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Abstract. To reason effectively about programs, it is important to have some version of a
transitive-closure operator so that we can describe such notions as the set of nodes reach-
able from a program’s variables. On the other hand, with a few notable exceptions, adding
transitive closure to even very tame logics makes them undecidable.

In this paper, we explore the boundary between decidability and undecidability for
transitive-closure logics. Rabin proved that the monadic second-order theory of trees is
decidable, although the complexity of the decision procedure is not elementary. If we go
beyond trees, however, undecidability comes immediately.

We have identified a rather weak language called∃∀(DTC+[E]) that goes beyond trees,
includes a version of transitive closure, and is decidable. We show that satisfiability of
∃∀(DTC+[E]) is NEXPTIME complete. We furthermore show that essentially any reason-
able extension of∃∀(DTC+[E]) is undecidable.

Our main contribution is to demonstrate these sharp divisions between decidable and
undecidable. We also compare the complexity and expressibility of∃∀(DTC+[E]) with
related decidable languages including MSO(trees) and guarded fixed point logics.

We mention possible applications to systems some of us are building that use decidable
logics to reason about programs.

1 Introduction
To reason effectively about programs, it is important to have some version of a transitive-
closure operator so that we can describe such notions as the set of nodes reachable from
a program’s variables. On the other hand, with a few notable exceptions, adding transi-
tive closure to even very tame logics makes them undecidable.

In this paper, we explore the boundary between decidability and undecidability for
transitive-closure logics. Rabin [13] proved that the monadic second-order theory of
trees is decidable, although the complexity of the decision procedure is not elementary.
If we go beyond trees, however, undecidability comes immediately.

Modal logics and their extension to theµ calculus have proved quite useful. Theµ
calculus has an EXPTIME-complete satisfiability problem [3] and the same has been
shown true even for the more expressive guarded fixed-point logic, as long as the vocab-
ulary remains of bounded arity [6]. Guarded fixed-point logic can express reachability
from a specific constant, or from some point of a specific color, and it can restrict this
reachability to be along paths specified, for example, by a regular expression. What it
cannot express is a reachability relation between a pair of variables, i.e., that there is a
path fromu to v.

We have identified a rather weak language, called∃∀(DTC+[E]), that goes beyond
trees, includes a version of the latter sort of transitive closure, and is decidable. We show
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that satisfiability of∃∀(DTC+[E]) is NEXPTIME complete. We furthermore show that
essentially any reasonable extension of∃∀(DTC+[E]) is undecidable.

The main contribution of this paper is to demonstrate the above sharp divisions
between decidable and undecidable. We also compare the complexity and expressibility
of ∃∀(DTC+[E]) with related decidable languages, including MSO(trees) and guarded
fixed-point logics.

The main application we have in mind is for the static-analysis methods that we are
pursuing. Very generally, we model the properties of an infinite set of data structures that
can be generated by the program we are analyzing, using a bounded set of first-order,
three-valued structures [14]. In [15], it is shown that this modeling can be improved so
that it computes the most precise possible transformation summarizing each program
step, through the use of decidable logics.

Furthermore, in [9] we show that we can use a method we call “structure simulation”
to significantly extend the sets of data structures that we can model with decidable logics
over trees (monadic second-order logic) or graphs (∃∀(DTC+[E])). In the latter case,
transitive-closure information must be restricted to deterministic paths.

The advantage of∃∀(DTC+[E]) compared with MSO(trees) is that while the latter
is usually much more expressive, we can go beyond trees in the former. As an example,
to express reachability in dynamic, undirected graphs, as in [2], we need not only a
spanning forest, but a record of all the remaining edges in the undirected graph [9].

Fig. 1 summarizes results concerning the decidability and complexity of satisfia-
bility for relevant logics. All the languages will be defined precisely in the next two
sections. For previously known results we include a reference, and for results new to
this paper we include the number of the relevant theorem.

Decidable Complexity Citation
µ calculus EXPTIME complete [3]

Guarded Fixed PointEXPTIME complete [6]
MSO(trees) non-elementary [13]

FO2 NEXPTIME complete [11, 4]
∃∀ Σp

2 complete [1]
∃∀(TC−) Σp

2 complete Prop 2
∃∀(DTC+[E]) NEXPTIME complete Th 4, 5
∃∀(TC, f) NEXPTIME complete Cor 6

UndecidableCitation

FO2(TC) [5]
FO2(DTC) [5]
∀(TC+[E]) Cor 9
∀(DTC+) Th 8

∀(DTC−[E]) Th 13

Fig. 1.Summary of the decidability and complexity, and the undecidability of the logics
we study. The arity of all relation symbols is bounded. The results are the same for∀
and∃∀, and they are the same for the satisfiability and finite-satisfiability problems.

2 Background and Tiling

As we have mentioned, being able to express reachability is crucial for our applications.
However, adding a transitive-closure operator tends to make even very tame logics un-
decidable. We use TCu,u′ [ϕ] to denote the reflexive, transitive closure of binary relation
ϕ(u, u′) [8]. Note: In this paper, we confine our attention to applications of TC[ϕ] for
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which ϕ is quantifier-free and TC-free. Furthermore, we assume throughout that the
arity of all relation symbols is bounded.4

For example, consider the simple, decidable logic FO2. This is first-order logic re-
stricted to having only two variables,x, y. Grädel et al. [5] prove that if we add the
transitive-closure operator (TC) to FO2 then the resulting logic is undecidable. In fact,
they prove that even FO2(DTC) is undecidable. Here DTC — deterministic transitive
closure — is the restriction of transitive closure to paths that have no choices. For the
binary relationE(x, y), defineEd(x, y) as follows:

Ed(x, y) def= E(x, y) ∧ ∀z(E(x, z) → z = y) .

That is, if vertexv has more than one outgoingE-edge, then it has no outgoingEd-
edges. Then define DTC as follows: DTC[E] def= TC[Ed].

It is surprising that FO2(DTC) is undecidable, but the proof is that even this seem-
ingly very weak language is strong enough to express tilings.

Definition 1 Define a tiling problem, T = 〈T,R, D〉, to consist of a finite list of
tile types,T = [t0, . . . tk], together with horizontal and vertical adjacency relations,
R,D ⊆ T 2. HereR(a, b) means that tiles of typeb fit immediately to the right of tiles
of typea, andD(a, b) means that tiles of typeb fit one step down from those of typea. A
solutionto a tiling problem is an arrangement of instances of the tiles in a rectangular
grid such that at0 tile occurs in the top left position, and atk tile occurs in the bottom
right position, and all adjacency relationships are respected.

Given a Turing machine,M , and an input,w, we can build a tiling problem,T , of
sizeO(|M | + |w|), such thatT has a solution iffM on inputw eventually halts. Here
any correct tiling solution would represent an accepting computation ofM on inputw.
Think of t0 as representing the initial state andtk as representing the final accepting
state. Thus, as is well known, any logic that can express tilings has undecidable finite
satisfiability – and general satisfiability – problems.

(Standard definitions of tiling problems only requiret0 at the top left, and do not
also ask fortk at the lower right. This minor change does not affect the undecidability
and complexity results, but makes some of our constructions slightly simpler.) See [1]
for a nice treatment of tiling problems, as well as discussions of many relevant decidable
and undecidable logics.

3 Decidability of ∃∀(DTC+[E])

We start with the first-order logic∃∀, consisting of first-order formulas in prenex form
with all existential quantifiers preceding all universal quantifiers. The vocabulary has
no function symbols. It is well known and easy to see that the satisfiability problem for
∃∀ is decidable: Letϕ ∈ ∃∀. Form the Skolemization,ϕS , by replacing the existential
quantifiers,∃x1, . . . , xk, by new constants,c1, . . . , ck. SupposeA |= ϕS . Let C be the
substructure ofA whose universe consists of the constant symbols appearing inϕS .
SinceϕS is universal, we have thatC |= ϕS . Thus,ϕ has a model iff it has a small
model, i.e., one of size less than|ϕ|. We say that∃∀ has thesmall-model property,
in this case with models of at most linear size. To test if a universal formula,ϕS , is

4 For our intended applications, arity 2 is sufficient and arity 3 is a luxury. In theory, an un-
bounded arity can significantly increase some of the complexity bounds.
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satisfiable, we would guess a structure,A, of size at mostn = |ϕS | and then check
thatA |= ϕS . Testing whether a given structure satisfies an input universal first-order
formula is co-NP complete. Thus satisfiability of∃∀ formulas is in, and in fact complete
for, Σp

2 , the second-level of the polynomial-time hierarchy.
Since the existential quantifiers in∃∀ formulas can be eliminated by adding con-

stants, we limit our discussion to universal formulas. Let∀(DTC) consist of univer-
sal formulas in which DTC may occur. Unfortunately, as we will see, satisfiability of
∀(DTC) and∀(TC) are undecidable (Theorem 8).

It is the positive occurrences of TC that cause the satisfiability of∀(TC) to be un-
decidable. Let∃∀(TC−) consist of formulas in prenex form in which TC only occurs
negatively.

Proposition 2 Satisfiability and finite satisfiability of∃∀(TC−) are decidable with com-
plexity complete forΣp

2 .

Proof: The above argument for∃∀ continues to work. Ifϕ ∈ ∃∀(TC−) is satisfiable,
let A |= ϕS , whereϕS is the Skolemization ofϕ. As above, letC be the substructure
of A whose universe consists of the constant symbols appearing inϕS . ThenC |= ϕS

because if a path did not exist inA then it still does not exist inC. (Recall that we
only apply TC to quantifier-free formulas.) Furthermore, we can test in polynomial
time whether such a path exists inC. Thus, the complexity of satisfiability remainsΣp

2
complete. 2

Definition 3 Define∃∀(DTC+[E]) to be the restriction of∃∀(DTC) in which the lan-
guage has only one binary relation symbol,E, (plus unary relation symbols and con-
stants), and all applications of DTC are positive occurrences of the formDTC[E]. In
addition, we include in∃∀(DTC+[E]) arbitrary negative occurrencesof TC[ϕ] for ϕ
quantifier-free.5 However, it is very important that there areno negative occurrences
of DTC, for otherwise the language would become undecidable (Theorem 13).

Theorem 4 ∃∀(DTC+[E]) has the small-model property, with models of size at most
2O(n2), wheren is the size of the formula. Thus, satisfiability and finite satisfiability of
∃∀(DTC+[E]) are decidable, with complexity at most NEXPTIME.

Proof: Using Skolemization, it suffices to prove these results for∀(DTC[E]). Let ϕ ∈
∀(DTC[E]) be satisfiable and letA |= ϕ. We will show that there exists a modelB |= ϕ

such that||B|| ≤ 2O(n2). Here||B|| denotes the cardinality of the universe of the structure
B, andn = |ϕ|,

Let c1 . . . ck be the constants occurring inϕ. For each pair of constants,ci, cj , such
thatA |= DTC[E](ci, cj), there is a unique pathpij from ci to cj in A. LetA′ be the
substructure ofA whose universe consists of the constants, plus all vertices that lie on
any of the pathspij .

We claim thatA′ |= ϕ. To see this, first observe that for any two elementsa, b of
the universe ofA′ we have

A |= DTC[E](a, b) ⇒ A′ |= DTC[E](a, b) (1)

5 A more accurate name for∃∀(DTC+[E]) would really be∃∀(DTC+[E], TC−), but this is a
mouthful, and all bounds remain the same whether or not the negative occurrences of TC are
allowed.
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(The proof of Theorem 12 exploits the fact that the converse need not hold.) Sincea
andb occur on pathspij , if A |= DTC[E](a, b) then the path froma to b must be along
the pathspij . ThusA′ |= DTC[E](a, b) holds as well.

SinceA′ is a substructure ofA andϕ is a universal formula with only positive
occurrences of DTC, it follows from Equation (1) thatA′ |= ϕ. (Note that the neg-
ative occurrences of TC[ϕ] with ϕ quantifier-free do not cause problems: sinceA′ is
a substructure ofA it follows that if A |= ¬TC[ϕ](a, b), thenA′ |= ¬TC[ϕ](a, b) as
well.)

StructureA′ consists of a set of “trees” directed from leaf to root, all of whose
leaves and roots are constants; however, (1) some of the “trees” may end in a cycle
rather than a root; and (2) multiple edges may occur from some of the roots to other
vertices. Note that if there is more than one edge from vertexv, thenv does not occur
on any DTC path, except perhaps as the last vertex. For this reason, if there are multiple
edges inA from constantci, then we can remove all such edges and replace them by a
new unary relation symbolQi true of all the vertices that had edges fromci; as long as
we modifyϕ accordingly. (In particular, we would change all occurrences of “E(x, y)”
to “E(x, y) ∨ (x = ci ∧ Qi(y))”.) Because we can eliminate issue (2), we henceforth
assume that the graphA′ has outdegree at most one.

Note that some of the paths,pij , pi′j′ may intersect. If so, for simplicity we identify
the first point of intersection for each pair of paths as a new constant. Observe that there
are a total of at mostk − 1 such new constant symbols. Thus from now on we will
only considerdirect pathspij containing no intermediate constants. See Fig. 2 for an
example graph where constantsc7, c8, andc9 have been added.
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Fig. 2.ExampleA′ from proof of Theorem 4 after constantsc7, c8, c9 have been added.

After these normalization steps,A′ consists ofk′ constants and at mostk′ direct
paths,pij , wherek′ ≤ 2k − 1. Let r be the number of unary relation symbols, and
m be the number of (universal) quantifiers inϕ. We claim that no direct pathpij need
have length greater than2rm + m + 1. Suppose on the contrary that the length ofp12

is greater than2rm + m + 1. Let the color of a vertex be the set of unary relation
symbols that it satisfies. There are2r possible colors and2rm possiblem-tuples of col-
ors; consequently there must be at least two identically colored consecutivem-tuples,
u1, . . . , um, andv1, . . . , vm, in the interior ofp12. (By “consecutive” we mean them-
tuple is a path.) Form the structureB from A′ by deleting verticesu2 throughv1 and
adding an edge fromu1 to v2.

We claim thatB |= ϕ. It suffices to show that for anym-tuple of vertices fromB,
b1, b2, . . . , bm, there is a corresponding, isomorphic6 m-tuple fromA′, a1, a2, . . . , am.

6 More explicitly, we mean that the map taking eachbi to ai is an isomorphism of the induced
substructures ofB andA′ generated byb1, . . . , bm anda1, . . . , am, respectively. This may
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Note that every vertex inB is in A′, and furthermore, the only difference betweenB
andA′ concerning these vertices is thatE(u1, v2) holds inB but not inA′.

If any bi is not on the pathp12, then we letai be the identical vertex inA′. We
may thus confine our attention to the most difficult case, namely, thatb1, b2, . . . , bm are
all in the pathp12. Assume for simplicity that they occur in order. Our only problem
is if for some`, b` = u1 andb`+1 = v2. In this case, we letat = bt for t ≤ `, but
we let a`+1 = u2. Similarly, if b`+i−1 = vi for all i ∈ {2, . . . s}, then we must let
a`+i−1 = ui. Consider the first gap (if any), i.e.,bi andbi+1 are not consecutive. We
have thatbi = vz andai = uz, for somez. We can letaj = bj for j > i, see Fig. 3.
Note that we have replaced somevi’s by ui’s but all unary relations, edge relations
and connectivity have been preserved. Thus, as desired,a1, a2, . . . , am is isomorphic
to b1, b2, . . . , bm.

b1 bl+1bl bi+1bi bl+s-1 bm

c1 u1 v2 vm c2B:

(1) (2) (3) (4)

a1 al+1al ai+1ai al+s-1 am

(1) (2) (3) (4)

c1 u1 u2 um v1 v2 vm c2A�: uz

vz

vz

Fig. 3. Illustration of how for everym-tuple of verticesb1, . . . , bm from B there is a
corresponding isomorphicm-tuple of verticesa1, . . . , am fromA′. In region (2) ofB,
bl, . . . , bi are assigned consecutive vertices; similarly, in region (2) ofA′, al, . . . , ai

are assigned consecutive vertices. Becausebi andbi+1 are separated by two or moreE
edges in region (3) ofB (i.e., there a “gap”), the assignments forai+1, . . . , am in region
(4) ofA′ can match those forbi+1, . . . , bm in region (4) ofB exactly.

ThusB |= ϕ as desired. We can continue shortening any remaining paths of length
greater than2rm + m + 1. It follows that there is a modelB of ϕ and ||B|| ≤ (2k −
1) (2rm + m + 1) ≤ 2|ϕ|

2
, as desired. 2

It follows from Theorem 4 that the satisfiability of∃∀(DTC+[E]) formulas can be
checked in NEXPTIME. We next show that this cannot be improved.

Theorem 5 The satisfiability of∃∀(DTC+[E]) formulas is NEXPTIME-complete.

Proof: Let T be a tiling problem as in Definition 1, and letn be a natural number. It is
an NEXPTIME-complete problem to test on input(T , 1n) whether there is aT -tiling
of a square grid of size2n by 2n [12].

We will define a formulaϕn that expresses exactly a solution to this tiling problem.
There will be two constants:s, denoting the cell in the upper-left corner, andt, denoting
the cell in the lower-right corner. The desired model will consist of22n tiles:

be thought of as an Ehrenfeucht-Fraı̈sśe game in which the spoiler chooses thebi’s and the
duplicator answers with theai’s [8].
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s = [1, 1, t0] · · · [1, 2n, t]
[2, 1, t′] · · · [2, 2n, t′′]

...
...

[2n, 1, t′′′] · · · [2n, 2n, tk] = t

The binary relationE will hold between each pair of consecutive tiles, including, for
example,[1, 2n, t] and[2, 1, t′]. We will include the following unary relation symbols:
H1, . . . Hn, indicating the horizontal position as ann-bit number;V1, . . . Vn, indicating
the vertical position; andT0, . . . Tk, indicating the tile type.

The formulaϕn is the conjunction of the following assertions:

1. T0(s) ∧
n∧

i=1

(
¬Hi(s) ∧ ¬Vi(s)

)
∧ Tk(t) ∧

n∧
i=1

(
Hi(t) ∧ Vi(t)

)
2. ∀x

∧
0≤i<j≤k

¬(Ti(x) ∧ Tj(x))

3. ∀x, y
(
(Sucv(x, y) → Vert(x, y)) ∧ (Such(x, y) → Hor(x, y))

)
4. DTC[E](s, t) ∧ ∀x, y

(
E(x, y) → Next(x, y)

)
Here (1) says thats is the first tile, has tile typet0, andt is the last tile and has tile

typetk. We have chosen for simplicity to encode the tile types in unary so we need (2),
which says that tile types are mutually exclusive.

Conjunct (3) says that the arrangement of tiles honorsT ’s adjacency requirements.
The abbreviation Such(x, y) means thatx andy have the same vertical position and
y’s horizontal position is one more than that ofx. Sucv(x, y) means thatx andy have
the same horizontal position andy’s vertical position is one more than that ofx. The
abbreviations Hor(x, y) and Vert(x, y) are disjunctions over the tile types asserting that
the tiles in positionsx andy are horizontally, respectively vertically, compatible; for
example,

Hor(x, y) ≡
∨

R(ti,tj)

(Ti(x) ∧ Tj(y)) (2)

Finally, (4) says that there is a path froms to t. The abbreviation Next(x, y) means
Such(x, y) or x has horizontal position2n, y has horizontal position 1, andy’s vertical
position is one more than that ofx. 2

The formulaϕn described in the above proof can be written in lengthO(n) using
only two variables. When satisfiable, it has a minimal model of size2Ω(n). In Corol-
lary 16 we extend the above argument, showing that the2O(n2) bound of Theorem 4 is
in fact optimal. For this we need a variant of the aboveϕn that usesn variables.

4 Logics With One Function Symbol

We next discuss the language∀(TC, f), which consists of universal first-order logic
with a transitive-closure operator and one unary function symbol, plus arbitrary unary
relation symbols and constants. This is closely related to the language∃∀(DTC+[E]).
One important difference is that in∀(f) we may write a formula that has only infinite
models.7

7 For example:∀x, y(c 6= f(x) ∧ (f(x) = f(y) → x = y)).
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It is well known that the satisfiability and finite-satisfiability problems for monadic
second-order logic with a single unary function symbol are decidable,8 although their
complexities are not elementary, even when restricted to first-order quantification [10,
13, 1, 7].

It is not hard to modify the proofs of Theorems 4 and 5 to apply to∀(TC, f). (For
functions, the implication of Equation (1) is a biimplication, and thus the result goes
through for positive and negative DTC’s.)

Corollary 6 The finite satisfiability problem for∀(TC, f) is NEXPTIME complete.9

Proof: If a formulaϕ ∈ ∀(TC, f) has a finite modelA, then it must have a model of the
formA′ as in the proof of Theorem 4. The only difference is that sincef must be a total
function, there are no roots; that is, all trees end in cycles. The size of the smallest model
is still 2O(n2). The difference in counting is slight, namely, applications of the function
symbolf can extend the apparent number of constant symbols:f(ci) behaves like a
new constant symbolc′i, andf(x) behaves like a new universally quantified variabley,
such thatE(ci, c

′
i) andE(x, y), respectively, must hold. Thus, the proof of Theorems

4 and 5 go through if we replacek andm by qk andqm, respectively, whereq is the
number of occurrences off in ϕ. 2

5 Undecidability of Related Logics

We next show that most reasonable extensions of the language∃∀(DTC+[E]) can ex-
press the solution to tiling problems, and thus are undecidable. In this section we show
that any of the following changes cause undecidability: the use of TC; the presence of
more than one binary relation symbol; or a single positive use of DTC[σ], whereσ is
quantifier-free. In the next section, we show that∀(DTC−[E]) is undecidable. To begin,
we first show

Theorem 7 Satisfiability and finite satisfiability of∀(DTC+[V ], DTC+[H]) — univer-
sal logic with two binary relations,V andH, and their positive deterministic transitive
closure — are undecidable.

Proof: Let T be a tiling problem (Definition 1). We show how to write a formulaϕ ∈
∀(DTC+[V ], DTC+[H]) such thatϕ is satisfiable iffT has a solution.

Formulaϕ contains four constant symbols,a, b, c, andd, representing the four cor-
ners of the solution toT ; see Fig. 4.

We assert that every element satisfies exactly one of the tile relations,T0, . . . , Tk.
We assertT0(a)∧Tk(d), i.e., the upper left tile ist0 and the lower right istk. We assert
thatH andV paths exist between the four corners: DTC[H](a, b) ∧ DTC[H](c, d) ∧
DTC[V ](a, c) ∧ DTC[V ](b, d).

We add a unary predicate,Last, and assert the conjunction of the universal closure
of the following formulas:Last(b), ¬V (x, b), V (x, y) → (Last(x) ↔ Last(y)), and
(H(x, y) ∧ ¬V (x, y)) → ¬Last(x). These assure thatLast is true exactly of the tiles

8 This is equivalent to the MSO theory of trees with multiple successor functions.
9 This holds as well for the general satisfiability problem. For infinite structures there is a similar

“small model” except that from some constants there is an infinite chain that intersects no other
vertices of the structure. The infinite chain must repeat anm-tuple of colors and can from
thereafter repeat exactly. Thus it has a representation of size2O(n2).
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Fig. 4.A tiling as expressed in Theorem 7.

in the rightmost column. In this column, we make theH-edges go down along the
V -edges, i.e.,Last(x) ∧ Last(y) → (H(x, y) ↔ V (x, y)). This allows us to express
the fact thatH-edges continue all the way to the right in every row, i.e., we assert:
∀xDTC[H](x, d).

We assert thatH and V edges satisfy the corresponding horizontal and vertical
tiling constraints, using the formulas Hor and Vert as in Equation (2).∀x, y((H(x, y)∧
¬Last(x) → Hor(x, y)) ∧ (V (x, y) → Vert(x, y))).

We assert that the intermediate rows are filled in:∀x, y, x′, y′
(
(H(x, y)∧V (x, x′)∧

V (y, y′)) → H(x′, y′)
)
.

Finally, we assert that the columns are filled in and line up:∀x, y, x′, y′
(
(¬Last(x)∧

H(x, y) ∧ V (x, x′) ∧H(x′, y′)) → V (y, y′)
)
.

It is not hard to see that the conjunction of the above assertions is equivalent to
the existence of a solution to the tiling problem,T . Thus satisfiability of∀(DTC+[V ],
DTC+[H]) is undecidable. 2

Theorem 7 shows that a second binary relation over which we can take DTC causes
undecidability. We can modify the proof to show that even if there is only one (positive)
occurrence of DTC, the logic is still undecidable if a second binary relation is allowed,
or if DTC is allowed to be taken not just over the relationE, but over a formula that
also involves unary relation symbols.

Theorem 8 Satisfiability and finite satisfiability of∀(DTC+) are undecidable. This
holds even if there is only one occurrence of DTC and only one binary relation symbol.
Also, if there is a second binary relation symbol, then the single occurrence of DTC can
be restricted to the formDTC[E].

Proof: We modify the proof of Theorem 7 so that the path froma to d through the tiled
rectangle is along a single snake-like path of the edge predicate,E, as in Fig. 5.

We do this by adding unary relationFirst denoting the first column of the tiling
rectangle, plus the relationR true of the tiles in the odd-number rows. We then make
theE-path go left-to-right on the rows satisfyingR and right-to-left on the other rows.

9
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Fig. 5.A tiling expressed with a single occurrence of DTC as in Theorem 8.

Define the edges along the snake-like path,σ(x, y) ≡ E(x, y)∧ ((R(x) ↔ R(y))∨
(First(x) ∧ ¬R(x) ∧R(y)) ∨ (Last(x) ∧R(x) ∧ ¬R(y))).

The single use of DTC is the assertion DTC[σ](a, d). We also assert the completion
of squares (see Fig. 5),

(E(x, y) ∧E(y, y′) ∧E(y′, x′) ∧ (R(x) ↔ R(y)) ∧ (R(x′) ↔ R(y′)) ∧ (R(y) ↔
¬R(y′))) → E(x, x′).

Finally, we add the following assertions, which together make sure that all models
must be valid tilings:
1. T0(a) ∧ Tk(d) ∧ First(a) ∧ Last(d) ∧ ¬

(
First(x) ∧ Last(x)

)
2.

k∨
i=0

Ti(x) ∧
∧

0≤i<j≤k

¬(Ti(x) ∧ Tj(x))

3. (E(x, y)∧(R(x) ↔ ¬R(y))) →
(
(First(x) ↔ First(y))∧(Last(x) ↔ Last(y))

)
4. E(x, y) → ¬

(
(R(x)∧R(y)∧(Last(x)∨First(y)))∨(¬R(x)∧¬R(y)∧(Last(y)∨

First(x)))
)

5.
(
(E(x, y) ∧R(x) ∧R(y)) ∨ (E(y, x) ∧ ¬R(x) ∧ ¬R(y))

)
→ Hor(x, y)

6.
(
E(x, y) ∧ (R(x) ↔ ¬R(y))

)
→ Vert(x, y)

Again formulas Hor and Vert are as in Equation (2). The conjunction of the univer-
sal closure of all the above assertions thus asserts a solution to the tiling problem,T ,
as desired. To prove the last assertion in the statement of the theorem: with a second
relation symbol,W , we can letE correspond toσ, andW correspond toE ∧ ¬σ. 2

We remark that if in the proof of Theorem 8 we reverse the edges that are notσ
edges, then we can use TC[E] in lieu of DTC[σ] and the proof goes through. Thus we
have,

10



Corollary 9 Satisfiability and finite satisfiability of∀(TC+[E]) are undecidable. This
holds even if there is only a single occurrence of TC (it occurs as TC[E]) and E is the
only binary relation symbol.

Note that the formulas in Theorems 7, 8, and Corollary 9 use only two variables
except in the completion-of-squares formula. In fact, using an extra occurrence of TC,
we can write equivalent formulas with only two variables. We do this by reversing the
vertical edges in the even columns. We then assert that each non-boundary edge,〈x, y〉
is in an appropriate cycle, i.e., TC[E](y, x) or DTC[γ](y, x) holds, for appropriateγ.

Corollary 10 If we allow a second occurrence of a transitive-closure operator, the un-
decidability results of Theorems 7, 8, and Corollary 9 all remain true for the corre-
sponding languages with only two variables.

6 Undecidability of ∀(DTC−[E])

We were quite surprised to find that although∀(TC−) is decidable,∀(DTC−[E]) is not.
We give the somewhat subtle proof in this section. First we show that∀(DTC−[E]) has
an infinity axiom.

Proposition 11 There is a sentence in∀(DTC−[E]) that is satisfiable, but only in an
infinite model.

Proof: The idea is that we know that ifE(c0, c1) and¬DTC[E](c0, c1) both hold, then
there must be another edge fromc0. We can use this observation to write an infinity
axiom that essentially expresses the existence of a successor function. We write the
conjunction of the following formulas:

1. ∀v(v 6= c1 → (E(v, c1) ∧ ¬DTC[E](v, c1)))
2. ∀vu1u2(v 6= c1 ∧ E(u1, v) ∧ E(u2, v) → u1 = u2)
3. c0 6= c1 ∧ ∀v¬E(v, c0)

(1) says that every vertex besidesc1 has an edge toc1 but not a DTC path toc1, so it
must have outdegree greater than 1; (2) says that every vertex besidesc1 has in-degree
at most one; and (3) says thatc0 has in-degree 0. Thus, there must be an infinite chain
of edges starting atc0.

These formulas are satisfied by a model that contains the natural numbers plus a
new point calledc1, with edgesE(n, c1) andE(n, n + 1), for n = 0, 1, . . .. 2

Theorem 12 Satisfiability and finite satisfiability of∀(DTC[E]) are undecidable.

Proof: We take as our starting point the undecidability proof of Theorem 8. Our new
idea is to remove all of the non-boldfaceE’s in Fig. 5 and to replace them by a gadget of
new green vertices, satisfying the unary relation symbol,G, and associated edges. The
existence of the green vertices and their associated edges will be implied by the “not
DTC trick” introduced in the proof of Proposition 11, together with some universal
first-order statements that make sure that the vertical edges continue to be attached
appropriately.

Just as in the proof of Theorem 8, we express the existence of a tiling. Since we
have removed the non-boldfaceE’s, we can now simply express the path from the first
tile to the last as DTC[E](a, d).

11



c1

bR

G

Fig. 6.Gadget used in Theorem 12.

To define the gadget, we add two new constants,b, for the top rightmost tile, andc1

for the top rightmost green vertex, just below it. The green path proceeds in the opposite
direction of the non-green, tile path directly above it, see Fig. 6.

We make the following assertions. These all concern the green row below eachR,
i.e., right-going, row of tiles. For simplicity, we skip the analogous case below each
left-going row of tiles.

1. G(c1) ∧ E(c1, b) ∧ ∀ux(E(c1, x) ∧G(x) ∧ E(b, u) → E(x, u))
2. ∀x((¬G(x) ↔ DTC[E](x, d)) ∧ (¬G(x) ↔ DTC[E](a, x)))
3. ∀xyz

(
G(x) ∧ E(x, y) ∧ E(x, z) ∧ y 6= z → (G(y) ↔ ¬G(z))

)
4. ∀uvxyz

(
¬G(u)∧¬G(v)∧G(x)∧G(y)∧G(z)∧R(u)∧R(v)∧E(v, u)∧E(x, u)∧

E(x, y) ∧ E(y, z) → E(z, v)
)

5. ∀uvxyz
(
¬G(u) ∧ ¬G(v) ∧G(x) ∧G(y) ∧G(z) ∧ ¬R(u) ∧ ¬R(v) ∧ E(u, v) ∧

E(x, u) ∧ E(x, y) ∧ E(y, z) → E(z, v)
)

6. ∀u, v, x, y
(
¬G(u)∧¬G(v)∧G(x)∧G(y)∧R(u)∧¬R(v)∧E(x, u)∧E(x, y)∧

E(y, v) → Vert(u, v)
)

(1) starts us out by saying thatc1 is green, has an edge tob, and its green successor
has an edge to the tile directly belowb. (2) says that green vertices do not have DTC
paths tod, but all non-green vertices do; it also says that all the non-green edges occur
on the DTC-path froma to d. (3) says that if the outdegree of a green vertex is at least 2,
then it has a green and a non-green successor. We will assure later, inductively, that each
green vertex has an edge to a non-green vertex. Since the non-green vertex has a DTC-
path tod, but the green vertex does not, this assures that the green vertex has outdegree
2. (4) is an inductive condition, which says that ifx, y, andz are consecutive green
nodes, and ifx points up to a non-green node,u, thenz points up tou’s predecessor,v.
(5) is the similar condition for the edges going down.

Finally, condition (6) asserts that these green gadgets transmit the vertical informa-
tion between the non-green, i.e., tile, nodes as desired. 2

Theorem 12 leaves open the question of the decidability of∀(DTC−[E]). It would
seem that the positive use of DTC was crucial in the statement DTC[E](a, d). How-
ever, even this can be replaced by the “not DTC trick”. (The positive uses of DTC in
formula (2) of the proof of Theorem 12 can easily be removed.) The conclusion is that
∀(DTC−[E]) is undecidable.

Theorem 13 Satisfiability and finite satisfiability of∀(DTC−[E]) are undecidable.

Proof: We modify the proof of Theorem 12 by removing the assertion DTC[E](a, d)
and replacing it using the “not DTC trick”. More explicitly, we add another unary pred-
icateB true of the tiles, and we add another constant,c0. Then we make the following
additional assertions:

12



1. B(a) ∧ ∀x(B(x) ∧ x 6= d → E(x, c0) ∧ ¬DTC[E](x, c0))
2. ∀xy(B(x) ∧ y 6= c0 ∧ E(x, y) → B(y))
3. The in-degree forB-vertices fromB-vertices is at most one, and it is zero fora.

(1) and (2) together assert that eachB-vertex besidesd has an edge to anotherB-
vertex. It follows that either DTC[E](a, d) holds, or there is an infinite path. Thus, the
formula is finitely satisfiable iff the corresponding tiling problem has a solution. (To
show that the general satisfiability problem for∀(DTC−[E]) is undecidable, we would
modify the construction to assert that there is no noded, and thus an infinite path, so that
the corresponding Turing machine, when started on blank tape, never halts. The tiling
would have to be modified so that the first row has length one, and each successive
row has one greater length. This is necessary so that an infinite path corresponds to an
infinite computation rather than an infinitely long first row.) 2

7 Complexity of the Decision Procedure

In this section, we study the complexity of the decision procedure for∃∀(DTC+[E]).
The first thing we do is look more carefully at the proof of Theorem 5, and show that
our lower bound is tight, matching the2O(n2) upper bound of Theorem 4.

Lemma 14 The formulaϕn used in the proof of Theorem 5 may be written in length
O(n).

Proof: The only difficulty in keepingϕn to total sizeO(n) is in writing the formulas
Such(x, y) and Sucv(x, y). These are nearly identical and we will restrict our attention
to Such(x, y). Recall that Such(x, y) means that the horizontal position ofy is one
greater than the horizontal position ofx. (Our convention is that the bit positions are
numbered 1 ton, with 1 being the high-order bit, andn the low-order bit.) Such(x, y)
can be written as follows:

Such(x, y) ≡
n∨

i=1

[∧
j>i

(Hj(x) ∧ ¬Hj(y)) ∧ (¬Hi(x) ∧Hi(y))

∧
∧
j<i

(Hj(x) ↔ Hj(y))
]

However, the length of the above formula isO(n2). We can decrease the size by
keeping track of the positioni in the above formula. We do this by adding2n more
unary relation symbols,Gj ,Kj , 1 ≤ j ≤ n. The intuitive meaning ofKi(x) is that it is
bit i of the horizontal number that will be incremented as we go fromx to its successor.
This means that¬Hi(x), and for allj > i, Hj(x); i.e., there is a “0” in positioni, and
a “1” in each position to the right ofi.

The intuitive meaning ofGj(x) is thatj > i whereKi(x). We also use the abbre-
viation Lj(x) ≡ ¬(Kj(x) ∨ Gj(x)). (The mnemonic is thatG holds for elements in
positions “greater” than theK position;L holds for elements in “lesser” positions.)

The advantage of having these new relations is that we can now reduce the length
of Such(x, y) as follows:

13



Such(x, y) ≡
n∧

j=1

[
(Gj(x) ∧Hj(x) ∧ ¬Hj(y))

∨ (Kj(x) ∧ ¬Hj(x) ∧Hj(y))

∨ (Lj(x) ∧ (Hj(x) ↔ Hj(y)))
]

Finally, we must write down several more conditions. The conjunction of the fol-
lowing conditions assures that the new relationsGi andKi are defined correctly.

1. ∀x(K1(x) ∨K2(x) ∨ · · · ∨Kn(x) ∨ (H1(x) ∧H2(x) · · ·Hn(x)))

2. ∀x(
n−1∧
i=1

(Ki(x) → Gi+1(x)) ∧
n−1∧
i=1

(Ki+1(x) → Li(x)))

3. ∀x(
n−1∧
i=1

(Li+1(x) → Li(x)) ∧
n−1∧
i=1

(Gi(x) → Gi+1(x)))

4. ∀x(
n∧

i=1

¬(Ki(x) ∧Gi(x)) ∧
n∧

i=1

((Gi(x) → Hi(x)) ∧ (Ki(x) → ¬Hi(x))))

2

It follows from Lemma 14 and the proof of Theorem 5 that we can write a sequence
of formulasϕn ∈ ∃∀(DTC+[E]), n = 1, 2, . . . such that|ϕn| = O(n), ϕn has only
two variables, and yetϕn’s smallest model is of size2Ω(n). This is the best possible
with only two variables. To match the2O(n2) upper bound of Theorem 4, we need a
formula withn variables.

We can count up to2n2
using a sequence ofn consecutive vertices, each with a

number between1 and2n. We will addn more unary relation symbols,Ci, 1 ≤ i ≤ n.
A tile will then be encoded byn vertices as follows:

[C1, h1, v1, t] [C2, h2, v2, t] · · · [Cn, hn, vn, t]
[C1, h

′
1, v

′
1, t

′] [C2, h
′
2, v

′
2, t

′] · · · [Cn, h′n, v′n, t′]

That is, the firstn vertices hold tilet with its (collective) horizontal and vertical
numbers〈h1, . . . , hn〉 and〈v1, . . . , vn〉 having values between 1 and2n2

, the nextn
vertices hold tilet′ with the successor number, etc. Using very similar ideas to the
proof of Lemma 14 we can prove,

Lemma 15 Given any tiling problem,T , we can write a sequence of formulasϕ′
n of

lengthO(n), n = 1, 2, . . ., such thatϕn is satisfiable iff there is a solution toT that is
a 2n2

by2n2
square.

It follows that

Corollary 16 The2O(n2) upper bound of Theorem 4 is optimal.10

10 A referee pointed out that we are measuring the size of a formula as the number of symbols
occurring in it. One could also consider that when there aren different relation symbols we
need lengthlog n per symbol. Our formulation is simpler and the lower bound is tight because
the upper bound used an even more lax measure of size, namely, the maximum of the number
of constant symbols, relation symbols, and quantifiers.
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8 Conclusions

We have introduced the language∃∀(DTC+[E]), which is a decidable transitive-closure
logic that goes beyond trees. We have shown that all the reasonable extensions of
∃∀(DTC+[E]) that we could think of are undecidable. Uses of∃∀(DTC+[E]) exist,
but how useful it might be remains to be seen. The following questions are worth con-
sidering:

– Unlike our other undecidability proofs, which only required two variables, our
proof of the undecidability of∀(DTC−[E]) used five variables. We suspect that
this can be improved.

– We showed that the satisfiability of∃∀(DTC+[E]) is NEXPTIME complete. The
lower bound depended on a formula that describes an exponentially long sequence
of colors. We suspect that in practice the formulas one encounters would have
much, much shorter sequences of color types. We suspect that techniques related
to Ehrenfeucht-Fräısśe games can automatically find the relevant color sequences.
These ideas might lead to a satisfiability algorithm that is feasible in practice.
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