
Model Checking and Transitive�Closure Logic�

Neil Immerman��� and Moshe Y� Vardi����

� Computer Science Dept�� University of Massachusetts� Amherst� MA ������
http���www�cs�umass�edu��immerman� immerman�cs�umass�edu

� Computer Science Dept�� Rice University� Houston� TX ����	
���
�
http���www�cs�rice�edu��vardi� vardi�cs�rice�edu

Abstract� We give a linear
time algorithm to translate any formula
from computation tree logic �CTL or CTL�� into an equivalent expres

sion in a variable
con�ned fragment of transitive
closure logic FO�TC��
Traditionally� CTL and CTL� have been used to express queries for
model checking and then translated into �
calculus for symbolic eval

uation� Evaluation of �
calculus formulas is� however� complete for time
polynomial in the �typically huge� number of states in the Kripke struc

ture� Thus� this is often not feasible� not parallelizable� and e�cient in

cremental strategies are unlikely to exist� By contrast� evaluation of any
formula in FO�TC� requires only NSPACE�log n�� This means that the
space requirements are manageable� the entire computation is paralleliz

able� and e�cient dynamic evaluation is possible�

� Introduction

Model checking� proposed �rst as a paradigm for computer�aided veri�cation of
�nite�state programs in �CE��� and developed further in �BCM�	� CES�
� LP���
QS��� VW�
� has been gaining widespread acceptance lately �see �BBG�
���
The approach is especially appropriate for the design and veri�cation of circuits
and distributed protocols� The detailed� low�level design can be automatically
translated into a logical structure called a Kripke structure K� We can then
write a series of short correctness conditions ��� ��� � � � concerning the behavior
of the Kripke structure� The conditions are written in a formal language such as
computation tree logic �CTL� or the more expressive CTL�� Given K and �i� the
model�checking program will automatically test whether or not K satis�es �i� If
it does� then con�dence in the design is improved� If K does not satisfy some �i�
then the checking program will usually present a counter example which thus
exposes a bug in the design�

The Kripke structures used in model checking usually have a state for each
possible con�guration of the circuit or protocol being designed� For this rea�
son they are often of size exponential in the size of the design� In this case�

� Part of the research reported here was conducted while the authors were visiting
DIMACS during the Special Year on Logic and Algorithm�

�� Research partly supported by NSF grant CCR
�	�	����
��� Research partly supported by NSF grant CCR
��
����



one usually represents the Kripke structure symbolically rather than explicitly�
often using ordered binary decision diagrams �OBDDs�� The model checking per�
formed using these symbolic representations is called symbolic model checking
�BCM�	� McM����

The correctness conditions �i described above can be thought of as queries to
the Kripke structure� In fact� in this paper we emphasize the close relationship
between model checking and database query evaluation �cf� �Var����� Optimiza�
tion of the queries is crucial� For this reason� the tradeo� between the expressive
power of the query language and the complexity of doing model checking is
important�

A powerful query language for model checking is the branching�time logic
CTL�� Consider the model checking problem for CTL� in which we �x a query
� � CTL� and vary the Kripke structure K� The complexity of this problem�
called program complexity in �VW�
� and data complexity in �Var�	�� is known to
be NSPACE�logn� �BVW�
� for CTL�� Here n is the size of the Kripke structure
� as we have mentioned� n is often exponential in the size of the design being
veri�ed�

The standard way to perform symbolic model checking using CTL� is to
translate the query to the modal ��calculus �Koz��� EL�
�� A problem with this
is that the data complexity of the modal ��calculus is polynomial�time complete
�BVW�
� �cf� �I�
� Var�	��� This means that evaluation of modal ��calculus
queries most likely requires polynomial space� is not parallelizable� and e�cient
incremental evaluation strategies are unlikely to exist�

We give here a linear�time algorithm to translate any formula from CTL�

into an equivalent expression in a variable�con�ned fragment of transitive�closure
logic FO�TC�� In fact� the resulting formulas have only two �rst�order variables�
The resulting logic� denoted FO��TC�� is known to have a data complexity of
NSPACE�logn� �I��� Var�	�� This means that the space requirements are man�
ageable� the entire computation is parallelizable� and e�cient incremental eval�
uation is possible �see� for example� �PI�
� ZSS�
��� Thus� it is very promising
to do model checking and symbolic model checking using the language FO��TC�
rather than the more complex modal ��calculus�

� Background on Temporal Logic and the Modal

��calculus

Let � � fp�� � � � � prg be a �nite set of propositional symbols� A propositional

Kripke structure� K � �S�R� ��� is a tuple consisting of a �nite set of states S�
a binary transition relation R � S�� and a labeling function � � � � 	S� where
intuitively� ��pi� is the set of states at which pi is true� S is often called the
set of possible worlds� but we call it the set of states because in model checking
applications it usually represents the set of global states of the circuit or protocol
being designed� Typically� we are interested in in�nite computation paths� so in
this paper we restrict our attention to Kripke structures in which every state
has at least one successor� which may be itself� We can meet this condition by



adding the loop R�s� s� to each state that has no other successors� A Kripke
structure may be thought of as a directed graph whose vertices are the states�
labeled by the set of propositional symbols they satisfy�

The propositional Kripke structure K may also be thought of as a �nite rela�
tional structure� i�e�� relational database�K� � �S�R� pK

�

� � � � � � pK
�

r �� The universe
of K� is the set of states S� The binary relation R � S� is the transition relation�
and a unary relation pK

�

i � ��pi� is the set of states at which the proposition pi
holds� For any �rst�order formula �� we will use the notation K� j� � to mean
that � is true in K��

We use in this paper the computation tree logics CTL and CTL�� For de��
nitions of syntax and semantics of these logics see �Eme����

The modal ��calculus is a propositional modal logic that includes the least�
�xed point operator ��� �Koz��� Eme���� The modal ��calculus is strictly more
expressive than CTL�� and has polynomial�time data complexity �see next sec�
tion�� As an example� we can write the CTL formula EFp as a least �xed point�

EFp � �Y �p � hRiY � ���

Equation � can be generalized to show that all of CTL� can be interpreted
in the modal ��Calculus� See �Eme��� Var��� for details�

Fact �

� There is a linear time algorithm that translates any formula in CTL into an

equivalent formula in the modal ��calculus�

� There is an exponential time algorithm that translates any formula in CTL�

into an equivalent formula in the modal ��calculus�

Symbolic model checking is typically carried out by �rst translating the CTL
correctness condition into the ��calculus �McM���� A drawback of this approach
is that model checking of the ��calculus uses space polynomial in the size of the
usually huge Kripke structure� In the next section we describe transitive�closure
logic� We will see that although transitive�closure logic has lower complexity
than the ��calculus� it still su�ces to interpret CTL��

� Background on Descriptive Complexity

In descriptive complexity� we study �nite logical structures � relational databases
� such as the Kripke structures�

K� � �S�R� pK
�

� � � � � � pK
�

r � �

The complexity of computing queries on such structures is intimately tied to
the power of variants of �rst�order logic needed to describe these queries� This
has been studied in great detail� See for example �EF��� I��� LR�
� Var�	��



Let FO be the set of �rst�order expressible properties� For example� consider
the �rst�order formula�

� � ��x��p�x�� ��y��R�x� y� � p�y��� �

A Kripke structure K� satis�es � � in symbols� K� j� � � i� every state
satisfying p has a successor state that also satis�es p�

The class FO captures the complexity class AC� consisting of those properties
checkable by bounded depth polynomial�size circuits� This is equal to the set of
properties computable in constant time on a concurrent parallel random access
machine that has at most polynomially many processors �I��a��

To obtain a richer class of queries� let FO�LFP� be �rst�order logic extended
by a least��xed�point operator� This is the closure of �rst�order logic under the
power to de�ne new relations by induction� We can view the modal ��calculus
as a restriction of FO�LFP� in which all �xed points are taken over monadic
relations� and such that only two domain variables are used� Let FOk be the
restriction of FO such that the only domain variables are x�� � � � � xk � Let LFP

r

be the restriction of LFP to act only on inductive de�nitions of arity at most r�
Then there is a linear�time mapping of each formula from the modal ��calculus
to an equivalent formula in FO��LFP�� �Var����

As an example� consider the ��calculus formula� � � �Y �p � hRiY �� Recall
from Equation � that � is equivalent to the CTL formula EFp� This can be
interpreted in FO�LFP� as the formula�

�� � LFPY�y�p�y� � �y
��R�y� y�� � Y �y���� �y� � ���

The equivalence between � and �� is that for any propositional Kripke struc�
ture K and state s�

�K� s� j� � 	 �K�� s�y� j� �� �

It is well known that FO�LFP� captures polynomial time� The following facts
assume that structures in question are �nite and include a total ordering on their
universes�

Fact � ��I��� Var���� The queries computable in polynomial time are exactly

those expressible in FO�LFP��

While the modal ��calculus is a proper subset of FO�LFP�� it still con�
tains problems complete for polynomial�time �BVW�
�� Since the model checking
problem for CTL� is contained in NSPACE�logn�� it would be much better to
interpret CTL� in a logic with this lower complexity�

Let the formula ��x�� � � � xk � y�� � � � yk� represent a binary relation on k�tuples�
We express the re�exive� transitive closure of this relation using the transitive�
closure operator �TC�� as follows� TCx�y�� Let FO�TC� be the closure of �rst�
order logic under the transitive�closure operator� For example� the following
formula is equivalent to �� �Equation �� and thus interprets the CTL formula�



EFp� It does so directly� by saying that there is an R�path to a state satisfying
p�

��� � ��y����TCy�y�R�y� y����y� y�� � p�y���

We will see in the next section that every formula in CTL� can be so inter�
preted�

Transitive closure logic exactly captures nondeterministic logspace�

Fact 	 ��I�
� I���� The queries computable in NSPACE�logn� are exactly those

expressible in FO�TC��

The number of variables used is an important descriptive resource� Each do�
main variable xi ranges over the universe of its input structure� In the de�nition
of FOk� we allow an unbounded number of boolean variables� b�� � � � � bc in ad�
dition to the k domain variables� Boolean variables are essentially �rst�order
variables that are restricted to range only over the �rst two elements of the
universe� which we �x as � and �� Including also boolean variables makes the
de�nition of FOk more robust �I���� As a simple example� we can interpret the
conjunction EFp � EFq using a universally quanti�ed boolean variable�

��b���y����TCy�y�R�y� y����y� y�� � �b � p�y�� � 
b � q�y���� �

We note� however� that the inclusion of boolean variables has a nontrivial complexity�
theoretic consequence� While �pure� �i�e�� boolean�variable�free� queries in FOk�TC�
can be evaluated in uniform polynomial time� the space required to evaluate
queries in FOk�TC� is polynomial in the number of boolean variables�

We sometimes want a strict transitive closure operator� TCs��� denotes the
transitive closure of �� as opposed to the re�exive� transitive closure of �� The
strict and re�exive transitive closure operators are de�nable from each other� as
follows� Note that no extra variables are needed�

TC���y� y����y� y�� � y � y� � TCs���y� y����y� y��

TCs���y� y����y� y�� � �y �� y� � TC���y� y����y� y��� �

�y � y� � ��y�����y� y�� � TC���y� y����y�� y���

� Transitive Closure Logic Su�ces

In this section we present an algorithm that translates any formula in CTL� to
an equivalent formula in FO��TC�� i�e�� �rst�order logic with only two �rst�order
variables� extended by the transitive�closure operator� We �rst do the case of
CTL� which is signi�cantly simpler�



Theorem�� There is a transformation f from state formulas in CTL to formu�

las in FO��TC� that preserves meaning� That is� for all state formulas � � CTL
and all Kripke structures K� and states s�

�K� s� j� � 	 �K�� s�y� j� f��� ���

Proof� We de�ne f by induction on ��

� f�p� � p�y�� for predicate symbol p
� f�
�� � 
f���
� f�� � �� � f��� � f���
� f�E��U��� � ��y���TC�Mf�����y� y

�� � f����y���
where� M��y� y

�� � R�y� y�� � ��y�
� f�E��B��� � ��y���TC�Mf�����y� y

�� � ��f����y���f����y����TCs�Mf�����y
�� y����

It is easy to show by induction that Equation � holds� The interesting cases
are the last two� For �Until�� note that there is a path starting at y along which
�U� holds i� there is some point y� at which � holds and there is a path from
y to y� along which � holds� For �Before�� there is a path starting at y along
which �B� holds i� there is some point y� for which there is a path from y to y�

along which � holds� and either � and � both hold at y�� or there is an in�nite
path� i�e�� a cycle� starting at y� along which � remains true� ut

Note that the formulas f��� does not use boolean variables� We would be
happier if the above f were linear�time computable� The problem is that the
formula f��� occurs more than once in the de�nition of f�E��B���� This could
cause an exponential blowup in the size of the resulting formula� We will defer
this problem to Corollary ���

The di�culty in extending Theorem 
 to CTL� occurs in a formula such as

� � E��p� qUr�Ut�

As before� we can express that at some state y�� t holds� and that there is a
path from y to y� along which �p � qUr� holds� The problem is that we must
remember our obligations along this path� i�e�� whether we need to preserve qUr�
and we may need to preserve this along the same path� beyond y��

To solve this problem we introduce a new boolean variable b� whose purpose is
to remember our obligation concerning the formula qUr� The following formula
�� asserts that there is a path to a future state y� and a boolean value b� such
that �p � qUr� holds along the path� t holds at y�� and if b� holds� i�e�� we are
still obliged to ful�ll qUr� then there is a continuation of the path along which
qUr holds�

�� � ��y�b���TC�	��y� false� y�� b�� � t�y�� �

b� � ��y��TC�Mq��y
�� y� � r�y���

	�y� b� y�� b�� � ��p � b�� �r � �q � b���� � R�y� y��



Observe that as desired� for all Kripke structures K and states s�

�K� s� j� � 	 �K�� s�y� j� ��

Reiterating the main point� in addition to the logn bits needed to name y �
the current state in our n�state Kripke structure � we use one additional bit b
to record our obligations concerning the truth of a formula along the remainder
of a path�

We now describe this construction in general so that we may extend Theorem

 to CTL�� Let E��� be a CTL� formula� De�ne the closure of � �cl���� to be
the set of path subformulas of �� We introduce a boolean variable b� for each
� � cl���� Intuitively� we use the boolean variables to encode the state of the
automaton that runs along a path and checks that the path satis�es a path
formula �see �VW�
���

We inductively de�ne a mapping g from state formulas E��� in CTL� to
equivalent formulas in FO��TC�� Let b be a tuple of all the boolean variables
b�� for � � cl���� De�ne the transition relation R�

��y�
�b� y�� b�� as follows� In each

case� the comment on the right is the condition underwhich the given conjunct is
included in the formula� �We assume that � is written in positive�normal form��

R�y� y��
� b� � g����y� for any state formula � � cl���
� b��� � b� � b� for any path formula � � 
 � cl���
� b��� � b� � b� for any path formula � � 
 � cl���
� bX� � b�� for any path formula X� � cl���
� b�U� � b� � �b� � b��U�� for any path formula �U
 � cl���

� b�B� � b� � �b� � b��B�� for any path formula �B
 � cl���

It follows by an inductive proof from the de�nition of R�
� that if the structure

K� satis�es the formula�

��y� b b���b� � TC�R�
���y�

�b� y�� b�� � TCs�R�
���y

�� b�� y�� b��� ���

then there is a path from y to y� along which � may be true� The reason we
say� �may be�� is that there may be some booleans b��U� that are true� promising
that eventually 
 will become true� but in fact as we walk around the cycle� �
remains true but 
 never becomes true� Essentially� the boolean variables encode
only the states of the �local automaton� in �VW�
�� which does not guarantee
the satisfaction of �Until� formulas�

In order to solve this problem� let m be a tuple of bits m�U� � one for each
�Until� formula� �U
 � cl���� We use the �memory bit� m�U� to check that

 actually occurs on the path from y� back to itself� We do this by starting
the cycle with m�U� being false and only letting it become true when 
 holds�
Essentially� the memory bits encode the state of the �eventuality automaton� in
�VW�
��

De�ne the relation R��y��b� �m� y�� b��m�� as follows�



R�
��y�

�b� y�� b��
� m�

�U� � �m�U� � b�� for any formula �U
 � cl���

Finally� we de�ne the desired mapping g from CTL� state formulas to FO��TC�
as follows�

g�p� � p�y�

g�� � 
� � g��� � g�
�

g�
�� � 
g���

g�E���� � ��y� �b b�m�� b�

� TC�R���y��b� false� y
�� b�� false�

� TCs�R���y
�� b�� false� y�� b��m�

� b��U� � m�U� for any formula �U
 � cl���

The following can now be proved by induction on ��

Theorem
� The map g de�ned above translates CTL� state formulas to equiv�

alent formulas in FO��TC�� That is� for all Kripke structures K� states s� and
CTL� state formulas ��

�K� s� j� � 	 �K�� s�y� j� g��� ����

The transformation g su�ers from a similar problem as the transformation
f of Theorem 
� The problem is that the formula R� is written twice in the
de�nition of g�E����� This may cause the size of the formula g�	� to grow expo�
nentially in the nesting depth of path quanti�ers �E�A� in 	� In practice there
is little reason for this nesting depth to be greater than one or two� We can�
however� alleviate this problem in general as follows�

Corollary ��� The mapping g above may be modi�ed to run in linear time and

thus produce linear size output� in any of the following ways�

�� Modify the mapping allowing another variable� that is� map to FO��TC��
�� Allow the de�nition of R� to be written once and reused� that is� we represent

the formula as a �rst�order circuit�

�� Allow the construction� �R� �� TCs�R���	 that is� whenever we compute the

transitive closure of a relation we may reuse it�

Proof� Items 	 and � simply change our mode of representation and are thus
obvious� The idea in item � is that with an extra state variable t and a universal
quanti�er� we can eliminate the extra occurrence of R�� For example� we can
rewrite the de�nition of G�E���� as follows�



g��E���� � ��y� �b b�m���t�c �d��b� �

�t � y � �c � �b � �d � false � t � y� � �c � b� � �d � m� �

TCs�R���t� �c� false� y
�� b�� d�

� b��U� � m�

�U� for any formula �U
 � cl���

Note� In all of the cases of Corollary ��� the resulting formulas remain in
FO�TC� and thus have data complexity NSPACE�logn�� In addition� conditions
	 and � are quite feasible from a symbolic model checking point of view� we would
naturally compute the OBDD for the relation R� and its transitive closure only
once�

The use of the �niteness of the Kripke structures� K�� in our proofs of Theo�
rems 
 and � is crucial� It is known that CTL cannot be translated to FO�TC�
over all structures �Ott��

� Applications to Symbolic Model Checking

The main application of this work is to symbolic model checking� In this situa�
tion� the Kripke model is too large to be represented in memory and is instead
represented symbolically� often via an OBDD�

From a descriptive point of view� this corresponds to a Kripke structure
determined by a set of n boolean variables� Let�

A � hfx�� x�� � � � � xng� �� p�� � � � � pri �

Here the universe of A is a set of n boolean variables� A state in the cor�
responding Kripke structure K�A� is a unary relation S over A� i�e�� a truth
assignment to the elements of jAj� The formula� �� which might be represented
as an OBDD� expresses the transition relation� ��S�� S��� on states of K�A��
Similarly� the formulas p�� � � � � pr represent the relevant unary relations that are
true or false at each state S of K�A��

Above� we expressed CTL or CTL� conditions concerning a Kripke structure
K in FO��TC�� that is� in �rst�order logic with two variables� and a transitive
closure operator� In the symbolic setting� such a formula concerning K�A� is best
thought of as a second�order� monadic formula concerning the structure A� That
is� the elements of the universe of K�A� are unary relations over A� Thus� the
correctness conditions in question are queries to A in the language MSO��TC�
� monadic� second�order formulas� with only two second�order variables� and a
transitive closure operator�

It is not hard to see that

Fact �� NSPACE�n� � MSO�TC��



Thus� the CTL and CTL� queries are all checkable in nondeterministic linear
space �BVW�
�� Here the space is linear in n� the size of the design of the circuit
or protocol to be veri�ed� not 	n� the size of the Kripke structure K�A��

It is important in our simulations that we used as few variables as possible�
With two second�order� monadic variables� the paths to be checked can have
length at most 	n� Each boolean variable that we add� can at most double the
length of such a path� whereas adding another second�order� monadic variable
is essentially n boolean variables� and could thus increase the length of paths to
be searched by a factor of 	n� We suspect that the number of boolean variables
needed for typical CTL� queries is quite small� It is an interesting open question
how many boolean variables are needed in the worst case� �For example� in the
context of linear temporal logic� analogous translations are known that use no
boolean variables �EVW�����

Experiments need to be performed concerning practical aspects of using
FO�TC� as a language for expressing correctness queries� While the straight�
forward approach for adopting transitive�clousre algorithms to symbolic model
checking have failed �TBK���� more sophisticated transitive�closure algorithms
�see �Ya���� might be quite useful for symbolic model checking�

This work suggests a new paradigm for model checking� One can write the
conditions to be checked in a very expressive language� e�g�� second�order logic or
�rst�order logic with least��xed point operators� FO�LFP�� Next� if the Kripke
structure is small� we may be able to check this condition automatically� If not� we
may need to break our correctness conditions down into simpler conditions which
may be expressed in simpler languages� e�g�� FO�TC�� which can be automatically
checked in a feasible amount of time� Even within FO�TC�� there is a hierarchy
of how many varables we need� and how many boolean variables in FO��TC��
There is a well�developed theory in the context of �nite�model theory of the
relationship between descriptive complexity and computational complexity �I����
This understanding could be also important in computer�aided veri�cation�

� Conclusions and Future Work

We have shown that every formula in CTL� may be translated in linear time
to an equivalent formula in transitive closure�logic� FO�TC�� Since the language
FO�TC� has data complexity NSPACE�logn�� it admits more e�cient model
checking algorithms than the modal ��calculus� which has a polynomial�time�
complete data complexity

There are several open questions concerning the number of variables needed
for the resulting formulas in FO�TC��

�� We have shown that the resulting formulas are linear size when we allow
three domain variables� that is they are in FO��TC�� It is open whether
linear size can be maintained when we map to FO��TC�� or indeed� whether
an exponential blow�up is required�



	� We would like to know how many boolean variables are needed to interpret
CTL� in FO��TC� �our construction allows a linear number of such boolean
variables��

Finally� our approach of using transitive�closure logic rather than the much
more complex ��calculus for model checking might be useful in practice� This
requires further investigation and testing� Part of the program of Descriptive
Complexity is that the computational complexity of query evaluation should
be apparent just from looking at the syntax of the query under consideration�
Translating CTL� queries into transitive�closure logic rather than ��calculus
facilitates this approach�

Acknowledgements� Thanks to Kousha Etessami and Thomas Wilke for
helpful comments� corrections� and suggestions�

References

�BBG��� I� Beer� S� Ben
David� D� Geist� R� Gewirtzman and M� Yoel� �Methodology
and System for Practical Formal Veri�cation of Reactive Hardware�� in Com�

puter Aided Veri�cation� Proc� �th Int� Conference� D� L� Dill� ed�� LNCS ����
����� Springer
Verlag� ��
�����

�BVW��� O� Bernholtz� M�Y� Vardi and P� Wolper� �An Automata
Theoretic Ap

proach to Branching
Time Model Checking�� in Computer Aided Veri�cation�

Proc� �th Int� Conference� D� L� Dill� ed�� LNCS ���� ����� Springer
Verlag�
��
��		�

�BCM�
� J�R� Burch� E�M� Clarke� K�L� McMillan� D�L� Dill and L�J� Hwang� �Sym

bolic Model Checking� ���� States and Beyond�� Information and Computa�

tion ���
� ����
�� ��
�����
�CE��� E�M� Clarke and E�A� Emerson� �Design and Synthesis of Synchronization

Skeletons Using Branching Time Temporal Logic�� in Proc� Workshop on

Logic of Programs� LNCS ���� ����� Springer
Verlag� 	
����
�CES��� E�M� Clarke� E�A� Emerson and A�P� Sistla� �Automatic Veri�cation of Finite


State Concurrent Systems Using Temporal Logic Speci�cations�� ACM Trans�

actions on Programming Languages and Systems� ��
� ������� 
��

���
�EF�	� H�
D� Ebbinghaus� J� Flum� Finite Model Theory ���	� Springer ���	�
�Eme��� E�A� Emerson� �Temporal and modal logic�� in Handbook of theoretical com�

puter science� ����� ���
���
�
�Eme��� E� A� Emerson� �Model Checking and the Mu
Calculus�� in Descriptive Com�

plexity and Finite Models� N� Immerman and Ph� Kolaitis� eds�� ����� Amer

ican Mathematical Society�

�EL��� E�A� Emerson and C�
L� Lei� �E�cient Model Checking in Fragments of the
Propositional mu
Calculus�� Proc� �st Symp� on Logic in Computer Science

������� 
��

���
�EVW��� K� Etessami� M�Y� Vardi� and T� Wilke� �First
Order Logic with Two Vari


ables and Unary Temporal Logic�� Proc� ��th IEEE Symp� on Logic in Com�

puter Science� July �����
�I��� N� Immerman� �Relational Queries Computable in Polynomial Time�� Infor�

mation and Control� �� ������� ��
����



�I��� N� Immerman� �Languages That Capture Complexity Classes�� SIAM J�

Comput� ����� ������� ���
����
�I��� N� Immerman� �Nondeterministic Space is Closed Under Complementation��

SIAM J� Comput� ���	� ������� ��	
����
�I��� N� Immerman� �Descriptive and Computational Complexity��in Computa�

tional Complexity Theory� ed� J� Hartmanis� Lecture Notes for AMS Short
Course on Computational Complexity Theory� Proc� Symp� in Applied Math�

��� American Mathematical Society ������� �	
���
�I��a� N� Immerman� Expressibility and Parallel Complexity� SIAM J� of Comput

�� ������� �
	
����
�I��� N� Immerman� �DSPACE�nk� � VAR�k����� Sixth IEEE Structure in Com�

plexity Theory Symp� �July� ������ ���
����
�Koz��� D� Kozen� �Results on the Propositional �
Calculus�� Theoretical Computer

Science� 
� ������� �����	��
�LR��� R� Lassaigne and M� de Rougemont� Logique et Complexit�e� ����� Hermes�
�LP�	� O� Lichtenstein and A� Pnueli� �Checking that Finite State Concurrent Pro


grams Satisfy their Linear Speci�cation� Proc� ��th ACM Symp� on Principles

of Programming Languages ����	�� ��
����
�McM��� K� McMillan� Symbolic Model Checking� ����� Kluwer�
�Ott� M� Otto� private communication�
�PI��� S� Patnaik and N� Immerman� �Dyn
FO� A Parallel� Dynamic Complexity

Class�� Proc� ACM Symp� on Principles of Database Systems ������� 
��



��

�QS��� J�P� Queille and J� Sifakis� �Speci�cation and Veri�cation of Concurrent Sys

tems in Cesar�� Proc� �th Int	l Symp� on Programming� LNCS ���� �����
Springer
Verlag� �����	��

�TBK�	� H� J� Touati� R� K� Brayton� and R� P� Kurshan� �Testing language con

tainment for �
automata using BDD�s�� Information and Computation�
��������������� ���	�

�Var�
� M�Y� Vardi� �Complexity
of Relational Query Languages�� ACM Symp� Theory Of Comput� ����
��
���
����

�Var��� M�Y� Vardi� �Why is Modal Logic So Robustly Decidable��in Descriptive

Complexity and Finite Models� N� Immerman and Ph� Kolaitis� eds�� �����
American Mathematical Society�

�VW��� M�Y� Vardi and P� Wolper� �Yet Another Process Logic�� in Logics of Pro�

grams� LNCS ���� ����� Springer
Verlag� 	���	�
�
�VW��� M�Y� Vardi and P� Wolper� �An Automata
Theoretic Approach to Automatic

Program Veri�cation�� Proc� �st Symp� on Logic in Computer Science �������
�

�����

�VW��� M�Y� Vardi and P� Wolper� �Reasoning about In�nite Computations�� Infor�

mation and Computation ��	��� ������� �
���
�Ya��� M� Yannakakis� �Graph
theoretic methods in database theory�� Proc� 
th

ACM Symp� on Principles of Database Systems� 
���
�
� �����
�ZSS��� S� Zhang� S�A� Smolka� and O� Sokolsky� �On the Parallel Complexity of

Model Checking in the Modal �
Calculus�� Proc� 
th IEEE Symp� on Logic

in Computer Science� ����� �	�
����

This article was processed using the LATEX macro package with LLNCS style


