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This paper shows how to harness existing theorem provers for first-order logic to
automatically verify safety properties of imperative programs that perform dynamic
storage allocation and destructive updating of pointer-valued structure fields. One of
the main obstacles is specifying and proving the (absence) of reachability properties
among dynamically allocated cells.

The main technical contributions are methods for simulating reachability in a con-
servative way using first-order formulas—the formulas describe a superset of the set of
program states that can actually arise. These methods are employed for semi-automatic
program verification (i.e., using programmer-supplied loop invariants) on programs
such as mark-and-sweep garbage collection and destructive reversal of a singly linked
list. (The mark-and-sweep example has been previously reported as being beyond the
capabilities of ESC/Java.)

1 Introduction
This paper explores how to harness existing theorem provers for first-order logic to
prove reachability properties of programs that manipulate dynamically allocated data
structures. The approach that we use involves simulating reachability in a conserva-
tive way using first-order formulas—i.e., the formulas describe a superset of the set of
program states that can actually arise.

Automatically establishing safety and liveness properties of sequential and concur-
rent programs that permit dynamic storage allocation and low-level pointer manipula-
tions is challenging. Dynamic allocation causes the state space to be infinite; moreover,
a program is permitted to mutate a data structure by destructively updating pointer-
valued fields of nodes. These features remain even if a programming language has good
capabilities for data abstraction. Abstract-datatype operations are implemented using
loops, procedure calls, and sequences of low-level pointer manipulations; consequently,
it is hard to prove that a data-structure invariant is reestablished once a sequence of op-
erations is finished [1]. In languages such as Java, concurrency poses yet another chal-
lenge: establishing the absence of deadlock requires establishing the absence of any
cycle of threads that are waiting for locks held by other threads.

Reachability is crucial for reasoning about linked data structures. For instance, to
establish that a memory configuration contains no garbage elements, we must show that
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every element is reachable from some program variable. Other cases where reachability
is a useful notion include

– Specifying acyclicity of data-structure fragments, i.e., every element reachable from
noden cannot reachn

– Specifying the effect of procedure calls when references are passed as arguments:
only elements that are reachable from a formal parameter can be modified

– Specifying the absence of deadlocks
– Specifying safety conditions that allow establishing that a data-structure traversal

terminates, e.g., there is a path from a node to a sink-node of the data structure.
The verification of such properties presents a challenge. Even simple decidable frag-
ments of first-order logic become undecidable when reachability is added [2, 3]. More-
over, the utility of monadic second-order logic on trees is rather limited because (i) many
programs allow non-tree data structures, (ii) expressing postconditions of procedures
(which is essential for modular reasoning) requires referring to the pre-state that holds
before the procedure executes, and thus cannot, in general, be expressed in monadic
second-order logic on trees—even for procedures that manipulate only singly-linked
lists, such as the in-situ list-reversal program shown in Fig. 1 , and (iii) the complexity
is prohibitive.

While our work was actually motivated by our experience using abstract interpreta-
tion – and, in particular, the TVLA system [4–6] – to establish properties of programs
that manipulate heap-allocated data structures, in this paper, we consider the problem
of verifying data-structure operations, assuming that we have user-supplied loop invari-
ants. This is similar to the approach taken in systems like ESC/Java [7], and Pale [8].

The contributions of the paper can be summarized as follows:

Handling FO(TC) formulas using FO theorem provers. We want to use first-
order theorem provers and we need to discuss the transitive closure of certain binary
predicates,f . However, first-order theorem provers cannot handle transitive closure. We
solve this conundrum by adding a new relation symbolftc for each suchf , together with
first-order axioms that assure thatftc is interpreted correctly. The theoretical details of
how this is done are presented in Sections 3 and 4. The fact that we are able to handle
transitive closure effectively and reasonably automatically is a major contribution and
quite surprising.

As explained in Section 3, the axioms that we add to control the behavior of the
added predicates,ftc, must be sound but not necessarily complete. One way to think
about this is that we are simulating a formula,χ, in which transitive closure occurs, with
a pure first-order formulaχ′. If our axioms are not complete then we are allowingχ′ to
denote more stores thanχ does. This is motivated by the fact that abstraction can be an
aid in the verification of many properties; that is, a definite answer can sometimes be
obtained even when information has been lost (in a conservative manner). This means
that our methods are sound but potentially incomplete.

If χ′ is proven valid in FO thenχ is also valid in FO(TC); however, if we fail to
prove thatχ′ is valid, it is still possible thatχ is valid: the failure would be due to the
incompleteness of the axioms, or the lack of time or space for the theorem prover to
complete the proof.

It is easy to write a sound axiom,T1[f ], that is “complete” in the very limited
sense that every finite, acyclic model satisfyingT1[f ] must interpretftc as the reflexive,
transitive closure of its interpretation off . However, in practice this is not worth much
because, as is well-known, finiteness is not expressible in first-order logic. Thus, the



properties that we want to prove do not follow fromT1[f ]. We do prove thatT1[f ] is
complete for positive transitive-closure properties. The real difficulties lie in proving
properties involving the negation ofTC[f ].

Induction axiom scheme.To solve the above problem, we add an induction axiom
scheme. Although in general, there is no complete, recursively-enumerable axioma-
tization of transitive closure, we have found that on the examples we have tried,T1

plus induction allows us to automatically prove all of our desired properties. We think
of the axioms that we use as aides for the first-order theorem prover that we employ
(Spass [9]) to prove the properties in question. Rather than givingSpass many in-
stances of the induction scheme, our experience is that it finds the proof faster if we
give it several axioms that are simpler to use than induction. As already mentioned, the
hard part is to show that certain paths do not exist.

Coloring axiom schemes.In particular, we use three axiom schemes, having to do
with partitioning memory into a small set of colors. We call instances of these schemes
“coloring axioms”. Our coloring axioms are simple, and areeasily proved usingSpass
(in under ten seconds) from the induction axioms. For example, the first coloring
axiom scheme,NoExit[A, f ], says that if nof -edges leave color class,A, then nof -
paths leaveA. It turns out that theNoExit axiom scheme implies – and thus is equivalent
to – the induction scheme. However, we have found in practice that explicitly adding
other coloring axioms (which are consequences ofNoExit) enablesSpass to prove
properties that it otherwise fails at.

We first assume that the programmer provides the colors by means of first-order for-
mulas with transitive closure. Our initial experience indicates that the generated color-
ing axioms are useful toSpass . In particular, it provides the ability to verify programs
like the mark phase of a mark-and-sweep garbage collector. This example has been
previously reported as being beyond the capabilities of ESC/Java. TVLA also succeeds
on this example; however our new approach provides verification methods that can in
some instances be more precise than TVLA.

Prototype implementation.Perhaps most exciting, we have implemented the heuris-
tics for selecting colors and their corresponding axioms in a prototype usingSpass .
We have used this to automatically choose useful color axioms and then verify several
small heap-manipulating programs. More work needs to be done here, but the initial
results are very encouraging.

Strengthening Nelson’s results.Greg Nelson considered a set of axiom schemes
for reasoning about reachability in function graphs, i.e., graphs in which there is at
most onef -edge leaving any node [10]. He left open the question of whether his axiom
schemes were complete for function graphs. We show that Nelson’s axioms are prov-
able fromT1 plus our induction axioms. We also show that Nelson’s axioms are not
complete: in fact, they do not implyNoExit.

Outline. The remainder of the paper is organized as follows: Section 2 explains our
notation and the setting; Section 3 introduces the induction axiom scheme and fills in
our formal framework; Section 4 states the coloring axiom schemes; Section 5 explains
the details of our heuristics; Section 6 describes some related work; Section 7 describes
some future directions.

2 Preliminaries

This section defines the basic notations used in this paper and the setting.



2.1 Notation

Syntax: A relationalvocabulary τ = {p1, p2, . . . , pk} is a set of relation symbols,
each of fixed arity. We write first-order formulas overτ with quantifiers∀ and ∃,
logical connectives∧, ∨, →, ↔, and¬, where atomic formulas include: equality,
pi(v1, v2, . . . vai

), andTC[f ](v1, v2), wherepi ∈ τ is of arity ai andf ∈ τ is bi-
nary. HereTC[f ](v1, v2) denotes the existence of a finite path of 0 or moref edges
from v1 to v2. A formula withoutTC is called afirst-order formula.

We use the following precedence of logical operators:¬ has highest precedence,
followed by∧ and∨, followed by→ and↔, and∀ and∃ have lowest precedence.

Semantics: Amodel, A, of vocabularyτ , consists of a non-empty universe,|A|,
and a relationpA over the universe interpreting each relation symbolp ∈ τ . We write
A |= ϕ to mean that the formulaϕ is true in the modelA.

2.2 Setting

We are primarily interested in formulas that arise while proving the correctness of pro-
grams. We assume that the programmer specifies pre and post-conditions for procedures
and loop invariants using first-order formulas with transitive closure on binary relations.
The transformer for a loop body can be produced automatically from the program code.

For instance, to establish the partial correctness with respect to a user-supplied spec-
ification of a program that contains a single loop, we need to establish three properties:
First, the loop invariant must hold at the beginning of the first iteration; i.e., we must
show that the loop invariant follows from the precondition and the code leading to the
loop. Second, the loop invariant provided by the user must be maintained; i.e., we must
show that if the loop invariant holds at the beginning of an iteration and the loop con-
dition also holds, the transformer causes the loop invariant to hold at the end of the
iteration. Finally, the postcondition must follow from the loop invariant and the condi-
tion for exiting the loop.

In general, these formulas are of the form
ψ1[τ ] ∧ T [τ, τ ′] → ψ2[τ ′]

whereτ is the vocabulary of the before state,τ ′ is the vocabulary of the after state, and
T is the transformer, which may use both the before and after predicates to describe
the meaning of the module to be executed. If symbolf denotes the value of a predicate
before the operation thenf ′ denotes the value of the same predicate after the operation.

An interesting special case is the proof of the maintenance formula of a loop invari-
ant. This has the form:

LC[τ ] ∧ LI[τ ] ∧ T [τ, τ ′] → LI[τ ′]
HereLC is the condition for entering the loop andLI is the loop invariant.LI[τ ′]
indicates that the loop invariant remains true after the body of the loop is executed.

The challenge is that the formulas of interest contain transitive closure; thus, the
validity of these formulas cannot be directly proven using a theorem prover for first-
order logic.

3 Axiomatization of Transitive Closure
The original formula that we want to prove,χ, contains transitive closure, which first-
order theorem provers cannot handle. To address this problem, we replaceχ by the
new formula,χ′, where all appearances ofTC[f ] have been replaced by the new binary
relation symbol,ftc.



We show in this paper that fromχ′, we can often automatically generate an appro-
priate first-order axiom,σ, with the following two properties:
1. if σ → χ′ is valid in FO thenχ is valid in FO(TC).
2. A theorem prover successfully proves thatσ → χ′ is valid in FO.

We now explain the theory behind this process. ATC model, A, is a model such
that if f andftc are in the vocabulary ofA, then(ftc)A = (fA)?; i.e.,A interpretsftc

as the reflexive, transitive closure of its interpretation off .
A first-order formulaϕ is TC valid iff it is true in all TC models. We say that an

axiomatization,Σ, isTC sound if every formula that follows fromΣ is TC valid. Since
first-order reasoning is sound,Σ is TC sound iff everyσ ∈ Σ is TC valid.

We say thatΣ is TC completeif for every TC-validϕ, Σ |= ϕ. If Σ is TC complete
and TC sound, then for all first-orderϕ,

Σ |= ϕ ⇔ ϕ is TC valid

Thus a TC-complete set of axioms proves exactly the first-order formulas,χ′, such
that the corresponding FO(TC) formula,χ, is valid.

All the axiomatizations that we consider are TC sound. There is no recursively
enumerable TC-complete axiom system (see [11, 12]).

3.1 Some TC-Sound Axioms

We begin with our first TC axiom scheme. For any binary relation symbol,f , let,

T1[f ] ≡ ∀u, v . ftc(u, v) ↔ (u = v) ∨ ∃w . f(u,w) ∧ ftc(w, v)
We first observe thatT1[f ] is “complete” in a very limited way for finite, acyclic

graphs, i.e.,T1[f ] exactly characterizes the meaning offtc for all finite, acyclic graphs.
The reason this is limited, is that it does not give us a complete set of first-order axioms
because, as is well known, there is no first-order axiomatization of “finite”.

Proposition 1. Any finite and acyclic model ofT1[f ] is a TC model.

Proof: LetA |= T1[f ] whereA is finite and acyclic. Leta0, b ∈ |A|. Assume there is
anf -path froma0 to b. SinceA |= T1[f ], it is easy to see thatA |= ftc(a0, b).

Conversely, suppose thatA |= ftc(a0, b). If a0 = b, then there is a path of length 0
from a0 to b. Otherwise, byT1[f ], there exists ana1 ∈ |A| such thatA |= f(a0, a1) ∧
ftc(a1, b). Note thata1 6= a0 sinceA is acyclic. If a1 = b then there is anf -path of
length 1 froma to b. Otherwise there must exist ana2 ∈ |A| such thatA |= f(a1, a2)∧
ftc(a2, b) and so on, generating a set{a1, a2, . . .}. None of theai can be equal toaj ,
for j < i, by acyclicity. Thus, by finiteness, someai = b. HenceA is a TC model. 2

Let T ′1[f ] be the← direction ofT1[f ]:

T ′1[f ] ≡ ∀u, v . ftc(u, v) ← (u = v) ∨ ∃w . f(u,w) ∧ ftc(w, v)

Proposition 2. Letftc occur only positively inϕ. If ϕ is TC valid, thenT ′1[f ] |= ϕ.

Proof: Suppose thatT ′1[f ] 6|= ϕ. Let A |= T ′1[f ] ∧ ¬ϕ. Note thatftc occurs only
negatively in¬ϕ. Furthermore, sinceA |= T ′1[f ], it is easy to show by induction on the
length of the path, that if there is anf -path froma to b inA, thenA |= ftc(a, b). Define
A′ to be the model formed fromA by interpretingftc in A′ as(fA)?. ThusA′ is a TC
model and it only differs fromA by the fact that we have removed zero or more pairs



from (ftc)A to form (ftc)A
′
. BecauseA |= ¬ϕ andftc occurs only negatively in¬ϕ,

it follows thatA′ |= ¬ϕ, which contradicts the assumption thatϕ is TC valid. 2

Proposition 2 shows that proving positive facts of the formftc(u, v) is easy; it is the
task of proving that paths do not exist that is more subtle.

Proposition 1 shows that what we are missing, at least in the acyclic case, is that
there is no first-order axiomatization of finiteness. Traditionally, when reasoning about
the natural numbers, this problem is mitigated by adding induction axioms. We next
introduce an induction scheme that, together withT1, seems to be sufficient to prove
any property we need concerning TC.

Notation: In general, we will useF to denote the set of all binary relation symbols,
f , such thatTC[f ] occurs in a formula we are considering. Ifϕ[f ] is a formula in

which f occurs, letϕ[F ] =
∧

f∈F

ϕ(f). Thus, for example,T1[F ] is the conjunction of

the axiomT1[f ] for all binary relation symbols,f , under consideration.

Definition 1. For any first-order formulasZ(u), P (u), and binary relation symbol,f ,
let theinduction principle, IND [Z, P, f ], be the following first-order formula:

(∀z . Z(z) → P (z)) ∧ (∀u, v . P (u) ∧ f(u, v) → P (v))
→ ∀u, z . Z(z) ∧ ftc(z, u) → P (u)

The induction principle says that if every zero point satisfiesP , andP is preserved
when following edges, then every point reachable from a zero point satisfiesP . Obvi-
ously this principle is sound.

As an easy application of the induction principle, consider the following cousin of
T1[f ],

T2[f ] ≡ ∀u, v . ftc(u, v) ↔ (u = v) ∨ ∃w . ftc(u, w) ∧ f(w, v)
It is easy to see that neither ofT1[f ], T2[f ] implies the other. However, in the pres-

ence of the induction principle they do imply each other. For example, it is easy to
proveT2[f ] from T1[f ] using IND [Z,P, f ] whereZ(v) ≡ v = u andP (v) ≡ u =
v ∨ ∃w . ftc(u,w) ∧ f(w, v). Here, for eachu we useIND [Z, P, f ] to prove by induc-
tion that everyv reachable fromu satisfies the right-hand side ofT2[f ].

A related axiom scheme that we have found useful is the transitivity of reachability:
Trans[f ] ≡ ∀u, v, w . ftc(u, w) ∧ ftc(w, v) → ftc(u, v)

4 Coloring Axioms
We next describe three TC-sound axioms schemes that are not implied byT1[F ]∧T2[F ],
and are provable from the induction principle of Section 3. We will see in the sequel
that these coloring axioms are very useful in proving that paths do not exist, permitting
us to verify a variety of algorithms. In Section 5, we will present some heuristics for
automatically choosing particular instances of the coloring axiom schemes that enable
us to prove our goal formulas.

The first coloring axiom scheme is the NoExit axiom scheme:

(∀u, v . A(u) ∧ ¬A(v) → ¬f(u, v)) → ∀u, v .A(u) ∧ ¬A(v) → ¬ftc(u, v) (1)

for any first-order formulaA(u), and binary relation symbol,f , NoExit[A, f ] says that
if no f -edge leaves color classA, then nof -path leaves color classA.



Observe that although it is very simple,NoExit[A, f ] does not follow fromT1[f ] ∧
T2[f ]. Let G1 = (V, f, ftc, A) consist of two disjoint cycles:V = {1, 2, 3, 4}, f =
{〈1, 2〉, 〈2, 1〉, 〈3, 4〉, 〈4, 3〉}, andA = {1, 2}. Let ftc have all 16 possible edges. Thus
G1 satisfiesT1[f ]∧T2[f ] but violatesNoExit[A, f ]. Even for acyclic models,NoExit[A, f ]
does not follow fromT1[f ] ∧ T2[f ] because there are infinite models in which the im-
plication does not hold (see [12]).

NoExit[A, f ] follows easily from the induction principle: if no edges leaveA, then
induction tells us that everything reachable from a point inA satisfiesA. Similarly,
NoExit[A, f ] implies the induction axiom,IND [Z, A, f ], for any formulaZ.

The second coloring axiom scheme is the GoOut axiom: for any first-order formulas
A(u), B(u), and binary relation symbol,f , GoOut[A,B, f ] says that if the only edges
leaving color classA are toB, then any path from a point inA to a point not inA must
pass throughB.

(∀u, v . A(u) ∧ ¬A(v) ∧ f(u, v) → B(v)) →
∀u, v . A(u) ∧ ¬A(v) ∧ ftc(u, v) → ∃b . B(b) ∧ ftc(u, b) ∧ ftc(b, v) (2)

To see thatGoOut[A,B, f ] follows from the induction principle, assume that the
only edges out ofA enterB. For any fixedu in A, we prove by induction that any point
v reachable fromu is either inA or has a predecessor,b in B, that is reachable fromu.

The third coloring axiom scheme is theNewStart axiom, which is useful in the
context of dynamically changing graphs: for any first-order formulaA(u), and binary
relation symbolsf andg, think of f as the previous edge relation andg as the current
edge relation.NewStart[A, f, g] says that if there are no new edges betweenA nodes,
then any new path fromA must leaveA to make its change:

(∀u, v .A(u) ∧A(v) ∧ g(u, v) → f(u, v)) →
∀u, v . gtc(u, v) ∧ ¬ftc(u, v) → ∃b .¬A(b) ∧ gtc(u, b) ∧ gtc(b, v) (3)

NewStart[A, f, g] follows from the induction principle by a proof that is similar to
the proof ofGoOut[A,B, f ]

We remark that the spirit behind our consideration of the coloring axioms is similar
to that found in a paper of Greg Nelson’s in which he introduced a set of reachability
axioms for a functional predicate,f , i.e., there is at most onef edge leaving any point
[10]. Nelson asked whether his axiom schemes are complete for the functional setting.
We remark that Nelson’s axiom schemes are provable fromT1 plus our induction prin-
ciple. However, Nelson’s axiom schemes are not complete: we constructed a functional
graph satisfying Nelson’s axioms but violatingNoExit[A, f ], (see [12]).

At least one of Nelson’s axiom schemes does seem orthogonal to our coloring ax-
ioms and may be useful in certain proofs. Nelson’s fifth axiom scheme states that the
points reachable from a given point are linearly ordered. The soundness of the axiom
scheme is due to the fact thatf is functional. We make use of a simplified version of
Nelson’s ordering axiom scheme: LetFunc[f ] ≡ ∀u, v, w . f(u, v)∧f(u,w) → v = w;
then,

Order [f ] ≡ Func[f ] → ∀u, v, w . ftc(u, v) ∧ ftc(u,w) → ftc(v, w) ∨ ftc(w, v)



5 Heuristics for Using the Coloring Axioms
This section presents heuristics for using the coloring axioms. Toward that end, it an-
swers the following questions:

– How can the coloring axioms be used by a theorem prover to proveχ?
– When should a specific instance of a coloring axiom be given to the theorem prover

while trying to proveχ?
– What part of the process can be automated?

We first present a running example that will be used in later sections to illustrate the
heuristics. We then explain how the coloring axioms are useful, describe the search
space for useful axioms, give an algorithm for exploring this space, and conclude by
discussing a prototype implementation we have developed that proves the example pre-
sented and others.

5.1 Reverse Specification

The heuristics described in Sections 5.2–5.4 are illustrated on problems that arise in the
verification of partial correctness of a list reversal procedure. Other examples proven
using this technique can be found in the full version of this paper [12].

The procedure reverse, shown in Fig. 1, performs in-place reversal of a singly linked
list, destructively updating the list. The precondition requires that the input list be
acyclic and unshared. For simplicity, we assume that there is no garbage. The post-
condition ensures that the resulting list is acyclic and unshared. Also, it ensures that the
nodes reachable from the formal parameter on entry to reverse are exactly the nodes
reachable from the return value of reverse at the exit. Most importantly, it ensures that
each edge in the original list is reversed in the returned list.

Node reverse(Node x) {
[0] Node y = null;
[1] while (x != null) {
[2] Node t = x.next;
[3] x.next = y;
[4] y = x;
[5] x = t;
[6] }
[7] return y;

}

Fig. 1. A simple Java-like implemen-
tation of the in-place reversal of a
singly-linked list.

The specification for reverse is shown in
Fig. 2. We use unary predicates to represent
program variables and binary predicates to
represent data-structure fields. Fig. 2(a) de-
fines some shorthands. To specify that a unary
predicatez can point to a single node at a time
and that a binary predicatef of a node can
point to at most one node (a partial function),
we useunique[z] and func[f ] . To specify
that there are no cycles off -fields in the graph,
we useacyclic[f ]. To specify that the graph
does not contain nodes shared byf -fields, (i.e.,
nodes with2 or more incomingf -fields), we
useunshared[f ]. To specify that all nodes in
the graph are reachable fromz1 or z2 by fol-
lowing f -fields, we usetotal[z1, z2, f ]. Another helpful shorthand isrx,f (v) which
specifies thatv is reachable from the node pointed to byx usingf -edges.

The precondition of the reverse procedure is shown in Fig. 2(b). We use the predi-
catesxe andne to record the values of the variablex and the next field at the beginning
of the procedure. The precondition requires that the list pointed to byx be acyclic and
unshared. It also requires thatunique[z] andfunc[f ] hold for all unary predicatesz
that represent program variables and all binary predicatesf that represent fields, respec-
tively. For simplicity, we assume that there is no garbage, i.e., all nodes are reachable
from x.



The post-condition is shown in Fig. 2(c). It ensures that the resulting list is acyclic
and unshared. Also, it ensures that the nodes reachable from the formal parameterx on
entry to the procedure are exactly the nodes reachable from the return valuey at the
exit. Most importantly, we wish to show that each edge in the original list is reversed in
the returned list (see Eq. (11)).

A loop invariant is given in Fig. 2(d). It describes the state of the program at the
beginning of each loop iteration. Every node is in one of two disjoint lists pointed byx
andy (Eq. (12)). The lists are acyclic and unshared. Every edge in the list pointed to by
x is exactly an edge in the original list (Eq. (14)). Every edge in the list pointed to byy
is the reverse of an edge in the original list (Eq. (15)). The only original edge going out
of y is tox (Eq. (16)).

The transformer is given in Fig. 2(e), using the primed predicatesn′, x′, andy′ to
describe the values of predicatesn, x, andy, respectively, at the end of the iteration.

(a)

unique[z] def= ∀v1, v2.z(v1) ∧ z(v2) → v1 = v2 (4)

func[f ] def= ∀v1, v2, v.f(v, v1) ∧ f(v, v2) → v1 = v2 (5)

acyclic[f ] def= ∀v1, v2.¬f(v1, v2) ∨ ¬TC[f ](v2, v1) (6)

unshared[f ] def= ∀v1, v2, v.f(v1, v) ∧ f(v2, v) → v1 = v2 (7)

total[z1, z2, f ] def= ∀v.∃w.(z1(w) ∨ z2(w)) ∧ TC[f ](w, v) (8)

rx,f (v) def= ∃w . x(w) ∧ TC[f ](w, v) (9)
(b) pre

def= total[xe, xe, ne] ∧ acyclic[ne] ∧ unshared[ne] ∧ unique[xe] ∧ func[ne] (10)
(c) post

def= total[y, y, n]∧ acyclic[n]∧ unshared[n]∧∀v1, v2.ne(v1, v2) ↔ n(v2, v1) (11)

(d)

LI[x, y, n] def= total[x, y, n] ∧ ∀v.(¬rx,n(v) ∨ ¬ry,n(v)) ∧ (12)

acyclic[n] ∧ unshared[n] ∧ unique[x] ∧ unique[y] ∧ func[n] ∧ (13)

∀v1, v2.(rx,n(v1) → (ne(v1, v2) ↔ n(v1, v2))) ∧ (14)

∀v1, v2.(ry,n(v) ∧ ¬y(v1) → (ne(v1, v2) ↔ n(v2, v1))) ∧ (15)

∀v1, v2, v.y(v1) → (x(v2) ↔ ne(v1, v2)) (16)

(e) T
def= ∀v.(y′(v) ↔ x(v)) ∧ ∀v.(x′(v) ↔ ∃w.x(w) ∧ n(w, v)) ∧

∀v1, v2.n
′(v1, v2) ↔ ((n(v1, v2) ∧ ¬x(v1)) ∨ (x(v1) ∧ y(v2))) (17)

Fig. 2.Example specification of reverse procedure: (a) shorthands, (b) preconditionpre,
(c) postconditionpost, (d) loop invariantLI[x, y, n], (e) transformerT (effect of the
loop body).

5.2 Proving Formulas using the Coloring Axioms

All the coloring axioms have the formA ≡ PA → CA, wherePA andCA are closed
formulas. We callPA the axiom’s premise andCA the axiom’s conclusion. For an axiom
to be useful, the theorem prover will have to prove the premise (as a subgoal) and then
use the conclusion in the proof of the goal formulaχ. For each of the coloring axioms,
we now explain when the premise can be proved, how its conclusion can help, and give
an example.

NoExit. The premisePNoExit [C, f ] states that there are nof -edges exiting color
classC. WhenC is a unary predicate appearing in the program, the premise is some-



times a direct result of the loop invariant. Another color that will be used heavily
throughout this section is reachability from a unary predicate, i.e., unary reachability,
formally defined in Eq. (9). Let’s examine two cases.PNoExit [rx,f , f ] is immediate
from the definition ofrx,f and the transitivity offtc. PNoExit [rx,f , f ′] actually states
that there is nof path fromx to an edge for whichf ′ holds butf doesn’t, i.e., a change
in f ′ with respect tof . Thus, we use the absence off -paths to prove the absence of
f ′-paths. In many cases, the change is an important part of the loop invariant, and paths
from and to it are part of the specification.

A sketch of the proof by refutation ofPNoExit [rx′,n, n′] that arises in the reverse
example is given in Fig. 3. The numbers in brackets are the stages of the proof.
1. The negation of the premise expands to:

∃u1, u2, u3 . x′(u1) ∧ ntc(u1, u2) ∧ ¬ntc(u1, u3) ∧ n′(u2, u3)

2. Sinceu2 is reachable fromu1 andu3 is not, by transitivity ofntc, we have¬n(u2, u3).
3. By the definition ofn′ in the transformer, the only edge in whichn differs from

n′ is out ofx (one of the clauses generated from Eq. (17) is∀v1, v2 .¬n′(v1, v2) ∨
¬n(v1, v2) ∨ x(v1)) . Thus,x(u2) holds.

4. By the definition ofx′ it has an incomingn edge fromx. Thus,n(u2, u1) holds.
The list pointed to byx must be acyclic, whereas we have a cycle betweenu1 andu2;
i.e., we have a contradiction. Thus,PNoExit [rx′,n, n′] must hold.

x′[1] // GFED@ABCu1
ntc[1] //

¬ntc[1]

%%LLLLLLL
GFED@ABCu2

n[4]

||

n′[1]

yyrrrrrrr

¬n[2]ii

x[3]oo

GFED@ABCu3

Fig. 3.ProvingPNoExit [rx,n, n′].

CNoExit [C, f ] states there are nof paths (ftc edges) exitingC. This is useful
because proving the absence of paths is the difficult part of proving formulas withTC.

GoOut. The premisePGoOut[A,B, f ] states that allf edges going out of color
classA, go toB. WhenA andB are unary predicates that appear in the program, again
the premise sometimes holds as a direct result of the loop invariant. An interesting spe-
cial case is whenB is defined as∃w . A(w) ∧ f(w, v). In this case the premise is im-
mediate. Note that in this case the conclusion is provable also fromT1. However, from
experience, the axiom is very useful for improving performance (2 orders of magnitude
when proving the acyclic part of reverse’s post condition).

CGoOut[A,B, f ] states that all paths out ofA must pass throughB. Thus, under
the premisePGoOut[A,B, f ], if we know that there is a path fromA to somewhere
outside ofA, we know that there is a path to there fromB. In case all nodes inB are
reachable from all nodes inA, together with the transitivity offtc this means that the
nodes reachable fromB are exactly the nodes outside ofA that are reachable fromA.

For example,CGoOut[y
′, y, n′] allows us to prove that only the original list pointed

to byy is reachable fromy′ (in addition toy′ itself).
NewStart.The premisePNewStart[C, g, h] states that allg edges between nodes in

C are alsoh edges. This can mean the iteration has not added edges or has not removed



edges according to the selection ofh andg. In some cases, the premise holds as a direct
result of the definition ofC and the loop invariant.

CNewStart[C, g, h] means that everyg path that is not anh path must pass outside
of C. Together withCNoExit [C, g], it proves there are no new paths withinC.

For example, in reverse theNewStart scheme can be used as follows. No outgoing
edges were added to nodes reachable fromy. There are non or n′ edges from nodes
reachable fromy to nodes not reachable fromy. Thus, no paths were added between
nodes reachable fromy. Since the list pointed to byy is acyclic before the loop body,
we can prove that it is acyclic at the end of the loop body.

We can see thatNewStart allows the theorem prover to reason about paths within
a color, and the other axioms allow the theorem prover to reason about paths between
colors. Together, given enough colors, the theorem prover can often prove all the facts
that it needs about paths and thus prove the formula of interest.

5.3 The Search Space of Possible Axioms

To answer the question of when we should use a specific instance of a coloring ax-
iom when attempting to prove the target formula, we first define the search space in
which we are looking for such instances. The axioms can be instantiated with the colors
defined by an arbitrary unary formula (one free variable) and one or two binary predi-
cates. First, we limit ourselves to binary predicates for whichTC was used in the target
formula. Now, since it is infeasible to consider all arbitrary unary formulas, we start
limiting the set of colors we consider.

The initial set of colors to consider are unary predicates that occur in the formula
we want to prove. Interestingly enough, these colors are enough to prove that the post-
condition of mark and sweep is implied by the loop invariant, because the only axiom
we need isNoExit[marked, f ].

An immediate extension that is very effective is reachability from unary predicates,
as defined in Eq. (9). Instantiating all possible axioms from the unary predicates appear-
ing in the formula and their unary reachability predicates, allows us to prove reverse. For
a list of the axioms needed to prove reverse, see Fig. 4. Other example are presented
in [12]. Finally, we consider Boolean combinations of the above colors. Though not
used in the examples shown in this paper, this is needed, for example, in the presence
of sharing or when splicing two lists together.

NoExit[rx′,n, n′] GoOut[x, x′, n] NewStart[rx′,n, n, n′] NewStart[rx′,n, n′, n]
NoExit[rx′,n′ , n] GoOut[x, y, n′] NewStart[rx′,n′ , n, n′] NewStart[rx′,n′ , n

′, n]
NoExit[ry,n, n′] NewStart[ry,n, n, n′] NewStart[ry,n, n′, n]
NoExit[ry,n′ , n] NewStart[ry,n′ , n, n′] NewStart[ry,n′ , n

′, n]
Fig. 4.The instances of coloring axioms used in proving reverse.

All the colors above are based on the unary predicates that appear in the original
formula. To prove the reverse example, we neededx′ as part of the initial colors.
Table 1 gives a heuristic for finding the initial colors we need in cases when they cannot
be deduced from the formula, and how it applies to reverse

An interesting observation is that the initial colors we need can, in many cases, be
deduced from the program code. As in the previous section, we have a good way for
deducing paths between colors and within colors in which the edges have not changed.
The program usually manipulates fields using pointers, and can traverse an edge only in



one direction. Thus, the unary predicates that represent the program variables (including
the temporary variables) are in many cases what we need as initial colors.

Group Criteria
Roots[f] All changes are reachable from one of the colors usingftc

StartChange[f,g]All edges for whichf andg differ start from a node in these colors
EndChange[f,g]All edges for whichf andg differ end at a node in these colors
(a)
Group Colors Group Colors
Roots[n] x(v), y(v) StartChange[n, n′] x(v)
Roots[n′] x′(v), y′(v) EndChange[n, n′] y(v), x′(v)
(b)

Table 1. (a) Heuristic for choosing initial colors. (b) Results of applying the heuristic
on reverse.

5.4 Exploring the Search Space

When trying to automate the process of choosing colors, the problem is that the set of
possible colors to choose from is doubly-exponential in the number of initial colors;
giving all the axioms directly to the theorem prover is infeasible. In this section, we
define a heuristic algorithm for exploring a limited number of axioms in a directed way.
Pseudocode for this algorithm is shown in Fig. 5. The operator` is implemented as a
call to a theorem prover.

explore( Init, χ) {
Let χ = ψ → ϕ
Σ := {Trans[f ], Order [f ] | f ∈ F}
Σ := Σ ∪ {T1[f ], T2[f ] | f ∈ F}
C := {rc,f (v) | c ∈ Init, f ∈ F}
C := C ∪ Init
i := 1
forever {

C′ := BC(i, C)
phase1( C′, Σ, ψ)
phase2( C′, Σ, ψ)
phase3( Σ, ψ)
if Σ ∧ ψ ` ϕ

return SUCCESS
i := i + 1

}
}

phase1( C, Σ, ψ) {
foreach f ∈ F, cs 6= ce ∈ C

if Σ ∧ ψ ` PGoOut[cs, ce, f ]
Σ := Σ ∪ {CGoOut[cs, ce, f ]}

}
phase2( C, Σ, ψ) {

foreach f ∈ F, c ∈ C
if Σ ∧ ψ ` PNoExit [c, f ]

Σ := Σ ∪ {CNoExit [c, f ]}
}
phase3( Σ, ψ) {

foreach CNoExit [c, f ] ∈ Σ, g 6= f ∈ F
if Σ ∧ ψ ` PNewStart[c, f, g]

Σ := Σ ∪ {CNewStart[c, f, g]}
}

Fig. 5. An iterative algorithm for instantiating the axiom schemes. Each iteration con-
sists of three phases that augment the axiom setΣ

Because the coloring axioms have the formA ≡ PA → CA, the theorem prover
must provePX or the axiom is of no use. Therefore, the pseudocode works iteratively,
trying to provePA from the currentψ ∧Σ, and if successful it addsCA to Σ.

The algorithm tries colors in increasing levels of complexity.BC(i, C) gives all the
Boolean combinations of the predicates inC up to sizei. After each iteration we try to



prove the goal formula. Sometimes we need the conclusion of one axiom to prove the
premise of another. TheNoExit axioms are particularly useful for provingPNewStart.
Therefore, we need a way to order instantiations so that axioms useful for proving the
premises of other axioms are acquired first. The ordering we chose is based on phases:
First, try to instantiate axioms from the axiom schemeGoOut. Second, try to instan-
tiate axioms from the axiom schemeNoExit. Finally, try to instantiate axioms from
the axiom schemeNewStart. ForNewStart[c, f, g] to be useful, we need to be able to
show that there are either no incomingf paths or no outgoingf paths fromc. Thus,
we only try to instantiate such an axiom when eitherPNoExit [c, f ] or PNoExit [¬c, f ]
were proven.

5.5 Implementation

The algorithm presented here was implemented using aPerl script and theSpass
theorem prover [9] and used successfully to verify the example programs of Section 5.1.

The method described above can be optimized. For instance, ifCA has already been
added to the axioms, we do not try to provePA again. These details are important in
practice, but have been omitted for brevity.

When trying to prove the different premises,Spass may fail to terminate if the
formula that it is trying to prove is invalid. Thus, we limit the time thatSpass can
spend proving each formula. It is possible that we will fail to acquire useful axioms this
way.

6 Related Work
Shape Analysis.This work was motivated by our experience with TVLA [4, 5], which
is a generic system for abstract interpretation [13]. The TVLA system is more auto-
matic than the methods described in this paper since it does not rely on user-supplied
loop invariants. However, the techniques presented in the present paper are potentially
more precise due to the use of full first-order reasoning. It can be shown that the
NoExit scheme allows to infer reachability at least as precisely as evaluation rules for
3-valued logic with Kleene semantics. In the future, we hope to develop an efficient
non-interactive theorem prover that enjoys the benefits of both approaches. An interest-
ing observation is that the colors needed in our examples to prove the formula are the
same unary predicates used by TVLA to define its abstraction. This similarity may, in
the future, help us find better ways to automatically instantiate the required axioms. In
particular, inductive logic programming has recently been used to learn formulas to use
in TVLA abstractions [14], which holds out the possibility of applying similar methods
to further automate the approach of the present paper.

Decidable Logics.Decidable logics can be employed to define properties of linked
data structures: Weak monadic second-order logic has been used in [15, 8] to define
properties of heap-allocated data structures, and to conduct Hoare-style verification us-
ing programmer-supplied loop invariants in the PALE system [8]. A decidable logic
calledLr (for “logic of reachability expressions”) was defined in [16].Lr is rich enough
to express the shape descriptors studied in [17] and the path matrices introduced in [18].

The present paper does not develop decision procedures, but instead suggests meth-
ods that can be used in conjunction with existing theorem provers. Thus, the techniques
are incomplete and the theorem provers need not terminate. However, our initial experi-
ence is that the extra flexibility gained by the use of first-order logic with transitive clo-
sure is promising. For example, we can prove the correctness of imperative destructive



list-reversal specified in a natural way and the correctness of mark and sweep garbage
collectors, which are beyond the scope of Mona andLr.

Indeed, in [19], we have tried to simulate existing data structures using decidable
logics and realized that this can be tricky because the programmer may need to prove
a specific simulation invariant for a given program. Giving an inaccurate simulation
invariant causes the simulation to be unsound. One of the advantages of the technique
described in the present paper is that soundness is guaranteed no matter which axioms
are instantiated. Moreover, the simulation requirements are not necessarily expressible
in the decidable logic.

Other First-Order Axiomatizations of Linked Data Structures. The closest ap-
proach to ours that we are aware of was taken by Nelson as we describe in the full
version of the paper [12]. This also has some follow-up work by Leino and Joshi [20].
Our impression from their write-up is that Leino and Joshi’s work can be pushed for-
ward by using our coloring axioms.

Dynamic Maintenance of Transitive Closure.Another orthogonal but promising
approach to transitive closure is to maintain reachability relations incrementally as we
make unit changes in the data structure. It is known that in many cases, reachability can
be maintained by first-order formulas [21, 22] and even sometimes by quantifier-free
formulas [23]. Furthermore, in these cases, it is often possible to automatically derive
the first-order update predicates using finite differencing [24].

7 Conclusion
This paper reports on our initial attempts at applying the methodology that has been
described; hence, only preliminary conclusions can be drawn.

As mentioned earlier, proving the absence of paths is the difficult part of proving
formulas withTC. The promise of the approach is that it is able to handle such formulas
effectively and reasonably automatically, as shown by the fact that it can successfully
handle the programs described in Section 5 and the full version of the paper [12]. Many
issues remain for further work, such as,

– Establishing whetherT1[F ] plus the induction scheme is complete for interesting
subclasses of formulas (e.g. functional graphs).

– Exploring other heuristics for identifying color classes.
– Exploring variations of the algorithm given in Fig. 5 for instantiating coloring ax-

ioms.
– Exploring the use of additional axiom schemes, such as two of the schemes from

[10], which are likely to be useful when dealing with predicates that are partial func-
tions. Such predicates arise in programs that manipulate singly-linked or doubly-
linked lists—or, more generally, data structures that are acyclic in one or more
“dimensions” [25] (i.e., in which the iterated application of a given field selector
can never return to a previously visited node).

Thanks to Aharon Abadi and Roman Manevich for interesting suggestions.
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