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Abstract

Traditionally, computational complexity has considered only static problems. Clas-
sical Complexity Classes such as NC, P, and NP are defined in terms of the complexity
of checking — upon presentation of an entire input — whether the input satisfies a certain
property.

For many applications of computers it is more appropriate to model the process as
a dynamic one. There is a fairly large object being worked on over a period of time.
The object is repeatedly modified by users and computations are performed.

We develop a theory of Dynamic Complexity. We study the new complexity class,
Dynamic First-Order Logic (Dyn-FO). This is the set of properties that can be main-
tained and queried in first-order logic, i.e. relational calculus, on a relational database.
We show that many interesting properties are in Dyn-FO including multiplication, graph
connectivity, bipartiteness, and the computation of minimum spanning trees. Note that
none of these problems is in static FO, and this fact has been used to justify increasing
the power of query languages beyond first-order. It is thus striking that these prob-
lems are indeed dynamic first-order, and thus, were computable in first-order database
languages all along.

We also define “bounded-expansion reductions” which honor dynamic complexity
classes. We prove that certain standard complete problems for static complexity classes,
such as REACH, for P, remain complete via these new reductions. On the other hand,
we prove that other such problems including REACH for NL and REACH, for L are
no longer complete via bounded-expansion reductions. Furthermore, we show that a
version of REACH,, called REACH,™, is not in Dyn-FO unless all of P is contained
in parallel linear time.

1 Introduction

Traditional complexity classes are not completely appropriate for database systems. Unfor-
tunately, appropriate Database Complexity Classes have not yet been defined. This paper
makes a step towards correcting this situation.
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In our view, the main two differences between database complexity and traditional com-
plexity are:

1. Databases are dynamic. The work to be done consists of a long sequence of small
updates and queries to a large database. Each update and query should be performed
very quickly in comparison to the size of the database.

2. Computations on databases are for the most part disk access bound. The cost of
computing a request is usually tied closely to the number of disk pages that must be
read or written to fulfill the request.

Of course, a significant percentage of all uses of computers have the above two features. In
this paper we focus on the first issue. Dynamic complexity is quite relevant in most day
to day tasks. For example: texing a file, compiling a program, processing a visual scene,
performing a complicated calculation in Mathematica, etc. Yet an adequate theory of
dynamic complexity is lacking. (Recently, there have been some significant contributions in
this direction, e.g. [MSV94]. Note that dynamic complexity is different although somewhat
related to on-line complexity which is receiving a great deal of attention lately.)

We will define the complexity class Dyn-FO to be the set of dynamic problems that can be
expressed in first-order logic. What this means is that we maintain a database of relevant
information so that the action invoked by each insert, delete, and query is first-order ex-
pressible. This is very natural in the database setting. In fact, Dyn-FO is really the set of
queries that are computable in a traditional first-order query language.

Many interesting queries such as connectivity for undirected graphs are not first-order when
considered as static queries. This has led to much work on database query languages such
as Datalog that are more expressive than first-order logic.

We show the surprising fact that a wealth of problems, including connectivity, are in
Dyn-FO. Thus, considered as dynamic problems — and that is what database problems
are — these problems are already first-order computable. The problems we show to be in
Dyn-FO include: reachability in undirected graphs, maintaining a minimum spanning forest,
k-edge connectivity and bipartiteness. All regular languages are shown to be in Dyn-FO.
In [P94] it is shown that some NP-complete problems admit Dyn-FO approximation algo-
rithms. Dong and Su [DS93] showed that reachability in directed, acyclic graphs and in
function graphs is in Dyn-FO. The static versions of all these problems are not first-order.

Related work on dynamic complexity appears in [MSV94]. In [DST93] first-order incremen-
tal evaluation system (FOIES) are defined. A problem has an FOIES iff it is in Dyn-FO. In
[TY79], Tarjan and Yao propose a dynamic model whose complexity measure is the num-
ber of probes into a data structure and any other computation is free. A logn/loglogn
lower bound on a dynamic prefix multiplication problem was proved in [FS89]. Other lower
bounds [M93], [R94] have been proved using these methods.

Other work on dynamic complexity for databases includes the theory of maintaining materi-
alized views upon updates ([J92], [GMS93], [I085]), and in integrity constraint simplification
([LST8T7], [N82]). The design of dynamic algorithms is an active field. See, for example,
[E192], [ET92b], [R94], [CTI1], [F85], [F91] among many others. There is also a large
amount of work in the programming language community on incremental computation, see
for example [RR96, L'T94].



This paper is organized as follows. In Section 2, we begin with some background on Descrip-
tive Complexity. In Section 3, for any static complexity class C, we define the corresponding
dynamic class, Dyn-C. The class Dyn-FO is the case we emphasize. In Section 4, we present
the above mentioned Dyn-FO algorithms. In Section 5, we describe and investigate reduc-
tions honoring dynamic complexity. Finally, we suggest some future directions for the study
of dynamic complexity.

2 Descriptive Complexity: Background and Definitions

In this section we recall the notation of Descriptive Complexity. See [I89] for a survey and
[IL94] for an extensive study of first-order reductions.

In the development of descriptive complexity it has turned out that “natural” complexity
classes have “natural” descriptive characterizations. For example, space corresponds to
number of variables; and parallel time is linearly related to quantifier-depth. Sequential
time on the other hand does not seem to have a natural descriptive characterization. We
like to think of this as yet another indication that sequential time is not a natural notion,
simply an artifact of the so-called “Von-Neumann bottleneck”. As another example, the
class P, consisting of those problems that can be performed in a polynomial amount of work,
has an extremely natural characterization as FO(LFP) — first-order logic closed under the
ability to make inductive definitions.

It is reassuring that our notions of naturalness in logic correspond so nicely with naturalness
in complexity theory. In the present work we venture into the terrain of dynamic complexity.
What is natural is not yet clear. We use the intuitions gained from the descriptive approach
to aid us in our search.

We will code all inputs as finite logical structures, i.e., relational databases. A wvocabulary
T =(R{,...,R™ c1,...,cs) is a tuple of input relation and constant symbols. A structure
with vocabulary 7 is a tuple, A = (|A|, R{*...RA, cf*...c/!) whose universe is the nonempty
set |A|]. For each relation symbol R; of arity a; in 7, A has a relation R;“ of arity a; defined
on |A|,i.e. RA C |.A|%. For each constant symbol, ¢; € 7, A has a specified element of its

universe 03»4 € | A|. We use the notation |.A| to denote the cardinality of the universe of A.

Since we are only interested in finite structures, we let STRUC][r]| denote the set of finite
structures of vocabulary 7. We define a complexity theoretic problem to be any subset
S C STRUC|7] for some 7. A problem is the same thing as a boolean query.

For any vocabulary 7 there is a corresponding first-order language £(7) built up from the
symbols of 7 and the numeric relation symbols, =, <, and BIT, and numeric constants
min, maz using logical connectives: A,V,—, variables: z,y,z, ..., and quantifiers: V,3. (<
represents a total ordering on the universe which may be identified with the set {0,1,...,n—
1}. The constants min, maz represent the minimum and maximum elements in this ordering.
BIT(z,y) means that when z is coded as a logn bit number, the y*" bit of this encoding is
a one.)

In static complexity, the entire input structure A is fixed and we are interested in deciding
whether A € S for a relevant property, S. In the dynamic case, the structure changes over
time. The actions we have in mind are a sequence of ingertions and deletions of tuples in
the input relations. We will usually think of our dynamic structure, A = ({0,1,...n —



1}, Ry,..., Ry c1,...,¢s), as having a fixed size potential universe, |A| = {0,1,...n — 1},
and a unary relation Ry, specifying the elements in the active domain. The initial structure
of size n for this vocabulary will be taken to be A? = ({0,1,...n—1},{0},0,...,0,0,...,0),
having R; = {0} indicating that the single element 0 is in the active domain and all other
relations are empty.

2.1 First-Order Reductions

Here we briefly describe first-order reductions, a natural way of reducing one problem to
another in the descriptive context. First-order reductions are used in Section 5 to build new
reductions that honor dynamic complexity. Furthermore, reductions are used in Section 3 as
a motivation for the definition of Dynamic Complexity. More information about first-order
reductions can be found in [IL94]. Recall that a first-order query is a first-order definable
mapping from structures of one vocabulary to structures of another. A first-order reduction
is simply a first-order query that is also a many-one reduction. We give an example and
then the formal definition.

Example 2.1 Let graph reachability denote the following problem: given a graph, GG, and
vertices s,t, determine if there is a path from s to ¢ in G. We shall use REACH to denote
graph reachability on directed graphs. Let REACH, be the restriction of REACH to
undirected graphs. Let REACH, be the restriction of REACH in which we only allow
deterministic paths, i.e., if the edge (u,v) is on the path, then this must be the unique edge
leaving u. Notice that REACH, is reducible to REACH,, as follows: Given a directed
graph, G, let G’ be the undirected graph that results from G by the following steps:

1. Remove all edges out of ¢.
2. Remove all multiple edges leaving any vertex.

3. Make each remaining edge undirected.

Observe that there is a deterministic path in G from s to t iff there is a path from s to ¢ in
G'.

The following first-order formula ¢4, accomplishes these three steps and is thus a first-
order reduction from REACH; to REACH,. More precisely, the first-order reduction
is the expression Iq_, = Azy(@4_u,s,t) whose meaning is, “Make the new edge relation
{(z,y) | ¢d4—u}, and map s to s and ¢ to ¢.”

a(z,y) = E(z,y) A z#t A (V2)(B(z,2) = 2=1y)
viulr,y) = alz,y) V aly,z)
O
14, is a unary first-order reduction: it leaves the size of the universe unchanged. Now we

define k-ary first-order reductions. These map structures with universe size n to structures
with universe size n*.

Definition 2.2 (First-Order Reductions) Let o and 7 be two vocabularies, with 7 =
(RY',...,R%,c1,...,cs). Let S C STRUC]o], T C STRUC|7] be two problems. Let k be



a positive integer. Suppose we are given an r-tuple of formulas ¢; € L(o), i = 1,...,r,
where the free variables of ¢; are a subset of {z1,...,2k4,}. Finally, suppose we are
given an s-tuple, #1,...,%;, where each ?; is a k-tuple of constant symbols from L(o).
Let I = Agy..2,{®1,---,9r,t1,...,ts) be a tuple of these formulas and constants. (Here
d = max;(ka;).) Then I induces a mapping also called I from STRUC[c] to STRUC|[r] as
follows. Let A € STRUC]o] and let n = || A].

I(A) = ({0,...,n* =1}, Ry,..., R, T1,...,T5)

Here each c; is given by the corresponding k-tuple of constants. The relation R; is deter-
mined by the formula ¢;, for i = 1,...,r. More precisely, let the function (-,...,-) : |A*¥ —
|Z(A)| be given by

(ur,ugy ..., ug) = Up+Up 1N+ + unf !

Then,
R; = {(<u17"->uk>7-"7<u1+k(ai—1)7"'7ukai>) | A’:(pi(ula"-ukai)}

Suppose that I is a many-one reduction from S to T, i.e., for all A in STRUC|o],
AeS & IAeT

Then we say that I is a k-ary first-order reduction of S to T'. O

3 Dynamic Complexity Classes

We think of an implementation of a problem S C STRUC[o| as a mapping, I, from
STRUC][o] to STRUC|7] where " C STRUC]|7] is an easier problem. The map I should be a
many-one reduction from S to T meaning that any structure A has the property S iff I(.A)
has the property T. (Actually, in our definition below, the mapping I will map a sequence
of inserts, deletes, and changes 7 to a structure. In the interesting special case when I(7)
depends only on the corresponding structure .4 and not which sequence of requests created
it, we call I memoryless.)

The idea is that I(.A) is the data structure — our internal representation of A. We are
thinking and talking about a structure A € STRUC]|o], but the structure that we actually
have in memory and disk and are manipulating is I(A) € STRUC[r]. In this way, each
request to A is interpreted as a corresponding series of actions on I(A). The fact that I
is a many-one reduction insures that the query asking whether A € S can be answered
according as whether I(A) € T'. In order for this to be useful, 7" must be a problem of low
dynamic complexity.

Next we give the formal definition of dynamic complexity classes. The issue is that the
structure I(A) can be updated efficiently in response to any request to A. In particular, if
T € FO and all such requests are first-order computable, then S € Dyn-FO.



3.1 Definition of Dyn-C

For any complexity class C we define its dynamic version, Dyn-C, as follows. Let ¢ =
(RY*,...,R¢,c1,...,cs) be a vocabulary and let S C STRUC]o] be any problem. Let

Rn,o = {ins(i,a),del(,a),set(j,a) |1 <i <r,ae€{0,...,n —1}*,1 < j < s} (3.1)

be the set of possible requests to insert tuple @ into the relation R;, delete tuple @ from
relation R;, or set constant c; to a. Let RQG be the set of finite sequences from R, .

Let eval, » : R}, , — STRUC[o] be the naturally defined evaluation of a sequence of requests,
initialized by eval, »(0) = AJ.

Define, S € Dyn-C iff there exists another problem 7" C STRUC|r] such that 7" € C and
there exist maps,

fn: Ry o — STRUC[7]; gn : STRUC[7] X Ry, — STRUC|7]

n,o

satisfying the following properties.

1. For all 7 € R ,, (evalno(r) € S) & (fu(r) €T)

2. Forall s € Ry, and 7 € RZ,J? fn(7s) = gn(fu(F),s)
N ()] = llevaly o (7)) 1

4. The functions g, and the initial structure f,(0) are uniformly computable in com-
plexity C (as a function of n).

wW

Note that the condition (4) says that each single request s € R, can be responded to
quickly, i.e., with complexity C. According to the definition of R, », the kind of updates
allowed are single inserts or deletes of tuples, and assignments to constants. Of course it
would be interesting to consider other possible sets of updates.

We will say that the above map f is memoryless if the value of f(7) depends only on
evaly, o (7).

In the above, if no deletes are allowed then we get the class Dyn,-C, the semi-dynamic
version of C. One can also consider amortized versions of these two classes. Furthermore,
there are some cases where we would like extra, but polynomial, precomputation to compute
the initial structure f(). If we relax condition (4) in this way, then the resulting class is
called Dyn-C* — Dyn-C with polynomial precomputation.

We have thus defined the dynamic complexity classes Dyn-C for any static class, C. Two
particularly interesting examples are Dyn-FO and Dyn-TIME[¢(n)] for ¢(n) less than n,
where the latter is the set of problems computable dynamically on a RAM (with word size
O(logn)) in time ¢(n).

Example 3.2 Consider the simple boolean query: PARITY, which is true iff the input
binary string has an odd number of one’s. This is well known not to be in static FO

!This expects that the complexity class C is closed under polynomial increases in the input size. For more
restricted classes C, such as linear time, we insist that |f.(7)] = O(|eval, o (F)|)-



[A83, FSS84|. The dynamic algorithm for PARITY maintains a bit b which is toggled after
any change to the string. We also remember the input string so that we can tell if a request
has actually changed the string.

The vocabulary of the PARITY problem is ¢ = (M!) consisting of a single monadic relation
symbol. Let A, be the structure coding the binary string w. Then A,, &= M (3) iff the st
bit of w is a one. Let 7 = (M, b) where b is a boolean constant symbol. The problem T,
obviously in FO, is given as follows:

T = {AeSTRUC[] | Ak b}

The initial data structure f,(0) = ({0,1,...,n — 1}, 0, false) consists of a string of all 0’s,
with the boolean b initialized to false.

To show that PARITY is in Dyn-FO we need to give the first-order formulas that compute
gn(B, s) for any request s € R, . The cases are the setting of a bit of w to 0 or 1. Let M,b
denote the relations in the data structure B before the request, and M’,b" are their values
afterwards.

ins(a, M):

M = M(z)Vz=a
¥ = (bAM(a))V (=bA-M(a))

del(a, M):

M = M)Az #a
¥ = (bA=M(a))V (=bA M(a))

Note 3.3 In the definition of Dyn-C we assumed that our problem S had only the basic
requests Ry, (Equation 3.1) defined. The definition of Dyn-C remains valid when we allow
an arbitrary set of operations O, , to be performed on the input structures. It thus makes
sense to ask whether any data structure with a given set of operations is in Dyn-C.

4 Problems in Dyn-FO

It is well known that the graph reachability problem is not first-order expressible and this
has often been used as a justification for using database query languages more powerful
than FO [CH82|. Thus, the following two theorems are striking.

Theorem 4.1 REACH, is in Dyn-FO.

Proof We maintain a spanning forest of the underlying graph via relations, F(z,y) and
PV(z,y,u) and the input relation, E. F(z,y) means that the edge (z,y) is in the current
spanning forest. PV(z,y,u) means that there is a (unique) path in the forest from z to y



via vertex u. The vertex, u, may be one of the endpoints. So, for example, if F(z,y) is true,
then so are PV(z,y,z) and PV(z,y,y). We maintain the undirected nature of the graph
by interpreting insert(E,a,b) or delete(E,a,b) to do the operation on both (a,b) and (b, a).

Insert(F,a,b): We denote the updated relations as E', F/ and PV’. In the sequel, we shall
use P(z,y) to abbreviate (x = yV PV(z,y,z)), and Eq(z,y, ¢, d) to abbreviate the formula,

((z=chy=d)V(z=dAy=c)).
Maintaining the input edge relation is trivial:

E'(z,y) = E(z,y) vV Eq(z,y,4a,b)

The edges in the forest remain unchanged if vertices a and b were already in the same
connected component. Otherwise, the only new forest edge is (a,b).

Fl(x7y) = F(xay) \ (EQ(Z',Z/, a, b) A _'P(a7 b))

Now all that remains is to compute PV’. The latter changes iff edge (a,b) connects two
formerly disconnected trees. In this case, all new tuples (x,y,z) have  coming from one of
the trees containing a and b, and y coming from the other.

PV'(z,y,2) = PV(2,y,2) V (Fuv)[Eq(u,v,a,b) A P(z,u) A P(v,y)
A (PV(z,u,2) V PV(v,y,2))]

Delete(FE, a,b): If edge (a,b) is not in the forest (= F(a, b)), then the updated relations are
unchanged, except that E'(a,b) is set to false. Otherwise, we first identify the vertices of
the two trees in the forest created by the deletion, and then we pick an edge, say e, out of
all the edges (if any) that run between the two trees and insert e into the forest, updating
the relations, PV and F, appropriately.

We define a temporary relation T to denote the PV relation after (a,b) is deleted, before
the new edge, e, is inserted.

T(xvyvz) = PV(LL’,y,Z) A _'(PV(LB)ya CI,) A PV(Q:):% b))

Using T, we then pick the new edge that must be added to the spanning forest. New(z,y)
is true if and only if edge (z,y) is the minimum? edge that connects the two disconnected
components:

New(z,y) = E(z,y) AT(a,z,a) NT(b,y,b) A
(Yuv)[(E(u,v) AT (a,u,a) ANT(b,v,b)) — (z<uV (z=uAy<v))]
E’, F and PV’ are then defined as follows:
E'(z,y) = E(z,y) A ~Eq(z,y,a,0)
We remove (a,b) from the forest and add the new edge.

F'(z,y) = (F(z,y) A ~Eq(z,y,a,b)) V New(z,y) V New(y,z)

*Note that this uses an ordering on the vertices. If no such ordering is given, then we can order edges by
their order of insertion. In the presence of an ordering relation, we can modify the construction to always
maintain the minimum spanning forest as in Theorem 4.4. This is then memoryless.




The paths in the forest, from z to y via z, that did not pass through a and b,
are valid. Also, new paths have to be added as a result of the insertion of a
new edge in the forest.

PV/(z,y,2) = T(z,y,z) V [(Fu,v)(New(u,v) V New(v,u)) A T(z,u,z)
ATy, v,y) A (T(z,u,2) Vv T(y,v,2))]

|

In [P194] we asked if the proof of Theorem 4.1 could be carried out using auxiliary relations
of arity two instead of three. Quite recently Dong and Su have shown that the answer is yes
[DS95]. They show that the arity three construction of PV can be replaced by a directed
version of F and its transitive closure. They also use Ehrenfeucht-Fraissé games to show
that arity one does not suffice.

We next give a new Dyn-FO algorithm for the following result of Dong and Su. By REACH
(acyclic) we mean the REACH problem restricted to queries in which the input graph is
acyclic during its entire history.

Theorem 4.2 ([DS93]) REACH,; and REACH (acyclic) are in Dyn-FO.

Proof That REACH, is in Dyn-FO follows from Theorem 4.1 together with the fact that
REACH, is reducible to REACH, (Example 2.1). We defer the details of this until the
proof of Proposition 5.3.

For the REACH (acyclic) case, the inserts are assumed to always preserve acyclicity. We
maintain the path relation P(z,y) which means that there is a path from z to y in the
graph.
Insert(E,a,b):

P'(z,y) = P(z,y)V (P(z,a) A P(b,y))

Delete(E,a,b):

P'(z,y) = P(z,y) A [=P(z,a) V =P(b,y) V
(Fuv)(P(z,u) A P(u,a) A E(u,v) A—=P(v,a) A P(v,y) A(v#bVu#a))]

In the case where there is a path from z to y using the edge (a,b), consider any path not
using this edge. Let w be the last vertex along this path from which a is reachable. Note
that u # y because the graph was acyclic before the deletion of edge (a,b). Thus, the
edge (u,v) described in the above formula must exist and acyclicity insures that the path
r — u — v — y does not involve the edge (a,b). O

For G, a directed acyclic graph, the Transitive Reduction, TR(G), is the minimal subgraph
of G having the same transitive closure as G.

Corollary 4.3 Transitive Reduction for directed acyclic graphs is in memoryless Dyn-FO.



Proof We maintain the path relation, P, in a way that is quite similar to the proof of
Theorem 4.2.

Insert(E,(a,b)): If P(a,b) already holds, then there is no change. Otherwise, we may have
to remove some edges from TR.

TR (z,y) = (=P(a,b) Az =aAy=0b) V [TR(z,y) A =(P(z,a) A P(b,y))]

Delete(E,(a,b)): We have to determine the new edges that might be added in TR. For an
edge (z,y), New(z,y) holds if there was a path from z to y via (a,b) and no path of length
greater than one remains in the graph when (a,b) is deleted.

New(z,y) = E(z,y) A -~TR(z,y) A P(z,a) A P(b,y)
A (Yuv)=(P(z,u) A P(u,a) A E(u,v) A=P(v,a) A P(u,y) A(v #bVu#a))

TR (z,y) = (TR(z,y)A-(z=aAy=20)) V New(z,y) O

Theorem 4.4 Minimum Spanning Forests can be computed in Dyn-FO.

Proof The general idea is to maintain the forest edges and non-forest edges dynamically
and to maintain the relations PV(z,y, e) and F(z,y) as in the case of REACH,,. Let W(a,b)
denote the weight of edge (a,b). The difference from REACH, is that we have to maintain
the minimum weighted forest. That changes our update procedures in the following way.

Deletion of the edge (a,b) is handled as follows. We determine using PV all the vertices
that can be reached from « in the tree and all those that can be reached from b. These give
the vertices in the two trees that the original tree splits into. Then, instead of choosing
the lexicographically first non-forest edge that reconnects the two pieces, we choose the
manimum wetght such edge, and insert it. If there is more than one such minimum edge,
then we break the tie with the ordering. PV is updated accordingly to reflect the merging
of two disconnected trees into one.

When the edge (a,b) is inserted, we determine if there exists a path between a and b. If
there is no path, then (a,b) merges two trees into one, and PV is updated as before for
REACH,. Otherwise, using PV, we can determine the forest-edges that appear in the
unique path in the forest between b and a, and check to see if the weight of the new edge,
(a,b), is less than the weight of any of these edges. If not, then (a,b) is not a forest edge
and nothing changes. Otherwise, let (¢,d) be the maximum weight edge on the path from
a to b. We make F/(ec,d) false and F/(a,b) true and update PV accordingly. It is easy to
see that if the weights are all distinct, or in the presence of an ordering on the edges, this
construction is memoryless. O

We next show that Dyn-FO algorithms exist for Bipartiteness, Edge Connectivity, Lowest
Common Ancestors in directed forests, and Maximal Matching in bounded degree graphs.
This last problem has no known sub-linear-time fully dynamic algorithm.

Theorem 4.5 Dyn-FO algorithms exist for the following problems:
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1. Bipartiteness,
2. k-Edge Connectivity, for a fixed constant k
3. Mazximal Matching in undirected graphs,

4. Lowest Common Ancestor in directed forests.

Proof

1. Bipartiteness: We maintain bipartiteness in undirected graphs by maintaining
relations PV(z,y,2) and F(z,y), as for REACH,, and also, Odd(z,y), which means that
there exists a path of odd length from x to y in the spanning forest. The graph is bipartite
iff (Vey)E(z,y) — Odd(x,y). We show how to update Odd in Dyn-FO.

Insert(E,a,b): If the new edge, (a,b) becomes a forest-edge, we determine for all newly
connected vertices z and y whether the new path is odd. If (a,b) does not become a forest
edge, then Odd is unchanged.

Odd" = Odd(z,y) VvV [ﬂPV(a, b,a) A (Juv)Eq(u,v,a,b) APV(z,u,2) APV(y,v,y)
A ((0Odd(z,u) A Odd(y,v)) V (=O0dd(z,u) A =Odd(y, v)))]

Delete(E, a,b): If (a,b) is a non-forest edge, Odd is unchanged. Otherwise, for all ver-
tices x,y, which are in the two disconnected trees that result from deletion of (a,b), make
Odd(z,y) and PV(z,y, z) false. Then, we select some edge (if any) that spans the discon-
nected components and insert it in and update Odd and PV exactly as for the insertion
case.

2. k-Edge Connectivity: As before, we maintain the relations, E,F and PV. Insertions
and deletions are handled as for REACH,. The query is handled as follows. Since & is
constant, we universally quantify over k edges, say, (¢1,91),.-., (g, yx), and then, for every
pair of vertices, ¢ and y, check for a path between 2 and y in the graph that is obtained
after deletion of edges, (z1,¥41), ..., (Zk, Yx), by composing the Dyn-FO formula (for a single
deletion) k times.

3. Maximal Matching: We maintain a maximal matching in Dyn-FO by maintaining,
under insertions and deletions of edges, a relation, Match(z,y) which means that the edge
(z,y) is in the matching. Initially, for the empty graph, Match(z,y) is false for all z and
y. As usual, all relations are symmetric. We shall use MP(z) to abbreviate the formula
(3z)Match(z, z).

Insert(E,a,b): The matching remains unchanged except that the edge (a,b) is checked to
see whether it can be added.

Match'(z,y) = Match(z,y) V (Eq(z,y,a,b) A =MP(a) A =MP(b))
Delete(E,a,b): If (a,b) is not in the matching, then Match is unchanged. Otherwise, we

remove (a,b) from the matching. We pick the minimum unmatched vertex adjacent to a, if
any, and match it with a. Then we do the same for b.
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4. Lowest Common Ancestor: In a directed forest we maintain the relation P exactly
as in Theorem 4.2. Vertex a is the lowest common ancestor of z and y iff

Pla,z) A Pla,y) A (V2)((P(2,2) A P(z,y)) — P(z,0a)) O

We have shown that Dyn-FO contains some interesting problems that are not static first-
order. In particular, Dyn-FO contains natural complete problems for L. and NL. As we
will see in the next section, these problems do not remain complete via the reductions that
honor dynamic complexity. Thus it does not necessarily follow that Dyn-FO contains the
classes L or NL. We can prove the following:

Theorem 4.6 FEvery regular language is in Dyn-FO.

Proof We are given a deterministic finite automaton D = (X,Q,6,s, F) and an input
size n. Let ¥ = {01,09,...,0¢}. Let w € ¥* be a string of length n = |w|. Let A, be the
logical structure coding w:

Aw = ({0,1,...,n =1}, Ry,..., R

The universe of A, consists of the positions of the n letters in w. A, = R;(j) iff the jtt
character of w is ¢;. With this encoding, the allowable operations are to insert or delete a
character into any position in the string. (As usual, there is a numeric predicate < giving
the usual total ordering on {0,1,2,...,n— 1}.) The deletion of a character at position 4, is
equivalent to setting the character at that position to the empty string.

A natural dynamic algorithm for the regular language L(D), is to maintain a complete
binary tree with leaves at the input positions 0,1,...,n — 1. At the leaf I(¢) at position 7
we store the transition function of D on reading input symbol ;. That is we store a table
for fis) = 6(-,04) :+ @ — Q. At each internal node of the tree we store the composition
of the functions of its two children. Thus, at every node v of the tree, we have stored the
transition function function f, = 6*(-,w,) where w, is the subword of w that is sitting
below v’s subtree. In particular, the current string is in L(D) iff f,(s) € F, where f, is the
mapping stored at the root.

Since D is a finite state machine, these mappings consist of a bounded number of bits each.
When we change the symbol o;, this affects the logn nodes on the path from [(i) to r.
We can thus guess the O(logn) bits that change in the tree by existentially quantifying
O(1) variables. (Remember that the value of a variable is a number between 0 and n — 1,
i.e. logn bits, and we have the BIT predicate available for decoding.) We then universally
assert that each of the logn positions has been updated correctly. O

We conclude this section with two other low-level problems that are in Dyn-FO:

Proposition 4.7 Multiplication is in Dyn-FO.

Proof Given two n-bit numbers, «,y, their addition can be expressed in FO C Dyn-FO.
We maintain the product in a bit array, P. Suppose the update operation is Change(z,,b).
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(Change (y,,b) is analogous.) There are two cases:

If the bit is changed from 0 to 1, then P’ is given by shifting y by 4 bits to the right and
then adding it to P. It is easily accomplished by a first-order formula.

If the bit is changed from 1 to 0, then P’ is given by shifting y by ¢ bits to the right and then
adding the 2’s complement of the resulting number to P. Again this is easily accomplished
by a first-order formula. O

Proposition 4.8 For any constant, k, D*, the Dyck language on k parentheses is in
Dyn-FO.

Proof This is similar to the proof in [BC89] that D* is in ThC? — the class of problems
accepted by bounded-depth, polynomial-size threshold circuits. D* can be parsed using the
level trick: assign a level to each parenthesis starting at one and ignoring the differences in
parenthesis type. The level of a parenthesis equals the number of left parentheses to its left
(including it) minus the number of right parentheses strictly to its left. A right parenthesis
matches a left one if it is the closest parenthesis to the right on the same level. A string is
in D* iff all parentheses have a positive level and each left parenthesis has a matching right
parenthesis of the same type.

The level of each position can be maintained in Dyn-FO. For example, the insertion of a
left parenthesis at position p causes a one to be added to the level of each position ¢ > p.
Once the levels are maintained, the fact that every left parenthesis has a matching right
one of the same type is first-order expressible. O

5 Dynamic Reductions

Now we define appropriate reductions for comparing dynamic complexity classes. For these
classes first order reductions are too powerful. We restrict them by imposing the following
expansion property, cf. [MSV94] for a similar restriction.

Definition 5.1 Bounded expansion, first-order reductions (bfo) are first-order reductions
(Definition 2.2) such that each tuple in a relation and each constant of the input structure
affects at most a constant number of tuples and constants in the output structure. This
dependency is oblivious, i.e., only depending on the numeric predicates: <,=, BIT and not
on the input predicates. (This is similar to the definition of first-order projections [IL94] in
which each output bit must depend on at most one input bit.) Furthermore, a bfo reduction
is required to map the initial structure, Af, to a structure with only a bounded number of
tuples present. If this condition is relaxed we get bounded expansion, first-order reductions
with precomputation (bfo™). If S is reducible to 7' via bounded-expansion, first-order
reductions (with precomputation), we write S <, T' (S <0+ T))- O

As an example consider the first-order reduction /4_, from Example 2.1. Observe that this
is bounded expansion because each insertion or deletion of an edge (a,b) from the graph G
can cause at most two edges to be inserted or deleted in G' = I ,(G).

Since the composition of bfo or bfo™ reductions are bfo, bfo™, respectively, it follows that:
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Proposition 5.2 The relations <.¢, and <,,+ are transitive.
As desired, bfo reductions preserve dynamic complexity:

Proposition 5.3 If T € Dyn-FO and S <., T', then S € Dyn-FO.

Proof We are given a bfo reduction, I, from S to 7. Any change to an input, A, for S
corresponds to a bounded number of changes to I(.A). Given a request r to A, we know the
number, k, of possibly affected tuples and constants in I(.A). Since I is first-order, we can
existentially quantify all the changed tuples and constants. Then we can respond to the k
or fewer changes using the Dyn-FO algorithm for 7". Since I is a many-one reduction, every
answer of a query to T" will also be the correct answer for the given query to S. O

A bfo™ reduction allows I(A?%) to be quite different from the standard initial structure, BJ*.
This corresponds to some precomputation to handle I(.Af) as an initial structure. Thus we
have:

Corollary 5.4 If T € Dyn-FO" and S <.+ T, then S € Dyn-FO™.

Bounded-expansion reductions with precomputation are an appropriate reduction for com-
paring the dynamic complexity of problems. We also note that most natural reductions
for P-complete and NP-complete problems are either bounded expansion, or can be easily
modified to be so (see [P94], [MI94]). We give one such example here:

Proposition 5.5 REACH, and CVAL are complete for P via bfot reductions.

Proof REACH, is the reachability problem for alternating graphs. It is equivalent to
CVAL - the circuit value problem. In [I81], it is shown that REACH, is complete for
ASPACE[log n| via first-order reductions. Recall that ASPACE[logn] = P. The proof
depends on the fact that REACH, is the natural complete problem for ASPACE[logn].
An alternating machine can put off looking at its input until the last step of its computation.
Thus, each input bit is copied only once and the first-order reductions from [I81] become
bounded expansion. O

The reason that Proposition 5.5 requires bfo™ reductions is that I(Af) contains more than
a bounded number of edges and vertices marked “¥” (or equivalently for CVAL, more than
a bounded number of wires and nodes marked “and”). In fact, I(Af) represents the entire
computation tree of an ASPACE[log n| machine on input all zero’s. Clearly there is a related
problem which we call REACH, " which knows by heart the first-order describable graph
I(Af) and starts its input there instead of at Bf*. In general we have

Proposition 5.6 For any problem S that is hard for a complezity class C via bfo™ reduc-
tions, there is a related problem St that is hard for C via bfo reductions. In particular,
REACH,™" is complete for P via bfo reductions.
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The following corollary indicates that REACH, ™ is probably not in Dyn-FO. Let CRAM][t(n)]
be the set of problems computable by uniform CRCW-PRAMS using polynomially much
hardware. It is known that FO = CRAM][1] [I89b]. Let CRAM ™ [¢(n)] be CRAM[t(n)] with
polynomial precomputation. Then

Corollary 5.7 Dyn-FO C CRAM[n] and Dyn-FO* C CRAM™[n].
If REACH, € Dyn-FO*, then P = Dyn-FO*, and thus P = CRAM*[n].
If REACH," € Dyn-FO, then P = Dyn-FO, and thus P = CRAM|n].

Things are more complicated for the lower complexity classes L and NL. The reason is that
bfo™ reductions preserve the number of times that the input is read. This does not matter
for P and larger classes as we may simply copy the input, reading it once. For appropriate
complexity classes, C, define read-O(1)-times C to be the set of problems S € C such that
there exists a constant k, such that any accepting computation on an input w for S reads
no bit of w more than & times.

Proposition 5.8 Let S,T" be problems. Let C be any complexity class that is closed under
first-order reductions. If S <,,+ T and T € read-O(1)-times C Then S € read-O(1)-times
C.

Proof To test if input A is in S, we run the read-O(1) times C algorithm to test if
I(A) € T. Each time the algorithm needs to read a bit b of I(.A), it examines the relevant
bits of A. By the definition of bfo* reductions, these can be determined in a first-order way.
Furthermore, the bounded-expansion property insures that each bit of A is thus queried
only a bounded number of times. O

Now, clearly REACH, is in read-once I, and REACH is in read-once NL, since no accepting
computation need check the existence of a particular edge more than once. Thus if these
problems remained complete for their respective classes via bfo™ reductions, then it would
follow that L would be equal to read-O(1)-times L and NL would be equal to read-O(1)-
times NL. These latter facts are false:

Fact 5.9 ([BRS91]) There is a problem in L that is not in read-O(1)-times NL.
It follows that

Corollary 5.10 REACHy is not complete for L via bfo™ reductions and
REACH is not complete for NL via bfo™ reductions.

The standard proof that REACH; and REACH are complete for L and NL map each input
w to a computation graph of a fixed Turing machine on input w. The reason this mapping
is not bounded expansion is that many different nodes in the computation tree might read

a particular bit of w and thus have an edge to a next node according to the value of this
bit. A variant of REACH called COLOR-REACH is invented in [MSV94] to finesse this
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difficulty. An input to COLOR-REACH consists of a directed graph with outdegree at
most two with the outgoing edges labeled zero and one. There is a given partition of the
vertices V.= VU Vi U --- U V,. Furthermore, there is a bit-vector C[L...r]. C tells us
for each vertex v € V whether to follow the one-edge or the zero-edge out of v. Thus, by
setting a single bit C[i], we are deciding on edges out of all the vertices in V;. By letting V;
be the set of nodes that would query bit ¢, we have transformed the REACH problem to
one where the standard reduction is now bounded expansion:

Fact 5.11 ([MSV94]) COLOR-REACH is complete for NL via bfo™ reductions.

It is not hard to see that one can “colorize” most complete problems via first-order reduc-
tions to get a version that is complete via bfo™ reductions. Here are two examples: Let
COLOR-REACH, be the subproblem of COLOR-REACH in which V4 is empty and so
with the color vector C given, every vertex has out-degree one. Let COLOR-[[(S5) be the
colorized version of the problem [](S5) — iterated multiplication of elements of the sym-
metric group on five objects [IL94, B89]. This means that for each position there is a pair
of group elements, og and o1. The positions are partitioned into classes Pi,..., P, and bit
C[i] tells us whether to pick og or oy for all the positions in class P;.

Corollary 5.12 COLOR-REACHy is complete for L via bfo™ reductions, and COLOR-
[1(Ss) is complete for NC wia bfot reductions.

Another idea from [MSV94] indicates that dynamic complexity classes may not be as robust
under changes to the form of the input as static classes are:

Definition 5.13 ([MSV94|) For any problem S, define the padded form of S as follows:

PAD(S) = {wi,wa,...,w, | n € N,|wi| =n,w; =ws = -+ = wy,w; € S} O

Clearly, PAD(S) is computationally equivalent to S. However, changing a single bit of
the input to S requires n changes to the input to PAD(S). Thus a Dyn-FO algorithm for
PAD(REACH,) has n first-order steps to respond to any real change to the input to S. Re-
call that REACH, is complete for P via first-order reductions. Thus, so is PAD(REACH,).
Also, it is easy to see that REACH, is in FO[n] [I87]. It follows that a complete problem
for P is in Dyn-FO:

Theorem 5.14 PAD(REACH, ) is in Dyn-FO.

6 Conclusions

We have defined dynamic complexity classes, and their reductions. In particular, we have
begun an investigation of the rich dynamic complexity class Dyn-FO. Much work remains
to be done. We point toward a few of the many directions.
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. Does Dyn-FO contain any of the complexity classes: ThC?, NC!, L, NL? We con-

jecture that ThC® C Dyn-FO and that REACH, ¢ Dyn-FO and thus Dyn-FO -
P.

. Is REACH in Dyn-FO? We conjecture that it is.

. Further work needs to be done concerning the role and value of precomputation in

the dynamic setting.

. In this paper, we have only considered problems that have the basic set of requests as

defined in Equation 3.1. As pointed out in Note 3.3, one can consider different sets of
possible requests. For example, an interesting subset of Dyn-FO results if we require
first-order response to any first-order change to the input. This and other changes to
the request set should be investigated.

. Find natural complete problems for Dynamic Classes.
. Find natural descriptive languages that capture Dynamic Classes.

. Determine an automatic way to look at a query and figure out what to save in a data

structure so that the query will have low dynamic complexity.

Acknowledgements: Thanks to Ron Fagin, Paris Kanellakis, and Peter Miltersen for
useful discussions.
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