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Abstract

We presentthe first complete problemsfor dynamic
compleity classesincluding the classesDyn-FO and
Dyn-ThC?, thedynamicclassesorrespondingo relational
calculus and (polynomially bounded) SQL, respectively
Thefirst problemweshowcompletdor Dyn-FOis a single-
stepversionof thecircuit valueproblem(SSCV).

Of independeninterest,our constructionalso produces
a first-order formula, ¢, thatis in a senseuniversal for all
first-order formulas. Sincefirst-order formulasare strati-
fied by quantifierdepth,the first-order formula ¢ emulates
formulas of greater depth by iterated application. As a
corollary we obtain a fixed quantifier block, QBC, that is
completeor all first-order quantifierblocks.

1 Intr oduction

Traditionally compleity theory has focusedon static
problems. All standardcomplexity classesare definedin
termsof the complexity of checking— uponpresentatiorof
anentireinput — whetherthe input satisfiesa certainprop-
erty.

For mary applications of computers (including
databasestext editors, programdevelopment)it is more
appropriate¢o modelthe processasa dynamicone. There
is a large setof datathat is repeatedlymodified by users
over a periodof time. A dynamicalgorithmis a methodof
storingandmodifying datain a datastructure sothateach
changeandquerymaybeperformedvery efficiently.

Thereis an extensie literaturein dynamicalgorithms
andamortizedanalysisjput with theexceptionof [MSV94],
a theory of dynamic compleity had beenlacking. In
[P197], Patnaikand Immermanbegan the developmentof
a dynamiccompleity theoryfrom the descriptive point of
view.
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In this paperwe considera simpler and more general
approacho dynamiccompleity thanin [P197]. Ratherthan
considerdynamicversionsof staticproblemswe consider
thegeneraproblemof processin@ sequencef operations.
Previouswork on Dyn-FO considerednly staticfunctions
of aninput thatwassubjectto simpleupdateswe consider
ary dynamic, continuingcomputationin our model. The
completeproblemswe have foundarearesultof expanding
themodelof dynamiccomplexity in thisway.

Wefind thatit is naturalto think of adynamicproblemas
asequencef regularlanguagesd; C X3, 4> C X3, 45 C
Y3 ..., whereeach,, is a polynomial-sizeset of opera-
tions.

Thisresultsin adefinitionof Dyn-C for ary (static)com-
plexity classC. Thesedefinitionsare consistentwith, but
slightly extendthe correspondinglefinitionsin [P197]. It
is alsonaturalfrom this point of view to definea dynamic
reductionas a uniform sequenceof boundedhomomor
phisms.

In [P197] the compleity class, Dynamic First-Order
Logic (Dyn-FO)wasstudied. This is the classof requests
that admit algorithmssuchthat eachrequestcan be per
formed as a first-orderdefinableoperationon the current
datastructure. It was shovn in [PI97] that mary inter-
estingpropertiesare in Dyn-FO including all regular lan-
guagesmajority, multiplication, undirectedgraphreacha-
bility, graphreachabilityfor agyclic graphs,transitve re-
ductionfor agyclic graphs,minimum spanningtree, bipar
titenessk-edgeconnectvity, etc.

More recently Hesseshaved that the dynamicversion
of the generalgraphreachabilityproblem(DynREACH) is
in Dyn-ThC® [Hes01. It thusalsofollows thatmary linear
algebraproblemsincluding matrix inversionand determi-
nantarein Dyn-ThC®. This is particularly interestingas
Dyn-ThC® is the classof dynamicproblemscomputablén
(polynomiallybounded) SQL [Imm99, Th 14.9].

1We say“polynomially bounded™to disallav the creationof new do-
main elements.Otherwise an SQL algorithmmight createexponentially
mary new elementsjetting it decideproblemsthatit couldnt whenthe
databassizeremaingpolynomiallyboundedcf. [LW99].



Usingour new formulationof dynamiccomputationwe
presenthefirst completeproblemsor dynamiccomplexity
classesncluding Dyn-FO and Dyn-ThC’. Suchproblems
hadlong beensoughtcf. [PI197].

Thefirst problemthatwe shov completefor Dyn-FOis
asinglestepcircuit valueproblem(SSCV).SSCVis com-
pletein a naturalway for Dyn-FO becausery fixed first-
orderformula canbe simulatedby a uniform sequencef
AC? circuits[Imm99, Th. 5.22].

However, SSCV is notcompletevia thewealestversion
of reductionsthat we describe becauseheseweakreduc-
tions do not have the power to producesuchAC® circuits
beforethe computatiorbegins.

To overcomethis problemwe constructafirst-orderfor-
mula¢ whichisin asenseompletdor all first-orderformu-
las. Of course Sipsemrovedthatthereis a strictalternation
hierarchyfor first-orderformulas[Sip83. Thustherecan
beno singlefirst-orderformulathatis truly completefor all
first-orderformulas.Whatwe meanis thatevery first-order
formula, ¢, canbesimulatedby theformula( iteratedd + 1
timeswhered is thedepthof ¢, evaluatedbnastructurethat
is apolynomialpaddingof theoriginal structurej.e.,

AEp & PAD(p,A) | (D

An equialentway of statingthisis thatwe have constructed
a completefirst-orderquantifierblock (QBC).

Using ¢, we define the problem CSSCV which is the
sameas SSCV exceptthat it is initialized with the first-
orderdefinableAC® circuits correspondingdo ¢. We shov
thatCSSCVis completefor Dyn-FOvia ourwealestreduc-
tions: boundedirst-orderhomomorphisms.

This paperis organizedasfollows: In §2 we provide the
necessarpackgroundin §3 weintroduceour new formula-
tion of the classof dynamicproblemsjn §4 we explain our
modelof dynamiccomputationjn §5 we definethe result-
ing dynamiccompleity classesin §6 weexplainourmodel
of dynamicreductionsjn §7 we definethe SSCVproblem
andprovethatit is completefor Dyn-FO, in §8 we construct
a universalfirst-order formula, ¢, and prove as a corol-
lary thatthereexistsa completefirst-orderquantifierblock,
we thenuse( to constructthe problem CSSCVwhich is
Dyn-FO-completevia our wealestreductionsjn §9 we use
our mainresultto constructother Dyn-FO-completeprob-
lemsincluding a monotoneversionof CSSCV andan it-
eratedBooleanmatrix multiplication problem. We alsoin-
clude somecompleteproblemsfor otherclassesncluding
Dyn-ThC®. Finally, in §10 we describedirectionsfor fur-
therresearch.

2 Background on Descriptive Complexity

We briefly describe the neededbackgroundin de-
scriptve compleity [Imm99]. A vocahlary, = =

(R{*,..., R, c1,...,c5), IS atuple of relation symbols
andconstansymbols.Thesuperscriptef therelationsym-
bols denotetheir arities. A structure with vocatulary 7 is
atuple, A = (|A|, R{*...RA, ¢, ..., cf) whoseuniverse
is the nonemptyset|.A|. We will assumehroughoutthat
|A] = {0,1,...,n — 1} andresere n = | A| for the
cardinality of the universeof a given structureA. We let
STRUC|7] denotethe setof finite structuresof vocalulary
7. Let,

STRUC,[7] = {AesSTRUC[7] | |A] =n}.

For example,let 7, = (S') bethevocallary of binary
strings,andthus STRUC[7,] is the setof binary stringsen-
codedaslogical structurescontaininga single unaryrela-
tion.

For ary vocallary 7 thereis a correspondingfirst-
orderlanguage£(7) built up from the symbolsof = and
the numeric relation and constantsymbols, =, <, BIT,
0, 1, max using logical connectves: A,V, -, variables:
z,vy, 2,1, - ., andquantifiers:v, 3.

The numericrelation< representshe usualtotal order
ing ontheuniverse{0, 1,...,n —1}. BIT(z,y) meanshat
whenz is codedasalogn bit number bit y of this encod-
ing is aone. TherelationBIT allows arithmeticoperations
on log(n)-bit numbersto befirst-orderdefinableandit al-
lows subsequencesf a log(n)-bit numberto be readand
copied[Imm99, §1.2]. This will be neededvhenwe sim-
ulate a first-orderformula ¢ with the completeformula ¢
which mayhave fewer variableshanp.

We will think of a static problem S C STRUC[7], as
a set of structuresof somevocahilary 7. It suficesto
only considemproblemson binary strings,but it is morein-
terestingto be able to talk aboutother vocalularies, e.g.
graphproblemsaswell. We usethe schemdrom [Imm99]
for coding an input structureas a binary string. If A =
({0,1,...,n—1}, R{, ..., RA ... ), isastructure
of vocahulary 7, then A will be encodecasa binary string
bin, (A) of lengthn®t + - - - + n% + s[logn], consistingof
onebit for eacha;-tuple, potentiallyin therelation R; plus
[log n] bitsto nameeachconstang

Definethe compleity classFO to be the setof all first-
orderexpressibleproblems.FO is a uniform versionof the
circuit classAC? andit is equalto the setof problemsac-
ceptablein constantime on a polynomial size concurrent
parallelrandomaccessnachinglmm99, Th. 5.22]. When
mentioningcircuit complexity classesn this paper we al-
waysmeanthe first-orderuniform versionof theseclasses
[BIS9Q].

2Thedetailsof the encodingarenotimportant,but it is usefulto know
thatfor eachr, bin, andits inversearefirst-orderqueries[Imm99, Def.
2.1].



3 Dynamic Problems

We definea dynamicproblem 4 = {4, C %} | n =
1,2,.. } to be aninfinite sequencef regular languages.
For eachvalueof n, A, is a regularlanguageover %,,, a
polynomial-sizealphabebf operationsIf stringw € X is
in 4,,, we saythatthesequencef operationav is accepted
by the dynamicproblemA.

An exampleof a dynamicproblemis the dynamicgraph
reachability problem DynREACH. This is the dynamic
probleminducedby the static decisionproblem REACH.
An instanceof REACH is adirectedgraphonn nodespum-
bered0 throughn — 1, with two distinguishechodess and
t. Thisinstanceis acceptedf thereis a directedpathfrom
nodes to nodet. The dynamicproblemDynREACH con-
tains,for eachn, aregularlanguageDynREACH,, defined
overthesetof operations

. = {Inser(i,j),Deletdi,j) | 0 <i,j <n}
U {SetSi),SetTi) | 0<i<n}.

The operationinser{s, j) insertsa directededgefrom
nodei to nodej in thegraph,andtheoperatiorDeletd, j)
deletessuchan edge. The operationsSetS:) and SetT(z)
setor changehe startnodeandthefinal nodeof thereach-
ability query A sequencef operationsw € X} is accepted
by DynREACH if REACH containghegraphcreatedy se-
guentiallyapplyingthe operationsn w to theemptygraph
onn nodeswith s andt initially setto node0.

4 Dynamic Machines

We next defineamodelof dynamiccomputation|eading
to adefinitionof dynamiccompleity classesOur modelis
basedon descriptve complexity [Imm99]; it is suitablefor
ary dynamiccomputatiorthatmaintainsa polynomial-size
auxiliary datastructure.

Definition 4.1 (Dynamic Machine) A dynamicmadine,
M = {Mn = (Qny Xn; 0ny S, F) | n = 1’2’---}1 isa
uniform sequencef deterministicfinite automataThe dy-
namicproblemacceptedy M is thesequencef languages
acceptedy theDFAs M, Mo, .. .:

L(M) = L((My, Ma, ...)) = (L(My), L(Mz), . ...).

A stateq € Q,, reachedy DFA M,, is thecurrentvalue
of the polynomial-sizeauxiliary datastructureof the dy-
namicmachine.We chooseto encodesuchstatesasfinite
logicalstructureof somevocahularyr = (R, ..., R}*)3,
i.e.welet

Q. = STRUC,[7].
3For simplicity in this paperwe limit 7 to be purelyrelational with no

constantsymbols. This is not essentialput it eliminatesan extra casein
mary definitionsandconstructions.

The alphabets{%,, | n > 0}, aredescribedby a fi-
nite vocalulary of operatomameswith fixed arities: ¥ =
(01, ..., 0%). An elemenpf thealphabet,, is anopera-
tor nameO;" togethemith anr;-tupleof parametersglravn
from the universe0,...,n — 1. Omitting the superscripts
denotingarity, we have

o = {0j(b1,...,by;) | 0< by, .. by, <31 <j<s}.

Thusthesizeof %, is O(n") wherer = max;r;. Recall
thatin the exampleof DynREACH above, we hadthe op-
eratornamesinsert,Deleteof arity two, and SetS,SetT, of
arity one.

Thetransitionfunctions,{é, | n > 0}, aregivenby a
setof logical formulas{y;; | 1 <1 < t,1 < j < s},
defining the new statein termsof the old stateand the
operationperformed. For eachrelationname,R; € T,
and operatorname,O; € %, the formula ¢; ; expresses
the value of relation R; in the new state after the tran-
sition specifiedby the operatorQ; (b1, ...,b,;). For ex-
ample,if 0,(q,0;(b1,...,br;)) = ¢, ¢ = {{0,...,n —
1}, Ry,...,Ry), andq’ = ({0,...,n — 1}, R},..., R}),
thenwe have,

R; = (pi,j(Rla"'7Rk,bl,"'7b7‘_7"x17"'7$ai)'

If all theformulasy; ; arefirst order thenthenew state,
¢’ isfirst-orderdefinablefrom the previousstate g.

Thestartstatess,,, aregivenasasetof logicalformulas,
{oi | 1 < i < t}, giving theinitial valuesof the relations
R;, 1 < i < t. Thelogic usedto expressthe startstates
maybedifferentthanthelogic usedto expresghetransition
function,meaninghattheinitialization of our dynamicma-
chinemay have a differentcomputationatomplexity than
theimplementatiorof eachoperation.

Finally, thefinal statesetsaregivenby a singlesentence
a. A stateg € Q, isin F,, iff ¢ = o m|

Example 4.2 Let PARITY consistof the set of binary
strings containingan odd numberof “1"s. The problem
DynPARITY hasunaryoperatorsSetandResetFor aprob-
lem of sizen, theinitial stateis a string of n “0"s. Se{z)
setsbit 7 to “1”, andReseti) setsit to “0”. A sequence
of suchoperationss acceptedff theresultingstringhasan
oddnumberof “1”"s.

Definethe dynamicmachineP = {P;, P,, ...} accept-
ing DynPARITY asfollows. The data-structurgocahulary
isT = (A, T°). Therelation A will storethe currentn-
bit string, andT" will storethe currentparity of the input.
The startstateof P is givenby the formulas,A = false
T = false Thefinal statesof P aredescribedy theatomic



formulaT (). Thetransitionfunctionsaredescribedelow.

Sefi) : Aj) = ¢pip = A()Vi=
TI() = P21 = T() — A(Z)

Reseti) : A(G) = g2 = A(G)Ni#]
TI() = Y22 = T() — —|A(Z)

Obsere that L(P) = DynPARITY, andeachoperation
in P is first-orderdefinable. In the next sectionwe will
defineDyn-FO andit will be obviousthat P is a Dyn-FO
machineandthusDynPARITY € Dyn-FO. m|

5 Dynamic complexity

Dynamic compleity classesarise naturally from the
aborvedefinitionof adynamicmachineasafamily of DFAs.
In generalfor ary staticcompleity classC we definethe
dynamiccomplexity classDyn-C to be the setof dynamic
problemshatareacceptedby dynamicmachinesvhoseini-
tial state transitionfunction,andfinal setareall computable
inC.

If we requirethat the initial state,transitionfunction,
andfinal setare all describedby first-orderformulas, we
have the dynamiccompleity classDyn-FO. For example,
DynFARITY € Dyn-FO, by the constructionin Example
4.2. The classDyn-FO describedchereis a slight general-
izationof the Dyn-FOdescribedy ImmermarnandPatnaik
in [P197]. Thedifferencds thatin [P197], only thedynamic
versionsof staticproblemswere consideredherewe con-
siderarny dynamicproblemwhatsoger. Thistreatmenpro-
videsamoregenerahotionof dynamiccomputationwhich
helpedusdiscover the completeproblemsthatwe describe
in thesequel.

It may be the casethatthe precomputatiorof theinitial
statehasgreatercompleity thanthe other partsof a dy-
namic computation. If the computationof § and F' arein
C, but theinitial staterequirescomplexity greatethanC —
up to polynomial— thenwe saythatthe dynamicproblem
isin Dyn<C™, i.e.,Dyn-C with polynomialprecomputation,
cf. [P197].

6 Reductions

letA = {4, C I} | n = 1,2,...} andB =
{B, C T} | n =1,2,...} bedynamicproblems. A
simplekind of reductionfrom A to B mapseachoperation
o € X, to auniformly boundedsequenceof operations
V1Y € F:(n) for somepolynomialr(n). Notethatsuch
areductioncorrespondso a uniform, boundedsequencef
homomorphismérom X7, toI' . Suchreductionsarere-
lated to the boundedreductionsinvestigatedin [MSV94]
and[P197].

Definition 6.1 (BoundedHomomorphism)

Let r(n) beapolynomial,let ¥ € N bea constantand
leth = {h, | n =1,2,...} beasequencef homomor
phisms,h, : ¥ — F’;(n), suchthatfor all n, all o € ¥,,,
andall w € T}, |hy(0)| < kand,

weEA & hy(w)EB (6.2)

Thenwe saythath is aboundechomomorphisnfrom A
toB (h: A <pnh B).

We saythatboundechomomorphisnh is uniformif the
mapthattakesn to h,, haslow complexity. For example,if
h is uniformly definableby afinite setof first-orderformu-
las— onefor eachoperatiorsymbolO; € ¥ —thenfisa
boundedirst-order(bfo) homomorphismNot surprisingly
bfo homomorphism@resere dynamiccompleity classes.
|

Note that homomorphismsre memorylessn that they
do not consideprevioushistorywhendecidinghow to map
thecurrentoperation.lt is sometimesisefulto considedy-
namicreductionghatmaintainsomestateasthey transform
onesetof operationgo another However, homomorphisms
aresimplerandwe will usethemthroughouthis paper

Example 6.3 (Bounded Homomorphism from Dyn-A to
Dyn-A") Hereis anexampleof aboundechomomorphism.
Givenaregularlanguaged C I'*, we definetwo dynamic
versionsof the membershigproblemfor A. Definethe dy-
namicproblemDyn-A = {Dyn-4,, | n = 1,2,...} such
thatw € Dyn-A,, iff,

e Theoperationsarefrom the set{Set (s, v) | 0<i<
n, v € T'}. Se(i, ) is interpretedassettingcharacter
i of astringto bethe symboly.

o If we begin with the string (yo)™ andperformthe op-
erationsw, thentheresultingstringis in A.

DefinethedynamicproblemDyn-A’ astherelatedprob-
lemwith operationdnser{i, v) andDeletd), whichinsert
charactety into thestringatposition:, increasinghelength
of the string, and deletethe charactemt positioni. Again,
an operationsequencey is in Dyn-A' iff the sequencew,
appliedto the string (7o), yieldsa stringin A. The size
parametern restrictsthe problem;“Insert” operationshat
would make thestringlongerthann charactersreignored.

Giventhesetwo dynamicproblemsijt is easyto seethat
theoperationSe(i, o) from thefirst problemcanbeimple-
mentedasthesequencef operationDeletdi), Inser{s, o)
in the secondproblem. Thus a boundedhomomorphism
from Dyn-A to Dyn-A’ is given asfollows: r(n) = n;
k = 2; and,h,(Sel(i, o)) = Deletds) Inser{(i, o) |

We say that a compleity class,C, is closedunder a
reduction, <,., iff for all problemsA, B, if B € C and
A <, BthenA € C. It is obviousthatalmostany concev-
abledynamicclassis closedunderbfo homomorphisms.



Proposition6.4 Let C be any of the complity classes
AC!, ThC,, i > 0, NC', i > 1, DSRACE[s(n)],

NSFACE[s(n)], s(n) > logn. ThenDyn-< is closedun-

der bfo homomorphisms.

A difficulty with bfo homomorphismsis thatthey only
allow a boundednumberof operationgo setup aninitial
structure. Thus, a problemthat would otherwisebe com-
pletemight not beif its initial datastructureis trivial. For
thisreasonto build acompleteproblemfor Dyn-FOvia bfo
homomorphismsywe will have to work hardin §8 to build
auniversal first-orderformulato placeasthe main part of
theinitial datastructureof our completeproblem.

A different approachwould be to increasethe power
of the reductionsso that they can place a polynomially
boundedprefix, p,, in front of the homomorphicimage
h,,(w) in Equation6.2.

Thus,definea boundechomomorphismwith polynomial
prefixto bethe sameasa boundechomomorphisn{Defini-
tion 6.1) exceptthatthereis alsoa sequencef polynomial-
size prefixes: p(n) € Ty, n = 1,2,..., suchthat for
aln,allo € ¥, andall w € =}, |h,(0)] < k and
weA & p(n)h,(w) € B. Similarly, a boundedfirst-
orderhomomorphisnwith prefix (bfop) is afirst-orderde-
finableboundechomomorphisnwith polynomialprefix.

It may no longerfollow that complexity classeDyn-C
areclosedunderbfop’s but the correspondinglasseswith
precomputationj.e. Dyn-C* are. In mostnatural situa-
tions, the applicationof the machineM,.,,y for B to the
prefix p(n) will resultin a uniformly first-orderdefinable
datastructurefor B,.,), andthusthe extra precomputation
doesnottake usout of Dyn-C.

Example 6.5 (DynPARITY <z, DynREACH) It is not
clearthatDynPARITY isreducibleto DynREACH via abfo
homomorphismput it is easyto show that thereis sucha
bfop homomorphismNamely let r(n) = 2n + 2, andlet
prefixp(n) constructninitial graphwith s = 0,¢ = 2n—1,
andtheedged(i,i+2), 4 < 2n. Thisconsistof two parallel
linesof lengthn.

The homomorphicimage of the operation Se{i) re-
movesthe edges(2i,2i + 2) and (2¢ + 1,2: + 3) andin-
sertstheedges(2i, 2i + 3) and(2i + 1, 27 + 2). Similarly,
h(Unset:)) reversegheseoperations,

h(Unseti)) = Inser(2i,2i+ 2), Inser(2: + 1, 2i + 3),

Delete2i, 2: + 3), Deletd2i + 1, 2i + 2)

It is easyto verify thatthis is the requiredbfop homo-
morphism. ]

7 A CompleteProblemfor Dyn-FO

In this sectionwe constructa complete problem for
Dyn-FO. Let A = {4, C = | n = 1,2,...} bean
arbitrary Dyn-FO problem. Let the operatoralphabetbe
X =(07,...,0%).

SinceA € Dyn-FO, A = L(M) for somemachineM =
{My = (Qn, =0, 00y 80, Fu) | n=1,2,...}, inwhich$,
s, and F' areall first-orderdefinable.

Recallthat@,, = STRUC,[r] consistsof all structures
with universe{0, 1, ...,n — 1} for afixedvocahlary, =
(R7*, ..., R{Y).

Let the following first-orderformulasbe the definition
of the Dyn-FO machineM: o;, 1 < i < t, definingthe
t initial relations;y; j, 1 <i <t,1<j <s, definingthe
new valuesof eachof the ¢ relationsin responseo each
operatorO;; anda, the acceptanceondition.

We next obsene thatany Dyn-FOmachinecanbeeasily
transformedo onewith trivial initial andacceptrelations.

Obselrvation 7.1 Let M bea Dyn-FOmadine Thenthere
is an equivalentDyn-FO madine M’ such thatall theini-
tial relationsare emptyi.e, o; = false i = 1,...,t, and
the acceptanceconditionis also trivial, « = F whee F
is a new relation of arity 0, i.e., a single additional bit of
auxiliary data.

Proof: Let ' = 7 U {S%, F°}, i.e., we augmeniur data
structurewith two bits: S (start)and F' (final). In theinitial
statesgs!,, all relationsareempty i.e., false.

Thenew transitionrelationsy; ; areasfollows: oninput
O;(b1,...,br,), dothefollowing,

1. If =S, applytheinitializationdefinitions,R; := o; and
S’ :=true;

2. Apply thetransitionsasin M, R} := ¢; j(b1,...,b;);
3. Recordwhetherwe arein afinal state:F" := a

Thus M' is exactly equivalentto M and performsthe
samework that M does,exceptthat at the endof eachop-
erationit explicitly recordsin the bit ' whetheror not we
arecurrentlyin afinal state.Clearly M’ is alsoDyn-FO. O

A secondbsenation,whichwill simplify our construc-
tion of a completeproblemfor Dyn-FO, is thatthe classof
Dyn-FOproblemsdefinedby Dyn-FOmachineghathave a
singleunaryrelationastheir auxiliary datais completefor
Dyn-FOunderbfo homomorphisms.

Observation 7.2 AnyDyn-FOproblemA is bfohomomor
phismreducibleto a problemB acceptedya Dyn-FOma-
chinewhosestatespace®,, = STRUC,[;] is thesetof all
relational data structues with the vocatulary 7, = (S?)



consistingof a singleunaryrelation symbol. Furthermoe,
B’sopemtionvocahilary , & = (0},...,0!), consistsof
only unary opeations.

Proof: Let M be a Dyn-FO machinefor A, and let the
statespaceof M,, be STRUC,,[7], for 7 = (R7%, ..., R;*).
Recall from §2 the first-order transformation bin,
STRUCI7] — STRUC][7], whoseinverseis alsofirst-order
definable.

We know from [Imm99, Prop. 3.5] that for ary first-
ordertransformation/ : STRUC[a] — STRUC|[{] thereis
adualmapT : L(B) = L(a) suchthatfor all sentences
0 € L(B) andall structuresd € STRUC[q],

~

AETO) o IA)E6.

Thefirst-orderformulasdefining B arethusgivenasthe

imageunderbin; ! of the first-orderformulasdefining A.
Thehomomorphisnt is theidentity map,andthe polyno-
mial blow-upisr(n) = n® +---+n*. We havethusgiven
abfo homomorphisnfrom A to B. Whatis goingonis that
B maintainsdatastructureshatarebinary stringsbin, (A)
exactly simulatingthedatastructureA of A.

For the last requirementhat operationsof B all have
arity one,we mayhave to make anadditionalchange First-
ordertransformationsnap structureswith universe|.A| to
structureswhoseuniverseis |A|*, i.e., k-tuplesfrom | A].
Thus, k argumentsay, ..., a; canbe mappedto a single
argument(as, . .., ax). To make the operationof B have
arity oneit sufiicesto increasethe arity of the first-order
transformatiorbin, from A to B sothatit is atleastaslarge
asthe maximumarity of ary of the operationf A. O

7.1 SingleStepCircuit Value (SSCV)

We now describethe dynamicproblem,single stepcir-
cuitvalue(SSCV).Wewill shavin Theorem7.4thatSSCV
is completefor Dyn-FOvia bfop homomorphimsin Theo-
rem8.7we will show thata variantCSSCVof this problem
is completefor Dyn-FO via bfo homomorphisms.

SSCVis a not-necessarily-gelic dynamiccircuit value
problem.Initially, the problemof sizen consistof n “and”
gateswith currentvalue*0” andnowiresconnectinghem.
SSCVallowsthefollowing operations:

e Inser(s, j): addawire from gates to gatey;
o Deletd, 7): deleteany wire from gates to gatey;

e And(¢), Or(z), Not(s):
“not” gate,respectiely;

make gates an “and”, “or”,

e Seli), Resefi): setthecurrentvalueof gate: to “1”,
“0", respectiely;

e Step: synchronously propagate values one step
throughthe whole circuit. The new valueof an“and”
(“or") gateis the conjunction(disjunction)of the cur-
rentvaluesof thegatesconnectedo its inputs. A “not”
gateis actuallya“nand” gate;its new valueis thenega-
tion of the conjunctionof its inputs. The valueof an
“and” gatewith no inputsis “1”; the valueof an“or”
or “not” gatewith noinputsis O.

The acceptanceondition for SSCVis that gate 0 has
value“1”. It is easyto seethat SSCVis in Dyn-FO

Proposition 7.3 SSCMs in Dyn-FO.

Proof: We maintainthe currentvalueof thecircuit asalog-
ical structurewith onebinary edgerelationandfour unary
relationsindicating whethereachgateis “and”, “or”, or
“not”, andits currentbinaryvalue.

The operation“Step” is easyto defineusingfirst-order
formulas* All the otheroperationssimply setonevalueof

theaboverelations. O

Thefollowing is not surprising,

Theorem 7.4 SSCVis completefor Dyn-FO via bfop ho-
momorphisms.

Proof: Let A be an arbitrary Dyn-FO problem,with cor-
respondingdyn-FO machine, M, i.e., A = L(M). Com-
bining Obsenations7.1 and 7.2 we may assumehat M’s
datastructurevocahularyis 7, consistingof asinglebinary
string, S, it's initial stateis the all-zerostring, andits final
stateis determinedy bit O of its statestring. Furthermore,
thevocahulary, = = (O}, ..., 0!), consistsof s unaryop-

erations.

Let, ..., ps bethefirst-orderformulasdescribinghe
new value of M’s staterelationin reactionto operations
Os,...,0,. Foraninstanceof A of sizen, therearethus

alinearnumberof possiblefirst-orderoperationgo be per
formed:p;(j),1<i<s0<j<n-—1

The prefix p(n) of the bfop homomorphisnconstructs
AC" circuits for all the operationsp;(j). Theseare first-
orderdefinablglmm99, Th. 5.22]. Also neededs ann-bit
array of latches,to storethe currentvalue of M,,’s state
relation,S. Thecircuit correspondingo ¢;(j), whengiven
control,will startwith input S, andoverthenext depth(¢;)
steps,computey; (j), finally returningthe relation, S’ =
vi(4, S) to then-bit arrayof latcheswhendone.

The homomorphicimageh(O;(j)) consistsof the fol-
lowing deptHy;) + 3 operationso SSCV setthe control
bit for ;(7), Stepdepth((;) times,latchthesenew values
into the arrayof latchesunsetthe controlbit.

“Notethat SSCVis asingleiterationof thefirst-orderinductive defini-
tion of CVP, cf. [Imm99, Ex. 4.26].



By constructionthe prefixandhomomorphisnarefirst-
order definable,and the resulting SSCV computationex-
actly simulateg\. m|

8 A Universal,First-Order Formula, ¢

In orderto build a completeproblemfor Dyn-FO, via
bfo homomorphismsye canno longerinclude the prefix
definingthe operationsp;(j) asin Theorem7.4. We solve
this problem,by constructinga first-orderformula, ¢, that
cansimulateary otherfirst-orderformula. This sectionis a
diversionfrom dynamiccompleity andmay be skippedif
thereadersodesires.

We now constructa first-orderformula, ¢, thatis uni-
versalin thefollowing senseary otherfirst-orderformula,
, canbe simulatedby the formula ¢ iteratedd + 1 times,
whered is the depthof the parsetreeof ¢ — evaluatedon a
structurethatis a polynomialpaddingof the original struc-
ture,informally,

AEp &  PAD(p,A) ¢ (81)

Since( hasa fixed numberof variablesit will have to
simulateformulas,p, thathave alargernumberof variables.
A paddingof sizen® will let eachvariablein ¢ correspond
to clogn bits. UsingBIT we canthusencodec of ¢’s vari-
ablesinto a singlevariableof (.

RecallthatTs = (S') is the alphabetf binary strings.
Theformula¢(y, S) € L(7s) hasonefreevariableandthus
mapsbinarystringsto binarystrings,asfollows. Letw bea
binarystringof lengthn. Thestructure4,, = ({0,...,n —
1}, S,) is anencodingof w. (Notethatusingthe encoding
mentionedn §2, thestructureA,, andthebinarystringw =
bin,, (A,) areinterchangeable ) et

C(Aw) =

whereS' = {i | Aw,i/y = (}.

We may slightly ablusenotationand write {(w) = w'.
For theremaindeiof this sectionwe fix avocahlulary r and
aformulay € £(7). We will definethe binary stringw,,
whichwill beanencodingof ¢ andr thatis corvenientfor
thefirst-orderformula, (.

Among otherthings, the stringw,, will represenall the
subformulasof ¢: y1 = ¢, ¥2,...,7%. Letr bethenumber
of distinctvariablesoccurringin . For simplicity, we will
imaginethatall r variablesoccurfreely in eachsubformula
v. Leto = (GT,...,G}). We will usestructuresfrom
STRUC]o] to representhe currentcomputationof ¢ asit
simulatesy andits subformulas.

Supposenow that we are given a structure A €
STRUC,[7]. Let B, € STRUC,[o] be a blank structure,
i.e., all relationsare false. Let C(A) = ({0,...,n —
1}, GS, ..., GS) bethe correctstructureof ¢ evaluatedon

Ap = ({0,...,n—1},8");

Aie,fori=1,...,k,

Gf = {(al,...,ar> | A,al/xl,...,ar/az”:'yi}.

The paddedencodingof ¢ and .4 — what we called
PAD (g, .4) in Equation8.1 — will be the concatenation
of threestrings: w,,, bin,(.A), bin,(By). The following
lemmastatesthe mainresultof this section,namelythat ¢
iteratedl + d = deptH) timescorrectlysimulatesp.

Lemma8.2 Theek is a univeisal first-oder formula, ¢,
sudh thatfor anyr, ¢, n, A,

¢4 (w,,-bin, (A)-bin, (By)) = wy,-bin,(A)-bin, (C(A)) .

Proof: Althoughthedetailsof theencodingof w,, have not
beenexplainedyet, it is an easy-for(-to-readrepresenta-
tion of ¢’s alphabetr anda parsetreefor . Thevariables
occurringin ¢ arez,...,z,. The subformulasof ¢ are
©=",%2,.-.,7 andthedepthof ¢'s parsetreeis d.

We will build ¢ sothatoninputw,, - bin, (A) - bin, (B),
it outputsw,, - bin, (A) - bin, (B') whereB' is an“improved
approximation”of C(.A). More explicitly, if theinputrela-
tionsG? arecorrectfor all ; of heightlessthanj, thenthe
outputrelationsG?' arecorrectfor all ; of heightlessthan
Jj+ 1

Claim 8.3 Let 7, ¢, n, A, k, and o be as above and let
B € STRUC,[c]. Then,

C(w, -bin, (A)-bin,(B)) = w,-bin, (A)-bin, (B')

wheefor all j < d, if for all ; of heightlessthanj, G® =
GY™ | thenfor all y; of heightlessthanj + 1, GB' =

K]

lerda

Lemma 8.2 will follow immediatelyfrom Claim 8.3.
Furthermore Claim 8.3 is a completespecificationof the
requirementsf . Oninputw,, - bin, (A) - bin, (B), ¢ must
dothefollowing:

of ¢

1. Determinen. (Notethatthelengthof {'sinput—and
thus the cardinality of {’s input structure— is r(n)
wherethe polynomialr is determinedy ¢.)

2. Copy theinitial portionof its input, w, - bin. (A), di-
rectly to thebeginningof its output.

3. For eachsubformulay; of heighto, ¢ lets GF' =
G‘?(A), i.e., it evaluatesthe atomic formula~y; on A

(3

and writes thesen” bits to the correctportion of the
outputstring.

4. For eachsubformulay; of positive height,( evaluates
7: usingits definitionin w,, in termsof ;s childrenin
p'sparsetree. Therearethreecases:



(@) 7 = —y;: Inthiscase/ evaluatess; := -G5.
(b) 7i = v; A e € evaluatess) := GF A GF.

© vi = (Vz;)ye: ¢ evaluatesG; := (Vz; <
n)GB(z1,...2,).

A key point in the definition of w,, and the definition
of ¢ isthat¢ beableto computethe positionsof eachbit of
eachG;(by,...,b,), andeachinputrelation,R(by, . .., b,).
Notethatthe lengthof the universeof {’sinputis givenby
thepolynomial,

r(n) = |wy|+ [bin,(A)| + |bin, (B)] .

We will encodethe string w, to be self-delimiting

so ¢ can determineits length. |bin,(B)| = kn" since

o consistsof k relations each of arity k. For 7 =
(R7*,..., R, c1,...,cs), wewould have that

|bin-(A)] = n% +n%+---4+n" + s[logn] (8.4)

A small problemhereis thatfrom (s point of view the
value of ¢, the numberof termsin this summation,is un-
bounded.A solutionto this problemis to have the corven-
tion thatthe sequencef a;’s in every 7 is monotonic. In
this case we canrewrite Equation8.4 as,

lbin, (4)] =

wherei is thenumberof differentgroupsof arities. Note
thatfor n > 2 it mustbethe casethat: < log|.A|. This
solves our minor problembecausesummationsof size up
to logn arefirst-orderexpressiblein the presenceof BIT
[Imm99].

Sincer(n) > n", asinglevariableof ¢ cansimultane-
ouslyencodevaluesfor all r variablesof .

The full definition of ¢ is now straightforward. Recall
that {(S, y) takesasinput a binary string, w, - bin, (A) -
bin, (B), encodedvia the unaryrelation, S. y is the free
variableof ¢, as{ computesa unaryrelation. The output
of ¢ is thenew relationS’(y) = ¢(S,y). The definition of
¢(S,y) is asfollows.

cn® + can® + -+ + ¢ + s[logn](8.5)

1. computen; v = |bin, (A)];

2. if (y < u+wv) thenreturn(S(y))

u = |wy;

3. elsecomputel,jsty=u+v+i(n") +j

4. I% S(y) isG;(b1,...,b.); jencoded,...b, x/

5. computeandreturnG;(bs, ..., by)
In line 5, the new value of G(b4,...,b,) is computed
accordingto the instructionin w,, asin Specification8.1.
This completeghe proof of Lemma8.2. |

8.1 A UniversalFirst-Order Quantifier Block

Herewe pointoutthatasa consequencef the existence
of theuniversalformula,{, thereis afixed,first-orderquan-
tifier block that can simulateary other first-orderquanti-
fier block. While not completelysurprising,having sucha
guantifierblock seemsrery valuableandoffersinsightcon-
cerningall the descriptve complexity classesFO[t(n)].

Recall, [Imm99, Def. 4.24], thatfor ary functiont¢ :
N — N, the descriptive compleity class,FO[t(n)], is the
set of static problemsS C STRUC[7] describableby a
quantifierfree formula, My, atuple of constanisymbolse,
anda quantifierblock,

QB = [(Qiz1.My)... (Qrzr-My)],
in thesensehatfor all A € STRUC|7],
AeS & Az [QBIH MDA .

Thus, FO[t(n)] is the setof static problemsexpressible
by first-orderquantifierblocksiteratedt(n) times. Thefol-
lowing equalitiesareknown,

0o(1)

AC! = FQ[logn]; P= FOn®M]; PSACE = FO[2" ]

A corollary of the existenceof the universalfirst-order
formula, ¢, is that thereis a complete quantifier block
(QBQC)in thefollowing sense,

Theorem 8.6 Thete exists a fixed quantifier block, QBC,
a fixed quantifierfree formula, My, and a tuple of con-
stants,¢, sud that for any static problemS € FO[t(n)],
there is a correspondingconstant ., andfirst-order trans-
lation, ns : STRUC[o] — STRUC[7], suc that for all
A € STRUC[g],

AeS o  ns(A),¢/z E [QBCIHIAD M, .

Thus,ary block of quantifierscanbe linearly simulated
by QBC.

8.2 CSSCV A Dyn-FO-CompleteProblem

We now build the problem CSSCVwhich is the same
asSSCVexceptthattheinitial circuit includesa first-order
definableAC® circuit for the universalfirst-orderformula
¢, plusanarrayof latchesandsomecontrollogic asin the
proof Theorem7.4. The detailsof this control logic will
be explainedin the proof of Theorem8.7. Call the revised
problem,i.e. SSCYV plus this first-order definableinitial
circuit, CSSCV Olviously CSSCVe Dyn-FO. We next
prove,

Theorem 8.7 CSSCMs completefor Dyn-FO via bfo ho-
momorphisms.



Proof: We just needto shav that every Dyn-FO problem
is reducibleto CSSCVvia a bfo homomorphismlLet A =
L(M) beaDyn-FO problemandmachineexactly asin the
proofof Theorem?.4.

An instanceof problemA of sizen will bemappedo an
instanceof CSSCVof sizeg(n) for anappropriatgpolyno-
mial g. Thatsizeq(n) circuitwill haveanarrayof latchesof
lengthlargeenoughto encodehen-bit binarystring, S, to-
getherwith theencodingw,,; for 1 <1 <'s, pluskn’, bits
to encodethe intermediate-resulstructure8 asin Lemma
8.2,for ary of they;’s.

The homomorphicimage h(0;(j)) consistsof the fol-
lowing operationgo CSSCV

1. Write thefinite stringw,; to the front of the array of
latchesshifting therestof thearrayto theright.

2. Step(deptHy;) + 1)depti¢) times, thusiterating ¢
enougho simulatep;. (Thisresultan thebinarystring
w, - S - bing (C(S)) asin Claim 8.3. Thebeginning of
bin, (C(9)) is ann2-bit representationf ¢;(S, z,y).)

3. Copy row j of ¢;(S, z,y) backinto thefirst n bits of
the array of latches,zeroingthe rest. (Choosingrow
j correspondso taking the valuejust for the desired
parametey.)

Obsene thatasdesired,we have reducedA to CSSCV
via a bfo homomorphismWe have only includedthe main
ideasconcerningthe initial circuits for CSSCV We have
omitteddetailsconcerningcontrollinesandcopying values,
etc. m]

9 Other Complete Problems

Now thatwe know that SSCVis completefor Dyn-FO
via bfop homomorphisms,and CSSCV is completefor
Dyn-FOvia bfo homomorphismsye canconstructrelated
problemghatsharetheseproperties First,

Proposition9.1 Let monotonesingle step circuit value
(MSSCV)be the restriction of SSCVin which there are
“and” gatesand “or” gatesbut no “not” gates. Then
MSSCMs completefor Dyn-FO via bfophomomorphisms,
and CMSSCVis completefor Dyn-FO via bfo homomor
phisms.

Proof: We usethe standardreductionof circuit value to
monotonecircuit valuein which for eachgate,g, thereis a
correspondingateg thatcomputesy’'s negation. If g is an
“and” or “or” gatewith inputsz,... zx, theng is an“or”
or “and” gatewith inputszy, . . . Zx.

Thus, by at mostdoublingthe sizeof the corresponding
circuits, and the operationsthat createand modify them,

we have transformedary circuit to anequivalentmonotone
circuit. Theresultsof Theorems/.4and8.7thuscarryover.
O

A problemrelatedto MSSCV is the following boolean
matrix multiplication problem. An instanceof this prob-
lemis ann x n boolearmatrix, B, andabooleanvectorof
lengthn, X. Theoperationf this dynamicproblemallow
the settingor resettingof ary bit of the matrix or vector
togetherwith the operation,Step, which replaceshe cur-
rentvalueof X by multiplying it by the matrix M andthen
negatingit, X’ := =M X. Thereasonfor the negationis
that M X computesaann-ary “or” of abinary“and”. In two
suchoperationsve cancomputen-ary “or’s and“and”s.

Proposition9.2 The boolean matrix multiplication plus
negation problemdescribedaboveis completefor Dyn-FO
via bfop homomorphisms.Furthermoe, a version of the
problemthatincludesa certain first-order definableinitial
matrix is completefor Dyn-FOvia bfo homomorphisms.

Proof: In two stepsof matrix multiplication plus negation,
we cansimulateall the “or” gates,andthenall the “and”
gatesof MSSCV m|

9.1 CompleteProblemsFor Other Dynamic Com-
plexity Classes

Theabove completeproblemsfor Dyn-FO canbe modi-
fied to obtain completeproblemsfor other dynamiccom-
plexity classes. Of particularinterestis the complexity
classDyn-ThC® of thosedynamicproblemseachof whose
stepsis computableby boundeddepththresholdcircuits.
Analogousto the factthat FO = AC?, is the resultthat
FO(COUNT) = ThC®, i.e., ThC is equalto the classof
problemsexpressedy first-orderformulaswith counting
quantifierdBIS9(Q].

Definethe problemSSThCVto bethe generalizatiorof
SSCVin whichthresholdyatesareused.lt is nothardto see
thatwe cangeneralizehe universalformula{ to aformula
(¢ thatis universalfor FO(COUNT). Thus, we can also
definethe problemCSSThCVwhichis like CSSCVexcept
thatwe replace{ by (. We thusobtain,

Theorem9.3 SSThC\is completefor Dyn-ThC® via bfop
homomorphismsand CSSThC\s completefor Dyn-ThC®
via bfo homomorphisms.

In a similar, but perhapdessnaturalway, we cancon-
siderothercircuit valueproblemscorrespondingo thecom-
plexity classesNC?, AC?, and ThC' for s > 1. In these
caseghe circuits look like the correspondindNC, AC, or
ThC circuits exceptthatthey neednot be agyclic. Thesin-
gle stepoperationof SSCVis replacedby a multi-stepop-
erationthat executes(logn)? stepsof the circuit. It then



follows that the correspondingproblemsare completefor
thecompleity classesDyn-NC*, Dyn-AC', andDyn-ThC'
fori > 1.

10 Conclusionsand Futur e Dir ections

We have presentedthe first complete problems for
dynamic compl«ity classes including Dyn-FO and
Dyn-ThC’. We hopeandexpectthatthis will enablemary
otherresearcherso producemore naturalcompleteprob-
lemsthatwill shedfurtherlight ondynamiccomplexity.

We have alsoproduceda universalfirst-orderformula, ¢,
and a corresponding.ompletefirst-orderquantifier block,
QBC. We look forward to simplersuchuniversalformulas
andquantifierblockswhich may help shedlight on all the
compleity classesO[t(n)].

Thefollowing furtherdirectionsarepromising:

o Now thatwe have somecompletedynamicproblems,
thereis muchwork to be doneclassifyingmary other
importantdynamicproblemsj.e.,whicharecomplete,
which arereducibleto others,etc. It would be nice
to know whetherdynamicversionsof staticproblems
canever be completefor dynamiccompleity classes.
(They cannotbe completevia memorylesseductions
suchas homomorphisms. This follows becausealy-
namic versionsof static problemsare idempotent:if
zy € Athenzyy € A for ary sequencesf operations
z andy. This propertyis preseredundermemoryless
reductionshut it is nottrue of all dynamicproblems.)

e It is alsovery desirableto characterizelynamiccom-
plexity from adescriptve point of view. We arebegin-
ning this simply by looking at the syntaxof the log-
ical formulasthat we useto expressvariousdynamic
properties.A related,valuabledirectionis to develop
methodgo go from alogical descriptionof a dynamic
problem,to a good dynamicdatastructureand algo-
rithm for this problem.

e Thecompletegproblemswe producedeachhadtwo ver
sions: one more naturalsuchas SSCV andone com-
pletevia a wealer reductionsuchas CSSCV Further
work clarifying therelationsbetweerbfo andbfop ho-
momorphismsandotherreductionss needed.
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