
Chapter 7

Second-Order Logic and Fagin’s

Theorem

Second-order logic consists of first-order logic plus the power to quantify over

relations on the universe. We prove Fagin’s theorem which says that the queries

computable in NP are exactly the second-order existential queries. A corollary due

to Stockmeyer says that the second-order queries are exactly those computable in

the polynomial-time hierarchy.

7.1 Second-Order Logic

Second-order logic consists of first-order logic plus new relation variables over

which we may quantify. For example, the formula (∀Ar)ϕ means that for all

choices of r-ary relation A, ϕ holds. Let SO be the set of second-order expressible

boolean queries.

Any second-order formula may be transformed into an equivalent formula

with all second-order quantifiers in front. If all these second-order quantifiers are

existential, then we have a second-order existential formula. Let (SO∃) be the set

of second-order existential boolean queries. Consider the following example, in

which R,Y, and B are unary relation variables. To indicate their arity, we place

exponents on relation variables where they are quantified.

Φ3-color ≡ (∃R1)(∃Y 1)(∃B1)(∀x)
[

(

R(x) ∨ Y (x) ∨B(x)
)

∧ (∀y)
(

E(x, y) →

¬
(

R(x) ∧R(y)
)

∧ ¬
(

Y (x) ∧ Y (y)
)

∧ ¬
(

B(x) ∧B(y)
)

)]

147

148 CHAPTER 7. SECOND-ORDER LOGIC AND FAGIN’S THEOREM

Observe that a graph G satisfies Φ3-color iff G is 3-colorable. Three colorability of

graphs is an NP complete problem (3-COLOR). In Section 7.2, we see that three

colorability remains complete via first-order reductions. It will then follow that

every query computable in NP is describable in SO∃.

Second-order logic is extremely expressive. For this reason, it is very easy to

write second-order specifications of queries. For the same reason, such specifica-

tions are not feasible to execute without further refinement (cf. Section 9.6). Recall

that the first-order queries are those that can be computed on a CRAM in constant

time, using polynomially many processors (Theorem 5.2). We will see that the

second-order queries are those that can be computed in constant parallel time, but

using exponentially many processors (Corollary 7.27).

Here are a few other examples of SO∃ queries.

Example 7.1 SAT is the set of boolean formulas in conjunctive normal form (CNF)

that admit a satisfying assignment (Example 2.18).

The boolean query SAT is expressible in SO∃ as follows:

ΦSAT ≡ (∃S)(∀x)(∃y)((P (x, y) ∧ S(y)) ∨ (N(x, y) ∧ ¬S(y))) .

ΦSAT asserts that there exists a set S of variables — the variables that should be

assigned true — that is a satisfying assignment of the input formula. �

Example 7.2 Boolean query CLIQUE is the set of pairs 〈G, k〉 such that graph G

has a complete subgraph of size k (Example 2.10). The vocabulary for CLIQUE

is τgk = 〈E2, k〉.

The SO∃ sentence ΦCLIQUE says that there is a numbering of the vertices such

that those vertices numbered less than k form a clique. In order to describe this

numbering it is convenient to existentially quantify a function f . This can be re-

placed by a binary relation in the usual way (Exercise 7.3). Let Inj(f) mean that f

is an injective function,

Inj(f) ≡ (∀xy)(f(x) = f(y) → x = y)

ΦCLIQUE ≡ (∃f1.Inj(f))(∀xy)((x 6= y ∧ f(x) < k ∧ f(y) < k) → E(x, y))

�

7.1. SECOND-ORDER LOGIC 149

Exercise 7.3 Show how formula ΦCLIQUE may be rewritten using an existentially

quantified relation F of arity two, rather than function f . �

Exercise 7.4 Hamiltonian-Circuit (HC) is the boolean query that is true of an undi-

rected graph iff it has a Hamiltonian circuit, i.e., a path that starts and ends at the

same vertex and visits every other vertex exactly once. Write an SO∃ sentence

that expresses HC. [Hint: say that there exists a total ordering of the vertices that

determines a Hamiltonian circuit.] �

Exercise 7.5 Write an SO∃ sentence that expresses TSP — the traveling salesper-

son problem. Boolean query TSP has as input an undirected graph G with weights

on its edges and an integer L. The TSP query is true iff G admits a Hamiltonian

circuit whose total weight is at most L. In order to code TSP instances as logical

structures, we must decide on an appropriate range for the integer weights. To be

quite general, you should code these integers as binary strings. Let the vocabulary

for TSP be τtsp = 〈W 3, L1〉, consisting of a binary string W (x, y, ·) for each po-

tential edge (x, y) and a binary string L(·) representing limit L. For pairs (x, y)
that are not edges, we can let the edge weight be the maximum value, i.e., the string

of all 1’s.

[Hint: you can assert the existence of the correct Hamiltonian-Circuit as in

Exercise 7.4. To say that the total is at most L, you should assert the existence of a

ternary relation R that maintains the running sum.] �

We finish this section by proving the easy direction of Fagin’s Theorem.

Proposition 7.6 The second-order existentially definable boolean queries are all

computable in NP. In symbols, SO∃ ⊆ NP.

Proof Given is a second-order existential sentence Φ ≡ (∃Rr1
1) . . . (∃Rrk

k)ψ. Let

τ be the vocabulary of Φ. Our task is to build an NP machine N such that for all

A ∈ STRUC[τ],

(A |= Φ) ⇔ (N(bin(A))↓) (7.7)

Let A be an input structure to N and let n = ||A||. What N does is to non-

deterministically write down a binary string of length nr1 representing R1, and

similarly for R2 through Rk. By nondeterministically write down a binary string,

150 CHAPTER 7. SECOND-ORDER LOGIC AND FAGIN’S THEOREM

we mean that at each step, N nondeterministically chooses whether to write a 0

or a 1. After this polynomial number of steps, we have an expanded structure

A′ = (A, R1, R2, . . . , Rk). N should accept iff A′ |= ψ. By Theorem 3.1, we can

test if A′ |= ψ in logspace, so certainly in NP. Notice that N accepts A iff there

is some choice of relations R1 through Rk such that (A, R1, R2, . . . , Rk) |= ψ.

Thus, Equivalence 7.7 holds. �

7.2 Proof of Fagin’s Theorem

The following theorem characterizes complexity class NP in an elegant and ma-

chine independent way. This was originally proved in Ron Fagin’s 1973 doctoral

thesis. It was the theorem that began the subject of descriptive complexity.

Theorem 7.8 (Fagin’s Theorem) NP is equal to the set of existential, second-

order boolean queries, NP = SO∃. Furthermore, this equality remains true when

the first-order part of the second-order formulas is restricted to be universal.

Proof LetN be a nondeterministic Turing machine that uses time nk−1 for inputs

bin(A) with n = ||A||. We write a second-order sentence,

Φ = (∃C2k
1 . . . C2k

g ∆k)ϕ

that says, “There exists an accepting computation C,∆ of N .” More precisely,

first-order sentence ϕ will have the property that (A, C,∆) |= ϕ iff C,∆ is an

accepting computation of N on input A. That is, Equation 7.7 holds.

We describe how to code N ’s computation. C consists of a matrix C(s̄, t̄) of

n2k tape cells with space s̄ and time t̄ varying between 0 and nk − 1. We use k-

tuples of variables t̄ = t1, . . . , tk and s̄ = s1, . . . sk each ranging over the universe

of A, i.e. from 0 to n − 1, to code these values. For each s̄, t̄ pair, C(s̄, t̄) codes

the tape symbol σ that appears in cell s̄ at time t̄ if N ’s head is not on this cell.

If the head is present, then C(s̄, t̄) codes the pair 〈q, σ〉 consisting of N ’s state q

at time t̄ and tape symbol σ. Let Γ = {γ0, . . . , γg} = (Q × Σ) ∪ Σ be a listing

of the possible contents of a computation cell. We will let Ci be a 2k-ary relation

variable for 0 ≤ i ≤ g. The intuitive meaning of Ci(s̄, t̄) is that computation cell s̄

at time t̄ contains symbol γi.

7.2. PROOF OF FAGIN’S THEOREM 151

At each step, the nondeterministic Turing machine will make one of at most

two possible choices.1 We encode these choices in k-ary relation ∆. Intuitively,

∆(t̄) is true, if step t̄+1 of the computation makes choice “1”; otherwise it makes

choice “0”. Note that these choices can be determined from C̄ , but the formula

is simplified when we explicitly quantify ∆. See Figure 7.9 for a view of N ’s

computation.

It is now fairly straightforward to write the first-order sentence ϕ(C,∆) say-

ing that C,∆ codes a valid accepting computation of N . The sentence ϕ consists

of four parts,

ϕ ≡ α ∧ β ∧ η ∧ ζ,

where α asserts that row 0 of the computation correctly codes input bin(A), β says

that it is never the case that Ci(s̄, t̄) and Cj(s̄, t̄) both hold, for i 6= j, η says that

for all t̄, row t̄ + 1 of C follows from row t̄ via move ∆(t̄) of N , and ζ says that

the last row of the computation includes the accept state. We can write sentence

ζ explicitly. We may assume that when N accepts it clears its tape and moves all

the way to the left and enters a unique accept state qf . Let γ17 be the member of

Γ corresponding to the pair 〈qf , 1〉 of state qf , looking at the symbol 1. Then ζ =

C17(0,max).

Sentence α must assert that the input is of length Iτ (n) for some n and that

A has been correctly coded as bin(A) (cf. Exercise 2.3). For example, suppose

that τ includes relation symbol R1 of arity one. Assume that cell symbols γ0, γ1
are ‘0’,‘1’, respectively. Then α includes the following clauses, meaning that cell

0 . . . 0sk contains 1 if R1(sk) holds and 0 if it doesn’t.

· · · ∧
(

t̄ = 0 = s1 = . . . = sk−1 ∧ sk 6= 0 ∧R1(sk) → C1(s̄, t̄)
)

∧
(

t̄ = 0 = s1 = . . . = sk−1 ∧ sk 6= 0 ∧ ¬R1(sk) → C0(s̄, t̄)
)

∧ · · ·

The following sentence η asserts that the contents of tape cell (s̄, t̄+1) follows

from the contents of cells (s̄ − 1, t̄), (s̄, t̄), and (s̄ + 1, t̄) via the move ∆(t̄) of N .

Let 〈a−1, a0, a1, δ〉
N
→ bmean that the triple of cell contents a−1, a0, a1 lead to cell

b via move δ of N .

1A nondeterministic Turing machine can make one of at most a bounded number of choices at

any step. By reducing this to a binary choice per step, we slow the machine down by a small constant

factor and make the analysis simpler.

152 CHAPTER 7. SECOND-ORDER LOGIC AND FAGIN’S THEOREM

Space

0 1 p n− 1 n nk − 1 ∆

Time 0 〈q0, w0〉 w1 · · · wn−1 ⊔ · · · ⊔ δ0
1 w0 〈q1, w1〉 · · · wn−1 ⊔ · · · ⊔ δ1

...
...

...
...

...

t a−1 a0 a1 δt

t+ 1 b δt+1
...

...
...

...
...

nk − 1 〈qf , 1〉 · · · · · · · · ·

Figure 7.9: An NP computation on input w0w1 · · ·wn−1; ⊔ denotes blank

η1 ≡ (∀t̄.t̄ 6= max)(∀s̄.0̄ < s̄ < max)
∧

〈a
−1,a0,a1,δ〉

N
→b

(

¬δ∆(t̄) ∨

¬Ca
−1(s̄− 1, t̄) ∨ ¬Ca0(s̄, t̄) ∨ ¬Ca1(s̄+ 1, t̄) ∨ Cb(s̄, t̄+ 1)

)

Here, ¬δ is ¬ if δ = 1 and is the empty symbol if δ = 0.

Finally, let η ≡ η0 ∧ η1 ∧ η2 where η0 and η2 encode the same information

when s̄ = 0 and max respectively. �

Observe that the first-order part of formula Φ in the proof of Theorem 7.8 is

universal and is in conjunctive normal form. Furthermore, if N is a deterministic

polynomial-time machine, then we do not need choice relation ∆, so the first-order

part of Φ is a Horn formula.2 We obtain the following corollary, which is part of

Grädel’s Theorem (Theorem 9.32).

Corollary 7.10 Every polynomial-time query is expressible as a second-order, ex-

istential Horn formula: P ⊆ SO∃-Horn.

The proof of Theorem 7.8 shows that nondeterministic time nk is contained

in (SO∃, arity 2k). Lynch improved this to arity k. His proof uses the numeric

predicate PLUS. Fagin’s theorem holds even without numeric predicates, since we

2A Horn formula is a formula in conjunctive normal form with at most one positive literal per

clause (Definition 9.26).

7.2. PROOF OF FAGIN’S THEOREM 153

can existentially quantify binary relations and assert that they are ≤ and BIT. How-

ever, without the numeric predicates, we need an existential first-order quantifier

to specify time t̄+ 1, given time t̄.

Theorem 7.11 (Lynch’s Theorem)

For k ≥ 1, NTIME[nk] ⊆ SO∃(arity k) .

Proof This is analogous to Lemma 5.31. We modify the proof of Fagin’s theorem

so that instead of guessing the entire tape at every step only a bounded number of

bits per step is guessed. The following relations need to be guessed.

1. Qi(t̄) meaning that the state at move t̄ is qi,

2. Si(t̄) meaning that the symbol written at move t̄ is σi,

3. D(t̄) meaning that the head moves one space to the right after move t̄; oth-

erwise it moves one space to the left.

We must write a first-order formula asserting that Q,S,D encode a correct accept-

ing computation of N . The only difficulty in doing this is that for each move t̄, we

must ascertain the symbol ρt̄ that is read by N . ρt̄ is equal to σi where Si(t̄
′) holds,

and t̄′ is the last time before t̄ that the head was in its present location (or it is the

corresponding input symbol if this is the first time the head is at this cell).

To express ρt̄, we need to express the function s̄ = p(t̄) meaning that at

time t̄, the head is at position s̄. Since we are restricted to relations of arity k,

we cannot guess the k log n bits per time needed to specify the function p. The

solution to this problem is to do the next best thing and existentially quantify the

current head position once every log n steps. We do this by quantifying k bits per

step in relations Pi(t̄), i = 1, 2, . . . , k. When we string log n of these together,

from time r log n through time (r + 1) log n − 1, we have a total of k log n bits

which encode the head position at time r log n.

The idea is similar to the proof of Bit Sum Lemma 1.18. Recall that numeric

predicate BIT allows us to use each first-order variable to store log n bits. Fur-

thermore, predicate BSUM(x, y), meaning that the number of one’s in the binary

expansion of x is y, is first-order (Lemma 1.18). This enables us to assert that

relations P are consistent with the head movements given by D and thus correctly

code the head position at log n step intervals. Finally, using BSUM again, we can

ascertain the head position at any time t̄. �

154 CHAPTER 7. SECOND-ORDER LOGIC AND FAGIN’S THEOREM

The converse of Lynch’s Theorem is an open question:

Open Problem 7.12 Prove or disprove: SO∃(arity k) = NTIME[nk]

The subtlety in Open Problem 7.12 is that the first-order part of an SO∃(arity k)
formula may have more than k universal quantifiers. Thus, a first step in answering

Open Problem 7.12 may be to answer:

Open Problem 7.13 Is there a fixed k such that FO ⊆ DTIME[nk]? Is there a fixed

k such that FO ⊆ NTIME[nk]?

Grandjean gave a close relationship between nondeterministic time nk and the

class (SO∃, fun, k∀) of properties expressible by second-order existential sentences

including function variables and containing only k universal first-order quantifiers.

Fact 7.14 For k ≥ 2, NTIME[nk] ⊆ (SO∃, fun, k∀) = (SO∃, fun, k∀, arity k) ⊆
NTIME[nk(log n)2].

By considering the nondeterministic random access machine (NRAM) instead

of the Turing machine, Grandjean later gave an exact bound,

Fact 7.15 For k ≥ 1,

NRAM-TIME[nk] = (SO∃, fun, k∀, arity k) .

7.3 NP-Complete Problems

In 1971, Cook proved that SAT (Example 2.18) is NP-complete via polynomial-

time Turing reductions [Coo71]. In fact, the problem is NP-complete via signifi-

cantly weaker reductions:

Theorem 7.16 SAT is complete for NP via first-order reductions.

Proof This follows from Fagin’s theorem. Given any boolean query B ∈ NP, we

know that B = MOD[Φ] where Φ = (∃Sa1
1 · · ·S

ag
g ∆k)(∀x1 · · · xt)ψ(x̄), with ψ

quantifier-free. We may assume that ψ(x̄) =
∧r

j=1Cj(x̄) is in conjunctive normal

form.

For any input structure A with n = ||A||, define the boolean formula γ(A)
as follows: γ(A) has boolean variables: Si(e1, . . . , eai) and D(e1, . . . , ek), i =

7.3. NP-COMPLETE PROBLEMS 155

1, . . . , g, e1, . . . , eai ∈ |A|. The clauses of γ(A) are Cj(ē), j = 1, . . . , r as ē

ranges over all t-tuples from |A|. In each Cj(ē), there may be some occurrences

of numeric or input predicates: P (ē). These should be replaced by true or false

according to whether they are true or false in A.

It is clear from the construction that

A ∈ B ⇔ A |= Φ ⇔ γ(A) ∈ SAT .

Furthermore, the mapping from A to γ(A) is a t+ 1-ary first-order query. �

Now that we know that SAT is NP-complete via first-order reductions, we can

reduce SAT to other SO∃ boolean queries. This is possible iff these other problems

are also NP-complete via first-order reductions (Exercise 2.15).

Proposition 7.17 Let 3-SAT be the subset of SAT in which each clause has at

most three literals. Then 3-SAT is NP-complete via first-order reductions.

Proof We show that SAT ≤fo 3-SAT. Here is an example of the idea behind the

reduction. Let C = (ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓ7) be a clause with more than three literals.

Observe that C ∈ SAT iff C ′ ∈ 3-SAT, where C ′ is the following clause in which

new variables d1, . . . , d4 are introduced.

C ′ ≡ (ℓ1 ∨ ℓ2 ∨ d1) ∧ (d1 ∨ ℓ3 ∨ d2) ∧ (d2 ∨ ℓ4 ∨ d3) ∧

(d3 ∨ ℓ5 ∨ d4) ∧ (d4 ∨ ℓ6 ∨ ℓ7)

The first-order reduction from SAT to 3-SAT proceeds as follows. Let A ∈
STRUC[〈P 2, N2〉] be an instance of SAT with n = ||A||. Each clause c of A
is replaced by 2n clauses as follows:

c′ ≡ ([x1]
c ∨ d1) ∧ (d1 ∨ [x2]

c ∨ d2) ∧ (d2 ∨ [x3]
c ∨ d3) ∧ · · · ∧

(dn ∨ [x1]
c ∨ dn+1)(dn+1 ∨ [x2]

c ∨ dn+2) ∧ · · · ∧ (d2n−1 ∨ [xn]
c)

Here [ℓ]c means the literal ℓ if this occurs in c and false otherwise. It is not

hard to see that c′ is satisfiable iff c is satisfiable and that c′ is definable in a first-

order way from c. �

Proposition 7.18 3-COLOR is NP-complete via first-order reductions.

156 CHAPTER 7. SECOND-ORDER LOGIC AND FAGIN’S THEOREM

x

x

x

G

a1
d1

x

e1

c1

f1

n

xx

xx

b

G

1

b

T F

R

1
2

n

3

n

1

n

1

2

3

a
d

e

c

fn
n

n

n

n

Figure 7.19: 3-SAT ≤fo 3-COLOR; G1 encodes clause C1 = (x1 ∨ x2 ∨ x3)

Proof We will show that 3-SAT ≤fo 3-COLOR. We are given an instance A of

3-SAT and we must produce a graph f(A) that is three colorable iff A ∈ 3-SAT.

Let n = ||A||, so A is a boolean formula with at most n variables and n clauses.

The construction of f(A) is shown in Figure 7.19. Notice the triangle, with

vertices labeled T, F,R. Any three-coloring of the graph must color these three

vertices distinct colors. We may assume without loss of generality that the colors

used to color T, F,R are true, false, and red, respectively.

Graph f(A) also contains a ladder each rung of which is a variable xi and its

negation xi. Each of these is connected to R, meaning that any valid three-coloring

colors one of xi, xi true and the other false.

Finally, for each clause Ci = ℓ1 ∨ ℓ2 ∨ ℓ3, f(A) contains the gadget Gi con-

sisting of six vertices. Gi has three inputs ai, bi, ci, connected to literals ℓ1, ℓ2, ℓ3,

respectively, and it has one output, fi. See Figure 7.19 where gadget G1 corre-

sponds to clause C1 = x1 ∨ x2 ∨ x3.

Observe that the triangle a1, b1, d1 serves as an “or”-gate in that d1 may be

colored true iff at least one of its inputs x1, x2 is colored true. Similarly, output

f1 may be colored true iff at least one of d1 and the third input, x3 is colored true.

Since fi is connected to both F and R, fi can only be colored true. It follows that a

three coloring of the literals can be extended to color Gi iff the corresponding truth

7.4. THE POLYNOMIAL-TIME HIERARCHY 157

assignment makes Ci true. Thus, f(A) ∈ 3-COLOR iff A ∈ 3-SAT.

The details of first-order reduction f are easy to fill in. f(A) consists of one

triangle, a ladder with n rungs, and n copies of the gadget. The only dependency

on the input A — as opposed to its size — is that there is an edge from literal ℓ to

input j of gadget Gi iff ℓ is the jth literal occurring in Ci. �

7.4 The Polynomial-Time Hierarchy

We defined the polynomial-time hierarchy (PH) to be the set of boolean queries

accepted in polynomial time by alternating Turing machines making a bounded

number of alternations between existential and universal states (Equation (2.35)).

The original definition of the polynomial-time hierarchy was via nondeterministic

polynomial-time Turing reductions (Definition 2.9).

Definition 7.20 (Polynomial-Time Hierarchy via Oracles) Let Σp
0 = P be level

0 of the polynomial-time hierarchy. Inductively, let

Σp
i+1 =

{

L(MA)
∣

∣ M is an NP oracle TM, A ∈ Σp
i

}

Equivalently, Σp
i+1 is the set of boolean queries that are nondeterministic polynomial-

time Turing reducible to a set from Σp
i ,

Σp
i+1 =

{

B
∣

∣ B ≤t
np A, for some A ∈ Σp

i

}

Define Πp
i to be co-Σp

i , Πp
i =

{

A
∣

∣ A ∈ Σp
i

}

. Finally, PH =
∞
⋃

k=1

Σp
k . �

The relationship between second-order boolean queries and the levels of the

polynomial hierarchy are given by the following:

Theorem 7.21 Let S ⊆ STRUC[τ] be a boolean query, and let k ≥ 1. The follow-

ing are equivalent,

1. S = MOD[Φ], for some Φ ∈ ΣSO
k . (Here ΣSO

k is the set of all second-order

sentences with second-order quantifier prefix (∃R1)(∀R2) . . . (QkRk).)

2. S =
{

x
∣

∣ (∃y1.|y1| ≤ |x|c)(∀y2.|y2| ≤ |x|c) · · · (Qkyk.|yk| ≤ |x|c)R(x, y)
}

where R is a deterministic polynomial-time predicate on k + 1 tuples of bi-

nary strings and c is a constant.

158 CHAPTER 7. SECOND-ORDER LOGIC AND FAGIN’S THEOREM

3. S ∈ ATIME-ALT[nO[1], k].

4. S ∈ Σp
k.

Corollary 7.22 A boolean query is in the polynomial-time hierarchy iff it is second-

order expressible,

PH = SO .

From Theorem 4.10 and Corollary 7.22, we obtain the following descriptive

characterization of the P? = NP question: P is equal to NP iff every second-order

query — over finite, ordered structures — is expressible as a first-order inductive

definition.

Corollary 7.23 The following conditions are equivalent:

1. P = NP.

2. Over finite, ordered structures, FO(LFP) = SO.

Proof If FO(LFP) = SO, then P ⊆ NP ⊆ PH = P. Conversely, if P = NP, then

PH = NP, so FO(LFP) = SO. �

Exercise 7.24 Prove Theorem 7.21. [Hint: By induction on k. The subtle part is

relating Σp
k to the other conditions. For this, note that an NP machine with an oracle

A ∈ Σp
k−1 can guess all the answers to its oracle queries. Then, at the end of its

computation, it can check that these answers were all correct. This is a polynomial

number of Σp
k−1 and Πp

k−1 questions.] �

As seen in the following, the polynomial-time hierarchy is robust enough to

finesse the difficulty that occurs in Open Problem 7.12,

Exercise 7.25 Prove that for any k,

SO(arity k) = PH-TIME[nk] = ATIME-ALT[nk, O(1)] �

Exercise 7.26 Fagin’s Theorem (Theorem 7.8) is a generalization of the Spectrum

Theorem. Define the spectrum of a first-order sentence ϕ to be the set of cardinal-

ities of the finite models of ϕ,

spec(ϕ) =
{

n
∣

∣ n = |A| for some A ∈ MOD[ϕ]
}

.

7.4. THE POLYNOMIAL-TIME HIERARCHY 159

As an example let ϕfield be the conjunction of the field axioms, so spec(ϕfield) is

the set of prime powers. An interesting question is whether the set of spectra of

first-order sentences is closed under complementation, i.e., if S is a spectrum then

is S = Z+ − S one also? As we now see, this is equivalent to an important open

question in complexity theory. The Spectrum Theorem says that a set S ⊆ Z+

is the spectrum of a first-order sentence iff S ∈ NTIME[2O[n]]. Fagin originally

called the finite models of SO∃ sentences “generalized spectra”.

1. Write a first-order sentence whose spectrum is the set of even positive inte-

gers

2. Modify part 1 to get a first-order sentence whose spectrum is the set of odd

positive integers.

3. Prove the Spectrum Theorem.

[Hint: Show how it follows from Theorem 7.8. Note that a problem S ⊆ Z+

is assumed to be a set of binary strings coding natural numbers. Thus S ∈
NTIME[2O[n]] iff S coded in unary is in NP.]

4. Show using the Spectrum Theorem that spec(ϕfield) is a spectrum. �

As a corollary to the proof of Theorem 5.2, we obtain the following characteri-

zation of PH as a parallel complexity class. Up to this point, we had been assuming

for notational simplicity that a CRAM has at most polynomially many processors.

However, the class CRAM-PROC[t(n), p(n)] still makes sense for numbers of pro-

cessors p(n) that are not polynomially bounded.

Corollary 7.27 PH is equal to the set of boolean queries recognizable by a CRAM

using exponentially many processors and constant time,

PH =

∞
⋃

k=1

CRAM-PROC[1, 2n
k

]

Proof The inclusion SO ⊆ CRAM-PROC[1, 2n
O[1]

] follows just as in the proof

of Lemma 5.4. A processor number is now large enough to give values to all the

relational variables as well as to all the first-order variables. Thus, as in Lemma

5.4, the CRAM can evaluate each first or second-order quantifier in three steps.

The inclusion CRAM-PROC[1, 2n
O[1]

] ⊆ SO follows just as in the proof of

Lemma 5.3. The only difference is that we use second-order variables to specify

the processor number. �

160 CHAPTER 7. SECOND-ORDER LOGIC AND FAGIN’S THEOREM

In fact, Corollary 7.27 can be extended to,

Corollary 7.28 For all constructible t(n),

SO[t(n)] = CRAM-PROC[t(n), 2n
O[1]

] .

Observe that Corollary 7.27 suggests that PH is a rather strange complexity

class. No one would ever buy exponentially many processors and then use them

only for constant time. See Corollary 10.30 for an interesting characterization of

the much more robust complexity class PSPACE as exponentially many processors

running in polynomial time.

Historical Notes and Suggestions for Further Reading

Theorem 7.8 (Fagin’s theorem) was proved in Fagin’s thesis, [Fag73, Fag74]. The

idea of using choice relation ∆ is due to Papadimitriou [Pap94]. The Spectrum

Theorem discussed in Exercise 7.26 is due to Jones and Selman [JS74]. See [B82]

for a history of the spectrum problem.

Theorem 7.16 was first proved by Lovász and Gács [LG77]. Dahlhaus proved

that SAT is NP-complete via quantifier-free, first-order reductions [Da84].

The polynomial-hierarchy (PH) was defined by Stockmeyer [Sto77]. Corol-

lary 7.22 appears there as well. Item 2 of Theorem 7.21 is due to Wrathall [Wra76].

Some of the simple ways to write NP-complete problems as SO∃ formulas,

like CLIQUE (Example 7.2) are due to Jose Antonio Medina [MI94].

Theorem 7.11 is due to Lynch, [Lyn82]. Facts 7.14 and 7.15 are due to Grand-

jean; see [Gra84, Gra85, Gra89] for their proofs. An interesting place to start in-

vestigating Open Problem 7.13 is to consider the deterministic time complexity of

problem CLIQUE(k) — the set of graphs containing a k-clique — for a fixed k.

The best known algorithm is due to Boppana and Halldórsson [BH92].

Exercise 7.25 is from [I83]. Corollary 7.27 is from [I89a].

	Introduction
	Background in Logic
	Introduction and Preliminary Definitions
	Ordering and Arithmetic
	FO(BIT) = FO(PLUS,TIMES)

	Isomorphism
	First-Order Queries

	Background in Complexity
	Introduction
	Preliminary Definitions
	Reductions and Complete Problems
	Alternation
	Simultaneous Resource Classes
	Summary

	First-Order Reductions
	FO L
	Dual of a First-Order Query
	Complete problems for L and NL
	Complete Problems for P

	Inductive Definitions
	Least Fixed Point
	The Depth of Inductive Definitions
	Iterating First-Order Formulas

	Parallelism
	Concurrent Random Access Machines
	Inductive Depth Equals Parallel Time
	Number of Variables versus Number of Processors
	Circuit Complexity
	Alternating Complexity
	Alternation as Parallelism

	Ehrenfeucht-Fraïssé Games
	Definition of the Games
	Methodology for First-Order Expressibility
	First-Order Properties are Local
	Bounded Variable Languages
	Zero-One Laws
	Ehrenfeucht-Fraïssé Games with Ordering

	Second-Order Logic and Fagin's Theorem
	Second-Order Logic
	Proof of Fagin's Theorem
	NP-Complete Problems
	The Polynomial-Time Hierarchy

	Second-Order Lower Bounds
	Second-Order Games
	SO(monadic) Lower Bound on Reachability
	Lower Bounds Including Ordering

	Complementation and Transitive Closure
	Normal Form Theorem for FO(LFP)
	Transitive Closure Operators
	Normal Form for FO(TC)
	Logspace is Primitive Recursive
	NSPACE[s(n)] = co-NSPACE[s(n)]
	Restrictions of SO

	Polynomial Space
	Complete Problems for PSPACE
	Partial Fixed Points
	DSPACE[nk] = VAR[k+1]
	Using Second-Order Logic to Capture PSPACE

	Uniformity and Precomputation
	An Unbounded Number of Variables
	Tradeoffs Between Variables and Quantifier Depth

	First-Order Projections
	Help Bits
	Generalized Quantifiers

	The Role of Ordering
	Using Logic to Characterize Graphs
	Characterizing Graphs Using Lk
	Adding Counting to First-Order Logic
	Pebble Games for Ck
	Vertex Refinement Corresponds to C2
	Abiteboul-Vianu and Otto Theorems
	Toward a Language for Order-Independent P

	Lower Bounds
	Håstad's Switching Lemma
	A Lower Bound for REACHa
	Lower Bound for Fixed Point and Counting

	Applications
	Databases
	SQL
	Datalog

	Dynamic Complexity
	Dynamic Complexity Classes

	Model Checking
	Temporal Logic

	Summary

	Conclusions and Future Directions
	Languages That Capture Complexity Classes
	Complexity on the Face of a Query
	Stepwise Refinement

	Why Is Finite Model Theory Appropriate?
	Deep Mathematical Problems: P versus NP
	Toward Proving Lower Bounds
	Role of Ordering
	Approximation and Approximability

	Applications of Descriptive Complexity
	Dynamic Complexity
	Model Checking
	Abstract State Machines

	Software Crisis and Opportunity
	How can Finite Model Theory Help?

