a� b
denote the weight of edge �a� b� The di�erence from REACHu is that we have to maintain

the minimum weighted forest� That changes our update procedures in the following way�

Deletion of the edge �a� b is handled as follows� We determine using PV all the vertices
that can be reached from a in the tree and all those that can be reached from b� These give
the vertices in the two trees that the original tree splits into� Then� instead of choosing

the lexicographically �rst non�forest edge that reconnects the two pieces� we choose the
minimum weight such edge� and insert it� If there is more than one such minimum edge�
then we break the tie with the ordering� PV is updated accordingly to re�ect the merging
of two disconnected trees into one�

When the edge �a� b is inserted� we determine if there exists a path between a and b� If
there is no path� then �a� b merges two trees into one� and PV is updated as before for

REACHu� Otherwise� using PV� we can determine the forest�edges that appear in the
unique path in the forest between b and a� and check to see if the weight of the new edge�
�a� b� is less than the weight of any of these edges� If not� then �a� b is not a forest edge
and nothing changes� Otherwise� let �c� d be the maximum weight edge on the path from

a to b� We make F��c� d false and F��a� b true and update PV accordingly� It is easy to
see that if the weights are all distinct� or in the presence of an ordering on the edges� this
construction is memoryless� �

We next show that Dyn�FO algorithms exist for Bipartiteness� Edge Connectivity� Lowest
Common Ancestors in directed forests� and Maximal Matching in bounded degree graphs�
This last problem has no known sub�linear�time fully dynamic algorithm�

Theorem �� Dyn�FO algorithms exist for the following problems�

��



�� Bipartiteness�

�� k�Edge Connectivity� for a �xed constant k

	� Maximal Matching in undirected graphs�


� Lowest Common Ancestor in directed forests�

Proof

�� Bipartiteness� We maintain bipartiteness in undirected graphs by maintaining
relations PV�x� y� z and F�x� y� as for REACHu� and also� Odd�x� y� which means that

there exists a path of odd length from x to y in the spanning forest� The graph is bipartite

i� ��xyE�x� y� Odd�x� y� We show how to update Odd in Dyn�FO�

Insert�E� a� b�� If the new edge� �a� b becomes a forest�edge� we determine for all newly
connected vertices x and y whether the new path is odd� If �a� b does not become a forest
edge� then Odd is unchanged�

Odd� 
 Odd�x� y �
h
�PV�a� b� a � ��uvEq�u� v� a� b � PV�x� u� x � PV�y� v� y

� ��Odd�x� u�Odd�y� v � ��Odd�x� u� �Odd�y� v
i

Delete�E� a� b�� If �a� b is a non�forest edge� Odd is unchanged� Otherwise� for all ver�
tices x� y� which are in the two disconnected trees that result from deletion of �a� b� make
Odd�x� y and PV�x� y� z false� Then� we select some edge �if any that spans the discon�
nected components and insert it in and update Odd and PV exactly as for the insertion

case�

�� k�Edge Connectivity� As before� we maintain the relations� E�F and PV� Insertions
and deletions are handled as for REACHu� The query is handled as follows� Since k is

constant� we universally quantify over k edges� say� �x�� y�� � � � � �xk� yk� and then� for every
pair of vertices� x and y� check for a path between x and y in the graph that is obtained

after deletion of edges� �x�� y�� � � � � �xk� yk� by composing the Dyn�FO formula �for a single

deletion k times�

�� Maximal Matching� We maintain a maximal matching in Dyn�FO by maintaining�
under insertions and deletions of edges� a relation� Match�x� y which means that the edge

�x� y is in the matching� Initially� for the empty graph� Match�x� y is false for all x and
y� As usual� all relations are symmetric� We shall use MP�x to abbreviate the formula
��zMatch�x� z�

Insert�E� a� b�� The matching remains unchanged except that the edge �a� b is checked to
see whether it can be added�

Match��x� y 
 Match�x� y � �Eq�x� y� a� b � �MP�a � �MP�b

Delete�E�a� b�� If �a� b is not in the matching� then Match is unchanged� Otherwise� we
remove �a� b from the matching� We pick the minimum unmatched vertex adjacent to a� if

any� and match it with a� Then we do the same for b�

��



�� Lowest Common Ancestor� In a directed forest we maintain the relation P exactly
as in Theorem ���� Vertex a is the lowest common ancestor of x and y i�

P �a� x � P �a� y � ��z��P �z� x� P �z� y� P �z� a �

We have shown that Dyn�FO contains some interesting problems that are not static �rst�

order� In particular� Dyn�FO contains natural complete problems for L and NL� As we
will see in the next section� these problems do not remain complete via the reductions that
honor dynamic complexity� Thus it does not necessarily follow that Dyn�FO contains the

classes L or NL� We can prove the following�

Theorem ��� Every regular language is in Dyn�FO�

Proof We are given a deterministic �nite automaton D � h!� Q� 	� s� F i and an input
size n� Let ! � f��� ��� � � � � �tg� Let w � !� be a string of length n � jwj� Let Aw be the

logical structure coding w�

Aw � hf�� �� � � � � n� �g� R�� � � � � Rti

The universe of Aw consists of the positions of the n letters in w� Aw j� Ri�j i� the jth

character of w is �i� With this encoding� the allowable operations are to insert or delete a

character into any position in the string� �As usual� there is a numeric predicate � giving
the usual total ordering on f�� �� �� � � � � n� �g� The deletion of a character at position i� is
equivalent to setting the character at that position to the empty string�

A natural dynamic algorithm for the regular language L�D� is to maintain a complete

binary tree with leaves at the input positions �� �� � � � � n � �� At the leaf l�i at position i
we store the transition function of D on reading input symbol �i� That is we store a table
for fl�i� � 	�� �i � Q � Q� At each internal node of the tree we store the composition
of the functions of its two children� Thus� at every node v of the tree� we have stored the

transition function function fv � 	��� wv where wv is the subword of w that is sitting

below v�s subtree� In particular� the current string is in L�D i� fr�s � F � where fr is the
mapping stored at the root�

Since D is a �nite state machine� these mappings consist of a bounded number of bits each�

When we change the symbol �i� this a�ects the log n nodes on the path from l�i to r�
We can thus guess the O�log n bits that change in the tree by existentially quantifying
O�� variables� �Remember that the value of a variable is a number between � and n � ��
i�e� log n bits� and we have the BIT predicate available for decoding� We then universally

assert that each of the log n positions has been updated correctly� �

We conclude this section with two other low�level problems that are in Dyn�FO�

Proposition ��� Multiplication is in Dyn�FO�

Proof Given two n�bit numbers� x� y� their addition can be expressed in FO � Dyn�FO�

We maintain the product in a bit array� P� Suppose the update operation is Change�x� i� b�
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�Change �y� i� b is analogous� There are two cases�
If the bit is changed from � to �� then P� is given by shifting y by i bits to the right and
then adding it to P� It is easily accomplished by a �rst�order formula�
If the bit is changed from � to �� then P� is given by shifting y by i bits to the right and then

adding the ��s complement of the resulting number to P� Again this is easily accomplished
by a �rst�order formula� �

Proposition ��� For any constant� k� Dk� the Dyck language on k parentheses is in

Dyn�FO�

Proof This is similar to the proof in 	BC�
� that Dk is in ThC� � the class of problems

accepted by bounded�depth� polynomial�size threshold circuits� Dk can be parsed using the
level trick� assign a level to each parenthesis starting at one and ignoring the di�erences in
parenthesis type� The level of a parenthesis equals the number of left parentheses to its left

�including it minus the number of right parentheses strictly to its left� A right parenthesis
matches a left one if it is the closest parenthesis to the right on the same level� A string is
in Dk i� all parentheses have a positive level and each left parenthesis has a matching right
parenthesis of the same type�

The level of each position can be maintained in Dyn�FO� For example� the insertion of a
left parenthesis at position p causes a one to be added to the level of each position q � p�
Once the levels are maintained� the fact that every left parenthesis has a matching right

one of the same type is �rst�order expressible� �

� Dynamic Reductions

Now we de�ne appropriate reductions for comparing dynamic complexity classes� For these
classes �rst order reductions are too powerful� We restrict them by imposing the following
expansion property� cf� 	MSV
�� for a similar restriction�

De�nition �� Bounded expansion� �rst�order reductions �bfo are �rst�order reductions
�De�nition ��� such that each tuple in a relation and each constant of the input structure
a�ects at most a constant number of tuples and constants in the output structure� This

dependency is oblivious� i�e�� only depending on the numeric predicates� ����BIT and not
on the input predicates� �This is similar to the de�nition of �rst�order projections 	IL
�� in
which each output bit must depend on at most one input bit� Furthermore� a bfo reduction
is required to map the initial structure� An

� � to a structure with only a bounded number of

tuples present� If this condition is relaxed we get bounded expansion� �rst�order reductions
with precomputation �bfo�� If S is reducible to T via bounded�expansion� �rst�order
reductions �with precomputation� we write S �bfo T �S �bfo� T � �

As an example consider the �rst�order reduction Id�u from Example ���� Observe that this
is bounded expansion because each insertion or deletion of an edge �a� b from the graph G
can cause at most two edges to be inserted or deleted in G� � Id�u�G�

Since the composition of bfo or bfo� reductions are bfo� bfo�� respectively� it follows that�

��



Proposition �� The relations �bfo and �bfo
� are transitive�

As desired� bfo reductions preserve dynamic complexity�

Proposition �� If T � Dyn�FO and S �bfo T � then S � Dyn�FO�

Proof We are given a bfo reduction� I� from S to T � Any change to an input� A� for S

corresponds to a bounded number of changes to I�A� Given a request r to A� we know the
number� k� of possibly a�ected tuples and constants in I�A� Since I is �rst�order� we can
existentially quantify all the changed tuples and constants� Then we can respond to the k

or fewer changes using the Dyn�FO algorithm for T � Since I is a many�one reduction� every
answer of a query to T will also be the correct answer for the given query to S� �

A bfo� reduction allows I�An
� to be quite di�erent from the standard initial structure� Bm

� �
This corresponds to some precomputation to handle I�An

� as an initial structure� Thus we
have�

Corollary �� If T � Dyn�FO� and S �bfo� T � then S � Dyn�FO��

Bounded�expansion reductions with precomputation are an appropriate reduction for com�
paring the dynamic complexity of problems� We also note that most natural reductions
for P�complete and NP�complete problems are either bounded expansion� or can be easily

modi�ed to be so �see 	P
��� 	MI
��� We give one such example here�

Proposition � REACHa and CVAL are complete for P via bfo� reductions�

Proof REACHa is the reachability problem for alternating graphs� It is equivalent to
CVAL � the circuit value problem� In 	I���� it is shown that REACHa is complete for
ASPACE	log n� via �rst�order reductions� Recall that ASPACE	log n� � P� The proof

depends on the fact that REACHa is the natural complete problem for ASPACE	log n��

An alternating machine can put o� looking at its input until the last step of its computation�
Thus� each input bit is copied only once and the �rst�order reductions from 	I��� become
bounded expansion� �

The reason that Proposition ��� requires bfo� reductions is that I�An
� contains more than

a bounded number of edges and vertices marked ��� �or equivalently for CVAL� more than

a bounded number of wires and nodes marked �and�� In fact� I�An
� represents the entire

computation tree of an ASPACE	log n� machine on input all zero�s� Clearly there is a related
problem which we call REACHa

� which knows by heart the �rst�order describable graph
I�An

� and starts its input there instead of at Bm
� � In general we have

Proposition �� For any problem S that is hard for a complexity class C via bfo� reduc�

tions� there is a related problem S� that is hard for C via bfo reductions� In particular�

REACHa
� is complete for P via bfo reductions�

��



The following corollary indicates thatREACHa
� is probably not in Dyn�FO� Let CRAM	t�n�

be the set of problems computable by uniform CRCW�PRAMS using polynomially much
hardware� It is known that FO � CRAM	�� 	I�
b�� Let CRAM�	t�n� be CRAM	t�n� with
polynomial precomputation� Then

Corollary �� Dyn�FO � CRAM	n� and Dyn�FO� � CRAM�	n��

If REACHa � Dyn�FO�� then P � Dyn�FO�� and thus P � CRAM�	n��

If REACHa
� � Dyn�FO� then P � Dyn�FO� and thus P � CRAM	n��

Things are more complicated for the lower complexity classes L and NL� The reason is that

bfo� reductions preserve the number of times that the input is read� This does not matter
for P and larger classes as we may simply copy the input� reading it once� For appropriate
complexity classes� C� de�ne read�O���times C to be the set of problems S � C such that
there exists a constant k� such that any accepting computation on an input w for S reads

no bit of w more than k times�

Proposition �� Let S� T be problems� Let C be any complexity class that is closed under

�rst�order reductions� If S �bfo� T and T � read�O���times C Then S � read�O���times

C�

Proof To test if input A is in S� we run the read�O�� times C algorithm to test if
I�A � T � Each time the algorithm needs to read a bit b of I�A� it examines the relevant
bits of A� By the de�nition of bfo� reductions� these can be determined in a �rst�order way�

Furthermore� the bounded�expansion property insures that each bit of A is thus queried

only a bounded number of times� �

Now� clearlyREACHd is in read�once L and REACH is in read�once NL� since no accepting
computation need check the existence of a particular edge more than once� Thus if these
problems remained complete for their respective classes via bfo� reductions� then it would

follow that L would be equal to read�O���times L and NL would be equal to read�O���
times NL� These latter facts are false�

Fact �
 �	BRS
��� There is a problem in L that is not in read�O���times NL�

It follows that

Corollary ��� REACHd is not complete for L via bfo� reductions and

REACH is not complete for NL via bfo� reductions�

The standard proof that REACHd and REACH are complete for L and NL map each input
w to a computation graph of a �xed Turing machine on input w� The reason this mapping

is not bounded expansion is that many di�erent nodes in the computation tree might read
a particular bit of w and thus have an edge to a next node according to the value of this

bit� A variant of REACH called COLOR�REACH is invented in 	MSV
�� to �nesse this

��



di�culty� An input to COLOR�REACH consists of a directed graph with outdegree at
most two with the outgoing edges labeled zero and one� There is a given partition of the
vertices V � V� � V� �    � Vr� Furthermore� there is a bit�vector C	� � � � r�� C tells us
for each vertex v �� V� whether to follow the one�edge or the zero�edge out of v� Thus� by

setting a single bit C	i�� we are deciding on edges out of all the vertices in Vi� By letting Vi
be the set of nodes that would query bit i� we have transformed the REACH problem to
one where the standard reduction is now bounded expansion�

Fact ��� �	MSV
��� COLOR�REACH is complete for NL via bfo� reductions�

It is not hard to see that one can �colorize� most complete problems via �rst�order reduc�
tions to get a version that is complete via bfo� reductions� Here are two examples� Let

COLOR�REACHd be the subproblem of COLOR�REACH in which V� is empty and so
with the color vector C given� every vertex has out�degree one� Let COLOR�

Q
�S� be the

colorized version of the problem
Q
�S� � iterated multiplication of elements of the sym�

metric group on �ve objects 	IL
�� B�
�� This means that for each position there is a pair

of group elements� �� and ��� The positions are partitioned into classes P�� � � � � Pr and bit
C	i� tells us whether to pick �� or �� for all the positions in class Pi�

Corollary ��� COLOR�REACHd is complete for L via bfo� reductions� and COLOR�Q
�S� is complete for NC� via bfo� reductions�

Another idea from 	MSV
�� indicates that dynamic complexity classes may not be as robust
under changes to the form of the input as static classes are�

De�nition ��� �	MSV
�� For any problem S� de�ne the padded form of S as follows�

PAD�S � fw�� w�� � � � � wn j n � N� jw�j � n�w� � w� �    � wn� w� � Sg �

Clearly� PAD�S is computationally equivalent to S� However� changing a single bit of
the input to S requires n changes to the input to PAD�S� Thus a Dyn�FO algorithm for
PAD�REACHa has n �rst�order steps to respond to any real change to the input to S� Re�

call thatREACHa is complete for P via �rst�order reductions� Thus� so is PAD�REACHa�
Also� it is easy to see that REACHa is in FO	n� 	I���� It follows that a complete problem
for P is in Dyn�FO�

Theorem ��� PAD�REACHa� is in Dyn�FO�

� Conclusions

We have de�ned dynamic complexity classes� and their reductions� In particular� we have
begun an investigation of the rich dynamic complexity class Dyn�FO� Much work remains
to be done� We point toward a few of the many directions�
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�� Does Dyn�FO contain any of the complexity classes� ThC�� NC�� L� NL" We con�
jecture that ThC� � Dyn�FO and that REACHa �� Dyn�FO and thus Dyn�FO �

��
P�

�� Is REACH in Dyn�FO" We conjecture that it is�

�� Further work needs to be done concerning the role and value of precomputation in

the dynamic setting�

�� In this paper� we have only considered problems that have the basic set of requests as
de�ned in Equation ���� As pointed out in Note ���� one can consider di�erent sets of
possible requests� For example� an interesting subset of Dyn�FO results if we require

�rst�order response to any �rst�order change to the input� This and other changes to
the request set should be investigated�

�� Find natural complete problems for Dynamic Classes�

�� Find natural descriptive languages that capture Dynamic Classes�

�� Determine an automatic way to look at a query and �gure out what to save in a data
structure so that the query will have low dynamic complexity�

Acknowledgements� Thanks to Ron Fagin� Paris Kanellakis� and Peter Miltersen for
useful discussions�
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