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� Abstract

In order to study circuit complexity classes within NC� in a uniform setting� we need
a uniformity condition which is more restrictive than those in common use Two such
conditions� stricter than NC� uniformity �Ru���Co���� have appeared in recent research�

Immerman�s families of circuits de�ned by �rst�order formulas �Im�
a�Im�
b� and a unifor�
mity corresponding to Buss� deterministic log�time reductions �Bu�
� We show that these
two notions are equivalent� leading to a natural notion of uniformity for low�level circuit

complexity classes We show that recent results on the structure of NC� �Ba��� still hold
true in this very uniform setting Finally� we investigate a parallel notion of uniformity�
still more restrictive� based on the regular languages Here we give characterizations of sub�
classes of the regular languages based on their logical expressibility� extending recent work

of Straubing� Th�erien� and Thomas �STT��� A preliminary version of this work appeared
as �BIS���

� Introduction

��� Circuit Complexity

Computer scientists have long tried to classify problems �de�ned as Boolean predicates

or functions� by the size or depth of Boolean circuits needed to solve them This e�ort has
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developed into the �eld of circuit complexity theory� where classes of problems are de�ned
in terms of constraints upon circuits solving them This study has become more important

recently because of the connections between size and depth of Boolean circuits and number
of processors and running time on a parallel computer �see Cook �Co��� for a general survey�

The complexity class NC� consists of those Boolean functions �functions from f�� �g�

to f�� �g� which can be computed by circuits of fan�in two and depth O�logn� That is� f
is in NC� if for each n there is a circuit Cn which computes f correctly on inputs of size
n� and each Cn has depth at most c log n for some constant c �This is �non�uniform� NC�

� we discuss uniformity below�

Problems in NC� are usually considered particularly easy to solve in parallel� and thus
NC� is considered a �small� complexity class �for example� it is the smallest of the ten

surveyed by Cook �Co���� But it lies above a certain frontier � our current techniques
for proving lower bounds on circuit complexity have not allowed us to prove any signi�cant
problems to be outside of it� for example� even any NP �complete problems This motivates
a study of subclasses of NC� which might lie below this frontier� in an e�ort to develop

new techniques and new understanding

There is a subclass of NC� for which separation results are known AC� is the class
of problems which have circuits of polynomial size and constant depth in a model with

unbounded fan�in Furst� Saxe� and Sipser �FSS��� and independently Ajtai �Aj��� proved
that the exclusive OR function is not in AC�� separating this class from NC� Later work
has attempted to extend the frontier upward from AC� by proving lower bounds for more

powerful subclasses

Razborov �Ra�
� considered the extension of AC� obtained by also allowing unbounded
fan�in exclusive OR gates� and showed that the majority function �de�ned by f�x�� � � � � xn� �

� i� the majority of the xi are �� is not in this class Barrington �Ba��� de�ned the class
ACC �AC� with counters�� which further extends Razborov�s class by allowing unbounded

fan�in gates which count their inputs modulo some constant He conjectured that the ma�
jority problem was not in ACC� and hence that ACC �� NC� This remains open� though

Smolensky �Sm�
� has proved some important partial results in this direction� introducing
what promises to be a powerful new proof technique Existing techniques have been unable
to show even an NP �complete problem to be outside of ACC

Between ACC and NC� is another class which has excited considerable interest A
threshold gate counts its Boolean inputs which are � and compares the total with some
predetermined number to determine its output This generalizes unbounded fan�in AND
�threshold � in�degree�� OR �threshold � ��� and majority �threshold � half the in�degree�

gates� but any threshold gate can be built out of these three basic types TC� is the class of
problems solvable by families of circuits of unbounded fan�in threshold gates� where circuit
depth is bounded by a constant and circuit size by a polynomial in the input size As

individual threshold gates can be simulated in NC�� TC� � NC� �also� it is fairly easy to
see that ACC � TC�� Considerable recent work has dealt with TC�� some of it motivated

	



by analogies with neural computing �PS���HMPST�
�Re�
�

��� Uniformity

In their non�uniform versions these circuit complexity classes contain problems which

are not computable at all in the ordinary sense �eg� any unary language is in AC�� To
compute with a circuit family we must be able to construct the circuit for each input size
We may loosely de�ne a uniform circuit family as one in which the behavior on all inputs�
of any size� is speci�ed by a single �nite bit string A weak uniformity condition would be

to allow this string to be the description of a Turing machine which on input n produces
the circuit Cn Since we are concerned with complexity and not just computability� a better
de�nition places resource restrictions on the Turing machine

A circuit family hC�� C�� � � �i is P �uniform if the circuit Cn can be constructed from n
in time polynomial in n It is L�uniform if Cn can be constructed using space O�log n�
These de�nitions su�ce to prove the classical result that �uniform� circuits of polynomial
size are equivalent in computing power to Turing machines using polynomial time In fact�

the same proof shows the result either for P �uniform or L�uniform circuits� showing these
two classes equivalent to each other

There is a sense in which the L�uniform version of this result is more satisfying than
the P �uniform one In the latter case� if we believe P �� L� we know that we have isolated
an important fact about circuits and machines That is� the polynomial�size circuits were
able to simulate the polynomial�time machines on their own� without the potential help of

a polynomial�time machine used to construct them

As we study a given circuit complexity class� we would like to use a uniformity condition
which separates these two sources of computational power That is� we want to allow strictly

less power to construct the circuits than the circuits themselves posess In this paper� we
explore a variety of conditions suitable for the study of the classes AC�� ACC� TC�� and
NC�

There is a reasonable �though complicated� notion of NC� uniformity ��UE� unifor�
mity�� due to Ruzzo �Ru��� �see also �Co���� which has the consequence that NC��uniform
NC� is equivalent to alternating logarithmic time �modulo appropriate conventions on the
alternating Turing machines� This de�nition is based not on constructing the circuit but

on answering certain classes of questions about it in alternating logarithmic time Most
proofs involving P � or L�uniform circuit families go through under this de�nition� making

it a good tool for studying complexity classes above NC� But to go within NC� itself� we

will require new notions� still more restrictive

We note that one may still speak of� say� P �uniformNC�� and that this may be a class of
considerable interest At least by analogy� it represents problems for which a very fast chip

could be manufactured by a sequential process in reasonable time Many natural problems
have been shown to be in P �uniform NC� and are not known to be in more uniform versions
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�BCH���Re�
� Recent work by Allender �Al�
� shows P �uniform NC� to be a fairly robust
class� with a number of equivalent de�nitions

� Summary of Results

In this paper we consider three candidates for a suitable notion of uniformity within
the class NC� Each is based on a subclass of NC� � the computational power used in

specifying the circuits in a family is limited to this subclass In Section � we make precise
the de�nitions of the circuit classes already mentioned and the ways in which circuits are
speci�ed

The �rst notion is based on Immerman�s theory of expressibility as a complexity measure
�Im�
a�Im�
b� The basic complexity class in this scheme is the class FO of languages which
can be expressed by �rst�order formulas in a certain formal system� to be explained in detail
in Section � First order formulas can be evaluated by AC� circuits of a particularly regular

form� so that FO is a uniform version of AC�

In Section � we will examine classes de�ned by �rst�order formulas which include new
types of quanti�ers� giving uniform versions of ACC� TC�� and NC� Whereas ordinary

quanti�ers express whether an instance or all instances of the quanti�ed variable are satis�
fying� the new quanti�ers will perform some other function on the sequence of truth values
given by the sequence of instances For example� we will de�ne quanti�ers which can count

the satisfying instances modulo some constant� determine whether the majority of the in�

stances are satisfying� or even interpret the truth values as elements of some �nite group
and multiply them In fact� we will de�ne quanti�ers for any function meeting a certain
technical condition� that of being �monoidal� The expressibility scheme extends to even

larger complexity classes through the use of �syntactic iteration� in formulas � see for

example �Im�
b�

In Section 
 we introduce our second notion of uniformity This is based on deterministic

logarithmic time and the log�time hierarchy� used extensively in the proof by Samuel Buss
�Bu�
� that the Boolean formula value problem is in alternating logarithmic time �ie� NC��
uniform NC�� To make these classes meaningful� we must allow random access for the

read�only input tape of the Turing machine Buss restricts his NC� circuits to be Boolean

formulas �fan�out �� and thus is able to use a uniformity condition equivalent to Ruzzo�s�
but simpler to state His condition is that a certain �formula language� be decidable by
an alternating Turing machine in time O�log n�� but we will consider families in which the

same language is decidable by a deterministic Turing machine within this time bound We
will de�ne a notion of �expression� which will extend the notion of �in�x Boolean formula�
to allow operators of unbounded fan�in and operators for other functions besides AND and
OR �such as modular counting� majority� and group multiplication� We will also consider

families of circuits �with gates for these additional functions� for which certain queries can
be answered by a deterministic log�time Turing machine These new notions �implicit in
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Buss� use of deterministic log�time reductions� are additional candidates for a uniformity
notion within NC�

In Section � we prove our main technical result� which directly relates our �rst two
notions of uniformity We show that the computation of a deterministic log�time Turing
machine may be simulated by a �rst�order formula� ie� that the language of strings accepted

by a particular log�time machine is �rst�order expressible �From this we show that the class
FO is equal to the log�time hierarchy used by Buss

In Section � we prove our main result� that our �rst two notions give a robust de�nition

of uniformity for these circuit complexity classes�

Theorem ���� Let F be any set of monoidal functions The following are equivalent
de�nitions of �L is in uniform AC��F �� �eg� AC�� ACC� TC�� or NC���

� L is �rst�order de�nable using F quanti�ers

	 L is recognized by a DLOGTIME�uniform family of constant�depth� polynomial�size
circuits with gates for AND� OR� and a �nite set of functions in F 

� L is recognized by a �rst�order de�nable family of such circuits

� L is recognized by a DLOGTIME�uniform family of constant�depth� polynomial�

length expressions using AND� OR� and a �nite set of functions from F 

� L is recognized by a �rst�order de�nable family of such expressions

ForNC� and above� these de�nitions also coincide with the earlier notion ofNC� uniformity
�Ru���Co���

Given a robust notion of uniformity which can operate within NC�� we then proceed in
Section �� to examine the resulting uniform classes A natural question to ask is whether
known results about the structure of NC� hold true under these de�nitions We show that

Barrington�s construction �Ba���� of NC� circuits to simulate branching programs� can be
carried out in this setting This is an improvement over the original argument under NC�

uniformity� as this appeared to require the full power of ALOGTIME This construction
gives the following stronger version of the theorem �See �Ba��� or �BT��� for de�nitions and

the relevance of solvability of groups and monoids��

Corollary ����� The word problem for S� �or for any non�solvable monoid� is com�
plete for uniform NC� under uniform AC� reductions� using this new notion of uniformity

Therefore� uniform branching program families of width � and polynomial size recognize
exactly uniform NC�

The third notion of uniformity we consider� in Section ��� uses the regular languages as

our basic subclass of NC� It arises when we consider the fact that both the other notions
allow reference to individual bits of a binary integer A log�time Turing machine can do this
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by indirect addressing� and Immerman�s logical system contains an explicit atomic predicate
BIT �i� j� which gives the ith bit of the binary expansion of j What sort of more restrictive

uniformity notion do we get by removing this ability from the logical system�

There are four complexity classes to consider here� the languages expressible by �rst�
order formulas using each of our four types of quanti�ers The �rst two give us well�studied

subclasses of the regular languages The languages expressible by �rst�order formulas with�
out BIT are exactly the aperiodic or group�free regular languages� as �rst proved by Mc�
Naughton and Papert �MP
�� When we add counting quanti�ers to get a uniform version

of ACC� we get exactly the solvable regular languages� as shown recently by Straubing�
Th�erien� and Thomas �STT���

The two more powerful quanti�er types� majority quanti�ers and group multiplication

quanti�ers� yield uniform versions of TC� and NC� in the presence of BIT  Thus adding
them without BIT can be thought of as giving even more uniform versions of these classes
We investigate the classes of languages expressible in these two situations and show that in
each case we get a previously encountered language class�

Theorem ����� The BIT predicate can be de�ned by a �rst�order formula with major�
ity quanti�ers �in this version without BIT as a primitive� Hence this version of uniform
TC� is the same as the other

Theorem ����� A language can be expressed by a �rst�order formula with group
quanti�ers and ordinary quanti�ers �without BIT � i� it is regular

These two cases are very di�erent� as in the latter case we �nd that this more restrictive

notion gives us a di�erent class That is� the ability to look at individual bits is crucial to
the relationship between �nite groups and NC� In Section �	 we explore this issue further�
employing classical results on the algebraic structure of �nite automata �See� eg� �Ei
���

�La
��� or �Pi��� for background and terminology�

A �nite automaton de�nes a monoid of transformations on its states � a set of func�
tions with an associative operation �functional composition� and an identity �the identity

function on the states� The behavior of an automaton on a given input string is a transfor�
mation which is the product of the transformations corresponding to each input letter This
mapping from strings to behaviors contains the essence of the automaton�s computation

It can distinguish two input strings only by mapping them to di�erent behaviors We say
that a language is recognized by a monoid M if it is recognized by an automaton that has
M as its underlying monoid of transformations

In general an automaton can recognize more languages if this monoid is larger or more
complicated A structure theory of �nite monoids has been developed �originally by Krohn
and Rhodes �KRT���� generalizing the structure theory of �nite groups Just as all groups
can be decomposed into simple groups �the composition factors of the Jordan�H�older theo�

rem�� all monoids can be decomposed into simple groups and monoids containing no non�
trivial groups
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We are able to characterize languages expressible with group quanti�ers in terms of the
structure of monoids that recognize these languages In the logical language with BIT � all

nonabelian simple groups are equivalent � with quanti�ers for any of them we can express
any NC� predicate and thus multiplication in any other group But without BIT we can
prove that these building blocks are independent� ie� that using one non�abelian simple

group we cannot express another

Theorem ����� Let G be a family of �nite groups A language L can be expressed
using quanti�ers for groups in G �and ordinary quanti�ers� i� it is regular and is recognized

by a monoid M such that every simple group occurring in the decomposition of M is a

composition factor of a group in G

We conclude in Section �� with some open problems and directions for further research

� De�nitions of NC� and subclasses

We now make precise the de�nitions of the circuit families and circuit complexity classes
which we have been discussing A Boolean circuit is a labelled directed acyclic graph whose

nodes� called gates� are each assigned a value from f�� �g which is a function of the values of
its predecessor nodes The source nodes or inputs are each labelled with the name of one of
n input variables or its negation� and there is a single sink node� the output Each internal
node is labelled with a Boolean function of its inputs Later we will consider extensions to

this model where other functions of the inputs are allowed at internal nodes The whole
circuit computes a function from f�� �gn to f�� �g The size of a circuit is the number of its
nodes� and the depth is the length of the longest path from an input to an output

A circuit family is a set consisting of a circuit Cn for each integer n � �� and computes

a function from f�� �g� to f�� �g �or equivalently� recognizes a language� a subset of f�� �g��
The size and depth of a family are functions of n We will de�ne di�erent classes of languages
by placing various bounds on these size and depth functions� and varying the types of gates

allowed The most common gates will be the AND and OR functions� with the additional
variation that we may restrict the fan�in of the gates to two or not restrict it at all

In order to de�ne various uniformity conditions� we will have to �x a scheme for describ�
ing circuits Let hCn � n � �i be a circuit family where each node in each circuit is given

a number� unique for that circuit If the circuit contains gates computing noncommutative
operations �as will some of our examples�� we insist that the children of a node be numbered
consistently with the order of evaluation Then the direct connection language of the circuit
family is the set of all tuples ht� a� b� yi where a and b are numbers of nodes in Cn� b is a child

of a� node a is of type t� and y is any string of length n �The string y is added to give the
query string the proper length An alternate approach would be to replace y with a binary
representation of n and alter as necessary the resource bounds for computing queries� as in

�BCGR���� If C is any class of languages� a circuit family is said to be C�DCL�uniform if
its direct connection language is in C






A Boolean formula is a string denoting a special kind of Boolean circuit� a tree whose
gates are binary ANDs and ORs The circuit is represented in the usual in�x notation

�see� eg� �Bu�
��� with the addition of a special �space character� which may be inserted
anywhere with no e�ect on the formula�s meaning This will allow us more freedom in
formatting our formulas� but will not cause us any more di�culty in parsing them We

de�ne a formula family to be similar to a circuit family � a set consisting of an n�input
formula for each n� and has size and depth functions like those of a circuit family

A general expression is also a string denoting a circuit which is a tree� but the circuit

may have gates of arbitrary fan�in and may have gate types other than AND and OR The
string for a particular gate consists of an identi�er for the gate type and strings for each of
the node�s children� enclosed by parentheses and separated by commas The length of an
expression is the number of characters in the string� and its depth is the depth of nesting

As with Boolean formulas� we allow a space character to occur at any point with no e�ect on
the meaning We de�ne expression families in the same way as circuit or formula families
The formula language of a formula family �or the expression language of an expression
family� is the set of tuples hc� i� yi for which jyj � n and the ith character of the nth formula

or expression is a c Again� a formula or expression family is said to be C�uniform if its
formula or expression language is in C

We will now de�ne our basic circuit complexity classes in their non�uniform versions

The class NC� is de�ned as those languages recognized by families of circuits of AND and
OR gates of fan�in two and depth O�log n� The class AC� is de�ned as those languages
recognized by families of circuits of AND and OR gates with arbitrary fan�in� size nO����

and depth O��� �See� eg� �Co��� for more on the classes NCi and ACi� It is easy to

show AC� � NC�� and the inclusion is known to be strict �FSS��� Aj���

Both NC� and AC� have equivalent de�nitions �in their non�uniform versions� by fami�

lies of expressions NC� is the class of languages recognized by families of Boolean formulas
of polynomial length �Sp
�� or by families of polynomial length and depth O�log n� AC�

is the class of languages recognized by families of expressions of polynomial length and
constant depth� using the unbounded fan�in AND and OR operations

Given a function f from f�� �g� to f�� �g� the AC� closure of f is de�ned as those
languages recognized by families of circuits of AND� OR� and f gates with arbitrary fan�in�
size nO���� and depth O��� An f gate with m inputs computes the restriction of f to

f�� �gm Similarly we may speak of the AC� closure of a family of functions As above�
an equivalent de�nition can be given in terms of expressions with operations drawn from a
particular family of functions

We de�ne AC��q� to be the AC� closure of the functions MOD�q� a� which return �
i� the sum of the inputs is equal to a modulo q The class ACC is the union of AC��q�
for all q � 	 It is easy to see that ACC � NC�� and this inclusion is conjectured to be

strict �Ba��� Partial results are known in this direction The functionMAJ � which returns
� i� the input has more ��s than ��s� is in NC� but was shown to be outside AC��	� by
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Razborov �Ra�
� and outside AC��p� for all primes p by Smolensky �Sm�
� Smolensky also
showed MOD�q� a� �� AC��p� for p prime and q not a power of p

We de�ne TC� to be the AC� closure of MAJ �cf �HMPST�
�� This is equivalent to
the class of languages recognized by circuits of polynomial size and constant depth made
up of arbitrary threshold gates �cf �PS���� TC� is a subset of NC�� and it is conjectured

�HMPST�
� that the inclusion is strict A language is said to be complete for NC� under
AC� reductions if its AC� closure isNC� Languages known to be complete forNC� include
the Boolean formula value problem �Bu�
� and a class of algebraically de�ned languages� the

word problems for any non�solvable group �Ba��� or monoid �BT���� which we now describe

A monoid is a set with an associative binary operation and an identity �groups are
a special case � monoids with inverses for all elements� Given a �nite monoid M � a

representation of the elements of M as binary strings� and a �punctuation� scheme so that
sequences of elements of M can be denoted� the word problem for M and a � M is the
set of strings denoting sequences which multiply to a If M is represented as a set of
transformations of a set of w elements� this word problem is equivalent to a problem about

certain directed graphs of width w� that is� where the nodes are partitioned into an ordered
set of levels each of size w� and each directed edge goes from a node in one level to a node
in the next level We represent the word problem by using the edges out of one level to

represent the transformation corresponding to each monoid element� and asking questions

about the existence of paths from the �rst level to the last It has been shown �Ba��� Ba���
BT��� that determining the output of a family of such branching programs of constant width
and polynomial size is equivalent in di�culty to these word problems This has led to the

proof that such programs of width � recognize exactly NC�� and to characterizations of the

classes AC� and ACC

� The First�Order Framework

Immerman has been studying the complexity of expressing properties in �rst�order logic
as opposed to the complexity of checking whether or not an input has a given property In
this framework� inputs are �rst�order structures First�order logic is a familiar language for
expressing properties Here we present a sketch of the relevant de�nitions See �Im�
a� or

�Im�
b� for more detailed de�nitions and background information

We will use formulas to express properties of Boolean strings� though the system easily
extends to express properties of graphs or of more complicated structures Our logical

language will have variables which range over positions in the string� that is� numbers from
� to n for some n We will have constant symbols for � and n and binary predicates � and
� on numbers We access the input by a unary predicate X�i�� whose value is the ith bit of
the input string Finally� for technical reasons� we include the binary predicate BIT �i� j�

on numbers� which holds i� the ith bit in the binary expansion of j is a one
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We now de�ne our �rst�order language L to be the set of formulas built up from the given
relation symbols and constant symbols� ���� BIT� �� n�X� �� using logical connectives�

������ variables� x� y� z� ���� and quanti�ers� ��	 A sentence in L� ie� a formula with no
free variables� expresses a property of strings � a given string determines values of n and
of X�i� for each i� and these values make the formula either true or false De�ne FO to be

the set of all languages expressible by sentences in L

This system can be augmented in a number of interesting ways One can add new
constant and relation symbols to speak about more complicated structures than strings

When we deal with regular languages later� it will be convenient to speak of strings of
inputs over an arbitrary �nite alphabet A rather than just f�� �g We do this by replacing
the atomic predicate X� � with atomic predicates Ca� � for each a � A� such that Ca�i� is
true i� the ith input character is an a To take another example� the language of graphs

would replace X� � with a binary relation symbol E� � � for the edge predicate on pairs of
vertices One can add a least �xed point operator �LFP� to �rst�order logic to formalize the
power of de�ning new relations by induction Immerman and Vardi independently showed
that the language �FO � LFP � is equal to polynomial time �Im��� Va�	� Immerman also

considered the addition of a transitive closure operator �TC� to �rst�order logic� and showed
that �FO � TC� � NSPACE�log n� �Im��� Im���

Recently Immerman has observed that �rst�order inductive de�nitions of depth t�n�

�IND�t�n��� express exactly the same properties as those checkable in time t�n� on a con�
current read� concurrent write� parallel random access machine having polynomially many
processors �CRAM�TIME�t�n��� �Im��� An immediate corollary is�

Fact ��� �Im	�
 FO � CRAM�TIME�O���� �

It was previously known that the non�uniform versions of FO and CRAM�TIME�O����

are equal to non�uniform AC� �Im���SV��� This� coupled with the above Fact� suggests the
class FO as a natural candidate for the role of uniform AC� We will give some interesting
evidence for the robustness of this uniformity de�nition

In the next section we will also augment this framework by adding new quanti�ers to the
language which express operations not de�nable in the original FO In particular� we will
de�ne quanti�ers which will correspond exactly to the new gate types �modular counting�
majority� and group multiplying� which we added to the Boolean circuit model to give the

non�uniform classes ACC� TC�� and NC�

� Generalized Quanti�ers

We will now formally de�ne the new quanti�ers with which we will augment the �rst�order

system in order to express languages in larger complexity classes We will begin with several
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examples� each of which will correspond to one of the new gate types introduced in Section �
We will then give a general de�nition Later� in our main theorem� we will show that each

such augmented �rst�order system can express exactly those languages in the corresponding
DLOGTIME�uniform circuit complexity class

We begin with modular counting quanti�ers Qm�a for each positive integer m and each

integer a with � � a � m Given a formula ��x� with one free variable x� we consider the
truth values of ��x� as x ranges over the positions in the input The sentence �Qm�ax���x�
is de�ned to be true exactly if the number of positions x making ��x� true is equal to a

modulo m For example� the formula �Q���x�C��x�� over the alphabet f�� �g represents the
parity language of �FSS��� We de�ne the class FOC ��rst�order with counters� to be those
languages expressible by �rst�order formulas containing ordinary quanti�ers and modular
counting quanti�ers From the above example� we can see that FOC contains languages not

in AC� and thus strictly contains FO Clearly a �rst�order formula with modular counting
quanti�ers may be evaluated on a particular input by an ACC circuit� as a quanti�er Qm�a

can be simulated by a gate computing the function MOD�m�a� Thus FOC � ACC

Next we de�ne the majority quanti�er M � which captures the notion of threshold com�
putation Again let ��x� be a formula with one free variable x and consider the truth values
of ��x� as x ranges through all the input positions The sentence �Mx���x� is de�ned to

be true exactly if ��x� is true for more than half of the possible x We also de�ne quanti��

cation over pairs of variables� eg� �Mxy���x� y�� for � a formula with two free variables�
is true i� ��x� y� is true for a majority of pairs hx� yi �We will show below in Proposi�
tion ��� that this quanti�er may be simulated by the ordinary majority quanti�er and the

BIT predicate We have not been able to express the majority�of�pairs quanti�er using

the one�variable majority quanti�er in the absence of BIT � and we conjecture that this is
impossible� In Section �� below we shall see that this quanti�er can be used to express
a wide variety of predicates As each use of the majority quanti�er can be simulated by a

majority gate� the languages expressible by �rst�order formulas with majority quanti�ers
�the class FOM� form a subset of TC�

Each of these types of quanti�ers can be thought of as performing a computation on

the values of ��x� for the di�erent x In the case of an ordinary universal quanti�er these
values are multiplied to give the truth value of the quanti�ed formula ��x���x� In the
case of an ordinary existential quanti�er these values are added in the two�element Boolean

algebra In the case of the modular counting quanti�ers the values are added modulo m
and the result is compared with some speci�ed value a Finally� in the case of the majority
quanti�ers the values are added as integers and compared with some speci�ed value

Our last quanti�er type is a generalization of the modular counting quanti�ers� the group
quanti�ers There is a natural order on the positions x in the input� so that the values of
a formula ��x� provide an ordered sequence as x ranges through the positions There is no
reason why we cannot think of applying a noncommutative operation on this sequence In

particular� the operation of multiplication in a nonsolvable group appears to have particular
computational signi�cance Can we capture this operation in the �rst�order setting by a
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new quanti�er type�

To do so� we must have �truth values� with more than two possible values� as fol�
lows Fix a �nite group G and a mapping from f�� �gk onto G for some �xed integer k
Let h���x�� � � � � �k�x�i be a vector of �rst�order formulas with a single common free vari�
able x For each x� let g�x� be the element of G denoted by the vector of truth values

h���x�� � � � � �k�x�i For each element g of G� and each input of length n� we de�ne the
sentence � G�gx�h���x�� � � � � �k�x�i to be true i� the element of G obtained by multiplying
g���g�	� � � � g�n� is g This idea allows us to immediately de�ne monoid quanti�ers for any

�nite monoid M and map from f�� �gk onto M � but we will use only group quanti�ers in
this paper

We are now ready to de�ne our generalized quanti�ers Though any given augmented

�rst�order system will contain only �nitely many such quanti�ers� they can be de�ned for
any function meeting a certain technical condition Let k and � be any �xed integers� and let
f � ff�� f�� � � �g be a family of functions where fn is from f�� �gf������kg�f������ng

�

to f�� �g We
say that the family f is monoidal if it is derived in the following way from the multiplication

operation of a single �possibly in�nite� monoid M  First� there must be a map from f�� �gk

to M  The input to fn is interpreted as a sequence of n
� k�tuples of bits whose images in

M are multiplied out in lexicographic order The value of fn depends only on the element

of M which is the result of this multiplication

For example� the majority quanti�er is de�ned in terms of a function f which inputs a
sequence of n bits and returns � i� there are at least as many ones as zeroes in the sequence

As the inputs are single bits and we operate on n� of them� we have k � � � � in this

case The value of f can be determined from the product of the elements of the sequence�
computed in a particular in�nite monoid Let N 
 N be the monoid of pairs of natural
numbers under componentwise addition� and identify the input symbols � and � with the

elements h�� �i and h�� �i of N 
N respectively The product of the elements of the input
sequence is then hi� ji� where the sequence contains i zeroes and j ones The value of f is �

exactly if i � j Thus the majority gate function� like all the gate functions we have used
so far� is monoidal

Given a monoidal f � we de�ne a quanti�er Qf which will bind � di�erent variables
and operate on a k�tuple of formulas Given formulas ���x�� � � � � �k�x� with a vector x of
common free variables x�� � � � � x�� we can de�ne a sentence �Qfx�� � � � � x��h���x�� � � � � �k�x�i

The value of this sentence is f applied to all the n� vectors of truth values h���a�� � � � � �k�a�i
for each ��tuple a � ha�� � � � � a�i with � � aj � n for each � � j � �

As one more example� we can now de�ne a quanti�er which determines the transitive

closure of a width�� directed graph �an NC��complete problem� as described in the next
section �or see �Ba����� Our graph will be an array of n� columns of �ve nodes each� with
directed edges from nodes in column y going only to column y � � We will denote such

graphs by a 	��tuple of formulas �i�j�x�� � � � � x�� for � � i� j � � For a particular i� j�
and ��tuple hx�� � � � � x�i� �i�j�x�� � � � � x�� is true is there is an edge from node i in column y
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to node j in column y � �� where y �
P�

z���xz � ��nz�� The function W�TCi�j for each
� � i� j � � inputs such a graph and outputs whether there is a directed path from node i

in column � to node j in column n� � �

Note that each function W�TCi�j derives from a binary operation on columns which is
associative and has an identity� and is thus monoidal We can thus apply the formalism
above �with k � 	� and � as given�� and de�ne quanti�ers QW�TCi�j

 If the formulas �i�j

represent a graph� the sentence

�QW�TCi�j
x�� � � � � xl�h�����x�� � � � � x��� � � � � �����x�� � � � � x��i

is thus true i� there is a path from node i in column � to node j in column n� � � in that
graph

� Log�time Turing machines

We de�ne a log�time Turing machine to have a read�only input tape of length n� a
constant number of read�write work tapes of total length O�log n�� and a read�write input
address tape of length log n On a given time step the machine has access to the bit of
the input tape denoted by the contents of the address tape �or to the fact that there is no

such bit� if the address tape holds too large a number� We will assume �without loss of
generality� that the machine always takes the same amount of time on inputs of a given
length �this is because some of the work tape can always be used as a clock� The following

lemma summarizes some useful capabilities of such a machine

Lemma ��� A deterministic log�time Turing machine can �a� determine the length of its
input� �b� add and subtract numbers of O�log n� bits� �c� determine the logarithm of a binary

number of O�log n� bits� and �d� decode a simple pairing function on strings of length O�n��

Proof� For �a�� use binary search with the aid of the �input out of range� response �this

idea is described in �Bu�
� and credited there to Dowd� For �b�� put the numbers on work
tapes and simulate the �nite automaton which adds or subtracts � this requires O�log n�
time as only one pass over the numbers is needed For �c�� make a sweep over the number

while operating a binary counter on another work tape The counter takes time linear in
the number counted For �d�� we may encode hx� yi by �rst listing the lengths of x and y in
binary� then x� then y Addresses of bits within x or y may then be calculated by addition
The format for giving the lengths must be parsable in O�log n� time One scheme would

be to list bits � and � of the lengths by �� and �� respectively� and use the pair �� as a
separator

We de�ne an alternating log�time machine as an extension of this model in the usual way
�see� eg� �CKS����� with certain further assumptions As with the deterministic machine�
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we will use a clock to insure that the running time depends only on the input length We
will assume that the machine alternates between existential and universal states and that it

has exactly two options from each such state It records the sequence of choices on one of its
worktapes� so that every con�guration of the machine is reached by a unique computation
path Finally� we will assume that the alternating machine queries its input only once in

a computation� in its last step An alternating machine with this restriction can simulate
an ordinary alternating machine �which queries the input on every step� at a potential cost
of doubling the time taken At each step of the ordinary machine� the restricted machine
guesses the value of the input to be read and universally branches to two computation

paths � one which continues the computation assuming that the bit is correct and one
which waits for the last step of the computation and then checks the bit Only one bit
is queried on each computation path Each �nal state of the restricted machine is of the
form �accept�� �reject�� or �accept i� bit xi �or xi� has value �� We de�ne DLOGTIME

and ALOGTIME as the classes of languages recognizable in deterministic and alternating
log�time Turing machines� respectively

Following Buss �Bu�
�� we de�ne DLOGTIME�uniform NC� to be the class of lan�

guages recognized by families of Boolean formulas� with depth O�logn�� for which a de�
terministic log�time Turing machine can decide the formula language fhc� i� yi � jyj � n
and the ith character of the nth formula is cg The question immediately arises whether
strengthening the uniformity restriction has changed the class NC� It has not

Lemma ��� The class DLOGTIME�uniformNC� equals ALOGTIME� or NC��uniform
NC��

Proof� Buss �Bu�
� shows that the de�nition of ALOGTIME�uniformNC� in terms of
the formula language is equivalent to Ruzzo�s original de�nition �Ru��� in terms of the ex�

tended connection language for circuits This and Ruzzo�s result show that DLOGTIME�
uniform NC� is a subset of ALOGTIME� so it remains for us only to show that an
ALOGTIME machine may be simulated by a DLOGTIME�uniform formula family

We name each con�guration of the alternating Turing machine by the sequence of choices
leading to it �recall that this choice sequence is recorded on one of the machine�s work
tapes� We construct a circuit family to simulate the alternating machine in the standard
way We will then show how the circuit for each n �which is a tree� can be denoted by

a DLOGTIME�uniform formula A similar and independent argument is used for the
same purpose in �BCGR��� The body of the circuit is easy to de�ne � it has OR gates
for the existential choices and AND gates for the universal choices of the ALOGTIME
machine� in a full binary tree with alternating AND and OR rows Note that this circuit

is a balanced tree� ie� that all paths from the top to the bottom have the same length
because the alternating machine always runs for the same time� which we will call t The
only di�culty comes at the leaves of the tree� where we must place the input variable

corresponding to the input position queried by the machine in the case when the sequence
of choices� corresponding to that leaf� is made
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Formally� we will de�ne a formula f� for every binary string � of length � t� such that
f� �where � is the empty string� is the desired formula denoting the whole circuit Once we

have done this� we will explain how to insert spaces into f� in such a way that it becomes
DLOGTIME uniform First we de�ne two families of strings� op��� for every � with
j�j � t� and query��� for every � with j�j � t The string op��� will be the single character

� or � corresponding to the type of state �existential or universal� of M after carrying out
the choice sequence corresponding to � �by one of our assumptions� this depends only on
the parity of j�j� but it could in any case be calculated in DLOGTIME by simulatingM�
The string query��� will be xi or ��xi�� corresponding to the input query made by M at

the end of a run with choice sequence � This can also be calculated in DLOGTIME by
simulating M � note that both op��� and query��� are independent of the input Now we
can de�ne f� recursively The base case is f� � query��� for j�j � t� and the general case
for j�j � t is f� � �f��op���f���

We will lay out f� in 	
t���� blocks of equal size The block size will be the least power

of two exceeding both 	t�� and �log n��	� which is still O�log n� The block numbers will

be binary integers of length t� �� possibly with leading zeroes Each block will be padded

on the right with spaces Blocks of the form �� will contain the string query��� Blocks of
the form �� contain the operators and the parentheses� to wit�

� if � � �t� then block �� � �t

� if � � ���j� then block �� ��jop����j

� if � � �t� then block �� ��t

The reader may verify that the ordered concatenation of these blocks� ignoring spaces�
is the string f� The given block size su�ces to contain all blocks� as each query��� has

length dlog ne� 	 and the longest of the other blocks� block ��t� has length 	t� �

It remains to show that a DLOGTIME Turing machine� on input n and i� can calculate
the ith character of fe As shown in Lemma 
�� it can calculate the block size and its

logarithm� and thus determine which character of which block is the ith overall It can
then simulateM with the appropriate choice sequence to determine what that block is� and
explicitly �nd the correct character as the blocks are of size O�log n�

With this new notion of uniformity we can reexamine the characterizations of NC� in
terms of constant�width branching programs �Ba��� or� equivalently� programs over �nite
monoids �BT��� �the relationship between these various models was discussed above� Here

we will paraphrase Barrington�s main theorem as follows�

Theorem ��� �Ba	
� The problems of multiplying together a sequence of elements of the
permutation group S�� and of �nding the transitive closure of a width�� graph� are complete

for NC� under AC� reductions� This is true in both the non�uniform and ALOGTIME�
uniform settings�
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We now show that the this theorem also holds in this new uniformity setting We adopt
Buss� de�nition of DLOGTIME reductions �Bu�
�� A function f many�one reducing a

language A to a language B is said to be a DLOGTIME reduction if f increases the
length of strings only polynomially and the predicate Af �c� i� z�� meaning �the i

th symbol
of f�z� is c�� is recognized by some DLOGTIME Turing machine

Proposition �� These two problems remain complete for DLOGTIME�uniform NC�

�i�e�� for ALOGTIME� under DLOGTIME reductions�

Proof� This is very similar to the proof of Lemma 
	 above Given an arbitrary

alternating log�time Turing machine� there is a canonical balanced DLOGTIME�uniform
log�depth formula simulating it� as shown above Further� there is a canonical branching
program obtained from that formula by the method of �Ba��� We will show that the
function taking an ALOGTIME machine to a description of the branching program for

that machine is a DLOGTIME reduction For any particular input� a solution to either of
the two given problems can be used to evaluate this branching program� and thus simulate
the machine� on that input

It su�ces to show how a DLOGTIME machine can obtain the ith instruction of the
branching program given i in binary We need �rst to determine which input variable is
to be referenced This is the variable queried by the alternating machine after a particular

choice sequence� in fact �examining the method of �Ba���� that given by the odd�numbered

bits of the binary encoding of i �viewed as a string of 	t bits� possibly with leading zeroes�
The DLOGTIME machine can recover these bits and simulate the ALOGTIME machine
with the resulting choice sequence We must then determine which group elements the ith

instruction is to output for each of the two possible values of this input variable This
can be determined by tracing the t iterations of the �Ba��� construction leading to the ith

instruction� which can be done by a �nite�state process running left to right over the bits
of i

This can be interpreted as a simulation of alternating log�time Turing machines by
DLOGTIME�uniform branching program families �analogous to theALOGTIME�uniform

families of �Ba����� or DLOGTIME�uniform programs over the monoid S�� as in �BT���

Just as above we expanded the circuit model by adding new gates� we can expand
the log�time Turing machine model by adding new types of states generalizing the idea of

alternation To match circuits of unbounded fan�in� we must allow the existence of a number
of normal deterministic states between the special states� and count depth of special states
Examples are�

� Normal alternating machines of constant alternation depth This yields the important
alternating log�time hierarchy� and the class LH of languages accepted by constant�

depth alternating log�time machines
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� States whose acceptance depends on the number of accepting successor paths modulo
some constant

� States whose acceptance depends on whether a majority of the successor paths are
accepting� as de�ned by Parberry and Schnitger �PS���

� States which are analogues of the group�multiplying circuit gates de�ned in Section �

above

	 Equivalence of FO and the Log�time Hierarchy

Our main result �Theorem ��� depends primarily upon the fact that �rst�order formulas

are powerful enough to express the notion of acceptance by aDLOGTIME Turing machine
In fact� we shall soon see that a language can be so expressed i� it is in LH� the alternating

log�time hierarchy

Proposition 	�� DLOGTIME � FO�

Proof� Let T be a DLOGTIME machine with k work tapes We must write a �rst�order
sentence � such that for all input strings A�

T accepts A  A j� � �

The sentence � will begin with existential quanti�ers� � � �	x� � � � xc�	�x� The vector
of variables x � hx�� � � � � xci will code the O�log n� steps of T �s computation including� for
each time step t� the values qt� w��t� � � � � wk�t� d��t� � � � � dk�t� It representing T �s state� the sym�
bol it writes on each tape� the direction each head moves� and the value of the input being

scanned by the index�tape controlled input head at time t� respectively �It is important
to remember that each variable xi is a blog nc� � bit number and that the logical relation
BIT allows its individual bits to be speci�ed� so the values qt� wi�t� di�t� It are available from
the variables x�

The formula 	 must now assert that the information in xmeshes together to form a valid
accepting computation of T  To do this we �rst de�ne the �rst�order formulas C�p� t� a� and

P �p� t� meaning that for the computation determined by x� the contents of cell p at time
t is a! and that the appropriate work head is at position p at time t Here the �position�
p encodes also which tape the cell is on Given C and P � we can write the formula 	 as
follows We must assert that for all t� the input symbol It is correct To do this we say that

there exists a variable y equal to the contents of the index tape �This can be veri�ed using
the formula C� Next we say that It is one i� the corresponding input relation X�y� holds
Finally we assert that the next move of T � ie qt��� w��t��� � � � � wk�t��� d��t��� � � � � dk�t���

follows according to T �s �nite control from the current state� qt� input symbol� It� and tape
symbol� the unique a such that there exists p so that C�p� t� a� and P �p� t� both hold
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Next note that using P we can write C because the contents of cell p at time t is just
wi�t� where t� is the most recent time that the appropriate head i was at position p� or the

blank symbol if that head is never at P before time t

Finally observe that to write the relation P �p� t� it su�ces to take the sum of O�log n�

values of dt� for t
� � t Thus it su�ces to prove the following technical result�

Lemma 	�� Let BSUM�x� y� be true i� y is equal to the number of ones in the binary
representation of x� Then BSUM is �rst�order expressible�

Proof� Let L � blog nc � �� and L� � blogLc � � These numbers are available using

BIT For example L is the unique number satisfying�

BIT�L� n� � ��x��x � L� �BIT�x� n�� �

We express BSUM as follows We may assume that L � �L��
� by keeping a table of special

cases for L � � Then we existentially quantify one variable s consisting of L� L��bit
numbers s�� � � � � sL� � where each si�� is the sum of si and the number of ones in the binary
expansion of x between bits i �L��� and �i��� �L� Thus sL� is equal to the bit sum of x

For example� see the table below in which L � �� L� � �� and x�s bit sum of � is calculated

To express the correctness of the sequence of partial sums� s� we need to express the
sum of variables� and to express the bit sum of a set of L� consecutive bits from x This

latter bit sum can be expressed by the existence of L� partial sums� where a partial sum
is taken for each of the L� bits we are summing For example� in the table below� to say
that bits 
 through � of s are correct� we would assert that there are 	 bits on from bits

 through � of x� and that the sum of � �bits � through � of s� and 	 is equal to � �bits 


through � of s� To say that there are 	 bits on from bits 
 through � of x� we would assert
the existence of r in the following table� containing the running sum for each of bits 
� ��
and � of x

� 	 � � � � 
 � �

x � � � � � � � � �
s � � � � � � � � �

r � � � � � � � � �

Finally� we express the predicate PLUS�a� b� c� meaning that a � b � c This is just

carry look ahead addition First express the carry into the ith bit of a� b as follows�

CARRY �i� � �	j � i��BIT�j� a�� BIT�j� b�� ��k�j � k � i�BIT�j� a� � BIT�j� b��

Then with � standing for exclusive or� we can express PLUS�

PLUS�a� b� c� � ��i��BIT�i� c� � �BIT�i� a�� BIT�i� b�� CARRY �i���
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Corollary 	�� FO � LH�

Proof� To prove LH � FO� we need only note that an alternating log�time machine
may be assumed to write its guesses on a work tape and then deterministically check for

acceptance Since a �rst�order sentence can just as easily quantify these alternating guesses�
it su�ces to express a DLOGTIME predicate using Proposition �� above

The other direction is fairly easy We have to show that for every �rst�order sentence�

� � �	x����x�� � � � �Qkxk�M�x�

there exists an alternating� constant�depth log�time Turing machine T such that for all
input strings A�

T accepts A  A j� � �

Since M is a constant size quanti�er�free formula� it is easy to build a DLOGTIME
Turing machine which on input A and with values a�� � � � � ak on its tape� tests whether or
not A j� M�a� �The most complicated part of this is to verify the BIT predicate� which
requires counting in binary up to O�log n� on a work tape as in Lemma 
�� Thus using

k�� alternations between existential and universal states� a "k log�time machine can guess
a�� � � � � ak and then deterministically verify M�a�


 Proof of Main Theorem

We now restate our main theorem� using the more precise de�nitions we have developed
in sections � �DCL�uniform� generalized expressions� and 
 �DLOGTIME��

Theorem ��� Let F be any set of monoidal functions� The following are equivalent de��
nitions of L is in uniform AC��F �� �e�g�� AC�� ACC� TC�� or NC���

�� L is �rst�order de�nable using F quanti�ers�

�� L is recognized by a DLOGTIME�DCL�uniform family of constant�depth� polynomial�
size circuits with gates for AND� OR� and a �nite set of functions in F �

�� L is recognized by an FO�DCL�uniform family of such circuits�

�� L is recognized by a DLOGTIME�uniform family of constant�depth� polynomial�
length generalized expressions using AND� OR� and a �nite set of functions from

F �

�� L is recognized by a FO�uniform family of such expressions�

��



For NC� and above� these de�nitions also coincide with the earlier notion of NC� unifor�
mity �Ru	��Co	���

Proof� �� 	�

Corresponding to any �rst�order formula of quanti�er depth d in prenex form is a canon�
ical constant�depth circuit for each n A tree of fan�out n and depth d corresponds to the
quanti�ers� and at each leaf of this tree there is a constant�size constant�depth section

This section calculates the value of the unquanti�ed sentence obtained by taking particular
values for each of the quanti�ed variables It will consist of Boolean operators� input nodes�
and constants corresponding to the value of atomic formulas �equality� order� and BIT � on
the chosen values of the quanti�ed variables We need merely show that the nodes of this

circuit can be numbered in such a way that DCL queries about it can be answered by a
DLOGTIME Turing machine

This is straightforward and quite similar to our earlier constructions in Section 
 The

address of a node will consist of a �eld of dlog ne bits for each quanti�er and a constant�
length �eld for the bottom section Each node in the n�ary tree section of the circuit can
be speci�ed by the sequence of variable choices leading to it Its node number will have

these choices in the �elds corresponding to them� and zeroes in the remaining �elds Nodes
in the bottom section will have the the choices for all d variables indicated in the �rst d
�elds� and a code for the particular node in the last �eld In order to answer queries for the
direct connection language� the DLOGTIME machine needs to be able to compare �elds

of length dlog ne �to check connections�� to interpret these �elds as input variable names

�to verify the nodes corresponding to atomic formulas of the form X�i��� and to evaluate
atomic formulas for given values of the d variables �to verify the values of the constants in
the bottom section� This last is possible because a DLOGTIME machine can easily check

order� equality� and BIT on numbers in the range from � to n

	� �� This is immediate from the fact that DLOGTIME � FO

� � �� As the circuit is of polynomial size� we can refer to node numbers by tuples of

variables It will su�ce to express the predicate Acc�a�� meaning �a is the number of an
accepting gate �a gate with output ��� by a �rst�order formula� because we can then evaluate

the circuit by evaluating this predicate on the output gate To do this we inductively de�ne
predicates Accd�a�� meaning �a is the number of an accepting gate at level d For level ��
the input to the circuit� Acc��a� is just C��x� or C��x� ANDed with the predicate �a is the
number of a input gate for input variable x �or the negation of x�� This last predicate is

�rst�order expressible by hypothesis

To express Accd�a� we will show how to express �a is the number of an accepting f �gate
at level d� for a monoidal function f  First we must say �a is the number of an f �gate at

level d�� which is �rst�order for any �xed d Then we need to use a Qf quanti�er to apply
f to the sequence of values Accd���b� for all those b which are the numbers of children
of a Here is where we need the assumption that the domain of f contains an identity
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element We write an expression Acc�d���b� whose value is Accd���b� if b is a child of a and
the identity otherwise Then our desired predicate is �Qfb�Acc

�
d���b� Finally� Accd�a� is

the OR of these predicates over all the functions f used in the circuit

� � �� The canonical constant depth circuit which we constructed from a �rst�order
formula above is a tree� and so can be denoted by a general expression� with operators
corresponding to the quanti�ers We need to arrange this expression so that the expression
language is inDLOGTIME This is easy because we have a space character in our alphabet

and allow arbitrary embedded spaces We simply choose a power of two greater than n and
position the terms of the expression so that their position in the tree can be read o� from
their binary addresses� as in the proof of Lemma 
	

�� �� This is immediate from the fact that DLOGTIME � FO

� � �� Here we induct on the structure of the expression just as we inducted on the
structure of the circuit above We de�ne a predicate Accd�a� expressing �character number
a is the start of an accepting f �term at level d� For �xed d� we can write a �rst�order

formula matching parentheses to depth d� so we can express �character b is the start of a
subterm of the term starting at character a�� and so forth Again� we need the identity
character in the domain of f so that we can apply f to Accd���b� for exactly those b which
are the start of subterms of the term starting at a

�� Logically De�ned Classes With BIT

We may now examine the uniform complexity classes given by our examples First of
all� the class FO is also DLOGTIME�uniform AC� or FO�uniform AC� Adding in the

modular counting quanti�ers� we get a class FOC ��rst�order plus counters� which is also
the DLOGTIME�uniform version of the class ACC

When we add the majority quanti�er we get the class FOM ��rst�order plus majority�
or DLOGTIME�uniform TC� This class contains nearly all of the languages known to
be in �uniform� NC�� such as the many examples� given by Chandra et al� of languages

equivalent to majority under AC� reductions �CSV��� �The constructions in that paper
can all be made uniform using the methods which we will develop in the next section�
The two notable exceptions are the word problem for a non�solvable group �Ba��� and the
Boolean formula value problem �Bu�
� These two problems �and several others directly

related to them� are complete for NC� under uniform AC� reductions� and are thus not in

TC� unless TC� � NC� We should mention also that the several problems only known to
be in P �uniform NC�� such as those of Beame et al �BCH��� and of Reif �Re�
�� are not
known to be in this new class

Finally� we consider the e�ect of the group quanti�ers and the width�� transitive closure

operator Group quanti�ers for solvable groups �in fact� monoid quanti�ers for solvable
monoids� can be simulated by iterated modular counting quanti�ers �STT��� However� by
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Theorem �� and Proposition 
� �our DLOGTIME�uniform version of Barrington�s theo�
rem �Ba����� we know that �rst�order formulas using quanti�ers for any single non�solvable

group G can express exactly those languages in DLOGTIME�uniform NC� Furthermore�
the same is true of the W�TC operator The group quanti�ers correspond exactly to circuit
gates for G�s word problem� and the width�� closure operator decides whether a particular

de�nable width�� branching program accepts its input To summarize� we have�

Corollary ���� First�order logic� with the addition of either the width � transitive closure

operator or a multiplication quanti�er for a non�solvable group� expresses exactly those
languages in uniform NC��

Now that we have robust notions of �uniform NC�� and �uniform AC��� we can restate
Proposition 
� as a uniform version of Barrington�s Theorem�

Corollary ���� The word problem for S� �or for any non�solvable monoid� is complete
for uniform NC� under uniform AC� reductions� Therefore� uniform branching program

families of width � and polynomial size recognize exactly uniform NC��

�� Logically De�ned Classes Without BIT

The basic operations of the �rst�order logical system include one which is noticeably

less natural than the others � the BIT predicate In fact the system without BIT was
explored �rst� in the course of e�orts to classify regular languages according to algebraic
properties Further exploration of this system leads deeper into algebraic automata theory

� see� eg� Eilenberg �Ei
��� Lallement �La
��� or Pin �Pi
�� for background and de�nitions

McNaughton and Papert �MP
�� proved that in the system without BIT � the languages
expressible by �rst�order formulas are exactly the aperiodic or star�free regular languages

�see Ladner �La

� for a good exposition of this result in more modern terminology� This
is a well�studied subclass of the regular languages with a number of characterizations Here
we mention only the closely related result of Chandra et al �CFL��� that an associative
operation on a �nite set �a semigroup� can be carried out in AC� i� the semigroup is

group�free

The modular counting quanti�ers described above were actually introduced as an ex�
tension of this system as well Straubing et al �STT��� prove that with these quanti�ers

but without BIT one can de�ne exactly the solvable regular languages� ie� those languages
recognized by monoids that contain only solvable groups If ACC �� NC�� this class of
languages is exactly the intersection of ACC with the regular languages �BCST��� By

adding operators which evaluate n modulo a constant� the �rst�order system without BIT
can be modi�ed to give exactly those regular languages in non�uniform AC� �BCST���

		



Adding majority quanti�ers will naturally take us out of the regular languages But
surprisingly� the expressibility class we obtain is a familiar one � the same uniform TC�

we obtained with BIT  To see this� we �rst show that we can express �rst�order arithmetic
on variables in this system�

Lemma ���� The following formulas are expressible in FO�w�o� BIT� plus majority of
pairs�

�� �Hx���x��� �H�xy���x� y��� i�e� � is true for exactly bn
	c x�s� resp� bn�
	c pairs

x� y�

�� y � �x � ��x��� i�e� y is the exact number of x�s such that ��x��

�� x� y � z�

�� x � y � z�

Proof� To express �Hx���x� we say that � is not true for the majority of x�s� but it
becomes true if we add one more x H� is similar

�Hx���x� � �	y��Mx����x�� x � y� � ��Mx���x��

To express �	� we create a two�variable predicate 	�w� z� that is true for w � � and
z � y� for w � 	 and ��z�� and for half of the pairs with w � 	 Then

�y � �x � ��x�� � �H�wz��	�w� z�� �

Similarly� we can create a predicate that compares z with x�y to express ��� We force

z values to zero by �xing the w � � and w � 	 columns� x values to one with the w � �
column� y more values to one with the w � � column� and split the other columns evenly
between zeroes and ones The resulting predicate is exactly evenly divided i� x � y � z

The predicate that compares z with x � y for ��� is only slightly more subtle We make
a section of z zeroes and a rectangular section of x � y ones Note that x and y are both
less than n
	 and z �except for the cases x � � �y � �� n � �� 	 which can be handled in
separate clauses�

It now follows that�

Theorem ���� Even without BIT� First�order Logic plus Majority is equal to uniform

TC��
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Proof� It su�ces to express BIT in FO�wo BIT� � M� This follows from Lemma
��� Note that we can express� �x is a power of 	� by saying that x has no odd divisors

except � Next we can express� �z � 	i�� as� �z is a power of 	� and �i � �y � �y �
x � �y is a power of 	�� Finally� we have�

BIT�x� i� � �	uw��w � 	i � u is odd � x � w � u	i�

It is slightly annoying that we needed M� rather than just M in Lemma ��� As the
next proposition shows� this is not necessary in the presence of BIT We conjecture that it

is necessary without BIT

Proposition ���� The majority�of�pairs quanti�er �M�xy���x� y� is expressible in �FO �

M�� i�e� using the BIT predicate and the majority quanti�er�

Proof� This is true� because in the presence of BIT we can express addition and mul�
tiplication on variables even without majority Thus we can express the following�

� F �x� y���x�� �There are exactly y values of x less than or equal to bn
	c such that
��x� holds�

	 S�x� y���x� � �There are exactly y values of x greater than bn
	c such that ��x�
holds�

� �y � �x � ��x��

� �hu� vi � �x � ��x� y�� � �There are n�u� �� � v pairs x� y such that ��x� y� holds�

��� is expressed as follows�

F �x� y���x� � �Hx���x � bn
	c � ��x�� � �bn
	c � x � n� �� y��

�	� is similar� and then ��� follows by addition of variables Part ��� will involve some
expressibility results which are interesting in their own right �The proofs are adaptations of
known techniques to the �rst�order setting� We �rst de�ne a variable col�x� � �y � ��x� y�

for each column of the square array� and then we are faced only with the problem of adding

n numbers each of O�logn� bits� which is a special case of the following result

Proposition ��� The sum of a polynomial number of polynomial�length binary integers
�and hence also multiplication of polynomial�length binary integers� can be expressed in

FO �M � BIT �
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Proof� This uses a technique due to Chandra� Stockmeyer� and Vishkin �CSV��� Using
the � operator� we �nd the sum of the units digits� twos digits� fours digits� etc� of the

summands These sums are each a number of O�log n� bits� and the sum of them �when
each is padded on the right with an appropriate number of zeroes� is our desired sum But
these sums can be arranged into O�log n� numbers of polynomial length� whose sum is the

desired sum It thus su�ces to prove the following

Lemma ���� it add of log n The sum of O�log n� polynomial�length binary integers �and

hence� among other things� multiplication of binary numbers of length O�log n�� is express�
ible in FO �BIT �

Proof� We use the technique above to reduce the O�log n� numbers to O�log log n� num�
bers� this time using the BSUM predicate of Lemma �	 instead of the � operator and so

remaining within FO � BIT  We can imagine this process being carried out again and
again� reducing the number of summands from log log n to log log log n� log log log log n� and
so forth until it becomes constant and we can �nish by addition of variables In this imag�
ined computation� the part needed to calculate a single bit of the answer consists of less

than log n bits We can guess a variable which codes up this part of the calculation� using
appropriate coding tricks� and verify that each bit of it is correct

To prove the special case of this Lemma �numbers of length O�log n�� used in Proposi�

tion ��� and in multiplication of O�log n��bit numbers� it su�ces to use a simpler technique
suggested by Sam Buss He notes that Lipton �Li
�� has shown how to multiply binary inte�
gers with an alternating Turing machine using a constant number of alternations and time
linear in the length of the product If the product is O�log n� bits� then� this computation

is in LH and thus in FO by Corollary �� Lipton�s technique of carrying out an iterated
addition modulo all small numbers can easily be adapted to add O�log log n� numbers each
of length �log n�� which will �nish the process after one step of the reduction technique used
above

Clearly ��� gives us M�

We now consider the �nal question about the system without BIT � What are the
consequences of adding the group quanti�ers or theW�TC operator� In the case with BIT
each gave us all of NC� because the construction of Barrington �Ba��� could be carried

out Here� since these operators each can be simulated by a �nite�state machine� it is not

surprising that all the languages de�nable in this way are regular �see below� A signi�cant
question� however� is whether we can get all regular languages in this way

In the next section� we will use the structure theory of �nite monoids to show that any

regular language can be expressed using the right group quanti�ers �this will be a special
case of Theorem �	�� Similarly one can show that no non�regular languages are obtained
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One way to see this second fact is to use another expressibility result � that of B�uchi
�B�u��� on monadic second�order quanti�ers �see also �La

�� This result is that sentences

with such quanti�ers in our system without BIT can express exactly the regular languages
De�ning a translation from group quanti�ers to weak second�order quanti�ers is fairly easy�
and gives us the other half of�

Theorem ���� A language can be expressed by a �rst�order formula with group quanti�ers
i� it is regular�

�� Expressing Regular Languages

We can in fact make a much more precise statement about the regular languages

expressible with group quanti�ers for a particular set of groups To do this we will need
a number of algebraic de�nitions �see� eg� �Ei
��� �Pi���� �La
�� for more background�
We have already de�ned monoids and groups� and we will assume the basic vocabulary of
abstract algebra A monoid M divides another monoid N if it is the image of a submonoid

of M under a homomorphism A variety of �nite monoids �also called a pseudovariety� is
a family of �nite monoids closed under division and direct product The wreath product
M wr H of two monoids M and H is the set of pairs �f� h� with f a function from H to M
�not necessarily a homomorphism� and h an element of H This set is viewed as a monoid

under the multiplication�
�f�� h���f�� h�� � �f� h�h��

where
f�h� � f��h�f��hh��



If G is any family of groups� we de�ne the Jordan�H�older closure �G� to be the closure of

G under wreath product and division �G� consists of all groups each of whose composition

factors divides a group in G A monoid is aperiodic if every subset which is a group has
one element The variety A of aperiodic monoids is closed under wreath product� as is the
variety of all groups We de�ne the Krohn�Rhodes closure �G�A� of a family of groups G

to be the closure of G and A �the aperiodics� under wreath product and division By the
Krohn�Rhodes theorem �KRT���� the monoids in �G�A� can be characterized in terms of
the simple groups which divide them � a monoid is a member i� each such simple group
divides a group in G For example� the solvable monoids are the Krohn�Rhodes closure of

the cyclic groups �or� in fact� of the abelian or solvable groups�

We say that a language L � A� is recognized by a monoidM if there is a homomorphism
� from A� �as a monoid under concatenation� to M such that L is the inverse image under

� of a subset of M  If L is regular it has a unique syntactic monoid� which divides all
monoids that recognize L In this context� recognition by a �nite state machine is viewed
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as recognition by the monoid of transformations of the machine�s states We are now ready
to show the relationship between this recognizability and logical expressability Recall that

we are now expressing properties of strings from some �nite alphabet A� using atomic
predicates Ca�i� meaning �the i

th input is an a�

Theorem ���� Let G be a family of groups� A language can be expressed using quanti�ers
for groups in G and ordinary quanti�ers i� it is regular and it is recognized by a monoid
in �G�A�� It can be expressed using only quanti�ers for groups in G i� it is recognized by a

group in �G��

Proof� This is an extension of �STT���� where the groups in G were restricted to be
cyclic We indicate here where changes must be made in this proof to accomodate the group
quanti�ers In each part of the proof� the second statement of the theorem �about just the
group quanti�ers� follows from the proof in the general case

For the �rst direction� we must show that if L is recognized by a monoid in �G�A� then
it is expressible with G quanti�ers L must be recognized by some wreath product of groups
in G and aperiodics � we will use induction on the length of this product

Fact ���� �St�
� Thm ��� and Prop� ���� If L is recognized by A wr M with A aperiodic�

then L can be obtained from languages recognized by M by repeated use of Boolean operations
and letter concatenation �the latter takes L and L� to LaL� for any letter a��

With ordinary quanti�ers and Boolean operators� we can express these two operations�
so that if all languages recognized byM are expressible then so are all languages recognized

by A wrM �Th�	� STT��� It remains to deal with the languages recognized by G wrM for
G � G by expressing them in terms of group quanti�ers� Boolean operations� and expressions
for languages recognized by M 

Let L be recognized by G wrM  Without loss of generality we may assume that a word
w is in L i� ��w� � �f��m�� for some homomorphism � from A� to G wr M � some f� from
M to G� and some m� in M  This is because any such L may be written as a �nite union
of such languages For each input letter ai� de�ne fi and mi such that ��ai� � �fi�mi�

Then� by the de�nition of the wreath product� ��a� � � � ar� is given by �f�m� � � �mr� for a
particular function f  This function f is de�ned on an arbitrary element m� of M by�

f�m�� � f��m��f��m�m�� � � � fr�m�m� � � �mr���

The set of words w such that �w� � m� is recognizable by M and thus expressible by

hypothesis It remains to give a formula to express whether f � f�

We �rst build a formula �m�a�x� for each m � M and a � A denoting �the letter in
position x is a and m� � � �mr�� � m� �where� again� ��ai� � �fi�mi�� This construction

	




is identical to that of �STT��� Now for each m� � M � f�m�� is calculated by multiply�
ing together a sequence of group elements as described above If we call these elements

gm�
���� � � � � gm�

�n�� they can all be expressed by a single formula�vector gm�
�x� with free

variable x The group element gm�
�x� is given by fx�m�m� for the unique m such that

�m�a�x� is true Once we have gm�
�x�� the predicate �f � f�� is expressed by the AND for

all m� �M of
� G�f��m��x�gm�

�x��

For the other direction� we must show that the language expressed by any formula

involving group quanti�ers for groups in G and ordinary quanti�ers can be recognized by a
wreath product of groups in G and aperiodics As in �STT���� we de�ne the quanti�er type
of a formula to be a sequence �u�� � � � � us� where each ui is a group in G or the symbol �
The quanti�er type gives the order of the quanti�ers in the formula and whether these are

group or ordinary ��� quanti�ers We prove the recognizability of expressed languages by
induction on the length of the quanti�er type

Again as in �STT���� for any sentence � we de�ne formulas ��� x� and ��x� �� each with

one free variable� denoting respectively �the initial segment of the input ending at position
x� � satis�es �� and �the �nal segment of the input beginning at position x� � satis�es
�� These formulas have the same quanti�er type as � The following lemma may then be
proved in an identical manner to the corresponding lemma of �STT����

Lemma ���� Let ��x� be a formula of quanti�er type � with one free variable� Then there

exist sentences �i� �i for � � i � r of quanti�er type �� and there exist a�� � � � � ar � A� such
that

��x��
r�

i��

��i�� x� � �i�x� � � Cai�x��

The only two properties of the group quanti�ers used in this proof are �the obvious��

� There are only �nitely many inequivalent formulas of a given quanti�er type

� Given any formula�vector g�x� and an input� there is exactly one g such that � G�gx�g�x�
is true

We now proceed by induction on the length j�j of �� and the case of adding ordinary
quanti�ers is already handled in �STT��� It is useful to consider the case j�j � � separately
Here we have a formula � G�gx�g�x� where g�x� is made up of Boolean combinations of

atomic formulas Ca�x�� and thus depends only on the x
th input letter We thus have a map

	 from A to G where 	�a� is the value of g�x� when Ca�x� is true We can extend 	 to be

	�



a homomorphism from A� to G in the obvious way Then the formula is satis�ed by w i�
	�w� � g� so that it is clear that the language expressed by the formula is recognized by G

To do the inductive step� we need two facts from the general algebraic theory of au�
tomata The �rst is a generalization of the Sch�utzenberger product of monoids� described in

section IX	 of �Ei
��� and requires some preliminary de�nitions� from section V� of �Ei
��

Let A� B� and C be monoids A left action of C on B is a map which assigns an
element cb of B to every c � C and b � B satisfying a few natural axioms ��cb � b� �cc��b �

c�c�b�� �cb�b� � c�bb��� Similarly� a right action of A on B assigns a ba � B to every
b � B and a � A� satisfying similar axioms If these actions commute with each other �ie�
c�ba� � �cb�a so we can write cba�� we de�ne a triple product �A�B�C� as follows �di�erent
actions will in general give rise to di�erent triple products� As a set� �A�B�C� is the direct

product A
B
C of the three monoids It becomes a monoid under the operation de�ned
by�

�a� b� c��a�� b�� c�� � �aa�� �ba���cb��� cc��

Below we will use the group G� � GM��M�� the direct product of jM�jjM�j copies of
the group G indexed by the direct product M� 
M� We will use the natural left action

of M� on G� given as follows If f is an element of G� speci�ed by an element fc�d for each
c �M� and d �M�� and m is an element of M�� each component �mf �c�d of mf is given by

fmc�d Similarly� a right action of M� on G� is given by �fm�c�d � fc�dm for each m � M�
The reader may verify that in the triple product �M�� G

��M�� de�ned using these actions�

the product of a string of elements �a�� f�� b�� � � � �ar� fr� br� is �a� � � � ar� h� b� � � � br�� where

h � G� is given for each c �M� and d �M� by

hc�d � �f��c�db����br � � � �fi�a����ai��c�dbi�����br � � � �fr�a����ar��c�d

Fact ��� �Ei��� Let �� and �� be homomorphisms from A� to monoids M� and M�� re�
spectively� Let 	� from M� 
 A 
M� to a group G� be any map� Associate to each word

w � a� � � � ar � A� an element ��w� of G by

��w� �
rY

i��

	����a� � � � ai���� ai� ���ai�� � � � ar���

Then L � fw � ��w� � gg is recognized by a triple product �M�� G
��M��� as de�ned above�

where G� is the group GM��M� �

Proof� The homomorphism � taking an element a of A to ����a�� h� ���a��� where

h�c� d� � 	�c� a� d�� recognizes L The �e�� e�� component of the middle term of ��w� is

exactly ��w� as de�ned above

Fact ���� �Ei��� Prop� V�
��� Every group that divides a triple product �S�� T� S�� is an
extension of a group dividing S�
 S� by a group dividing T � In particular� if S�� T � and S�
are all members of the variety �G�A� then so is �S�� T� S���
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Now suppose we know that every sentence of quanti�er type � �where j�j � �� de�nes
a language recognized by a monoid in �G�A� Consider a sentence � � � G�gx�g�x� where

g�x� is a vector of formulas each of type � By Lemma �	�� each formula gi�x� in g�x� has
an equivalent form

r�

j��

��i�j�� x� � �i�j �x� ��Qai�j�x��

where the �i�j �s and �i�j �s are each a sentence of type � The language expressed by each such

sentence is recognized by a monoid in �G�A� by the inductive hypothesis If we take the direct
product of the homomorphisms recognizing each such language� we get a homomorphism
into the direct product M of all these monoids� which is still in �G�A� We can now� with

some e�ort� de�ne a map 	 from M 
 A 
M to G so that the language expressed by �
satis�es all the hypotheses of Fact �	� Then by Fact �	�� we know that the language
expressed by � is recognized by a monoid in �G�A�� and we have completed the proof of
Theorem �	�

It remains to de�ne 	�c� a� d� for c� d � M and a � A The elements c and d determine

truth values of each of the sentences �i�j and �i�j If these truth values and the letter a satisfy
the disjunction above for some i� we set 	�c� a� d� � gi Otherwise we set 	�c� a� d� � �
This map is well�de�ned because a particular set of truth values and a particular letter can
give rise to only one group element

One consequence of Theorem �	� is that in the absence of the BIT predicate the

W�TC operator is no longer su�cient to express even all regular languages Informally�
this is because the equivalence of width � and arbitrary constant width depended on the

Barrington construction� which can no longer be carried out under this more restrictive
uniformity notion Furthermore� we can prove this assertion from Theorem �	�� because
we can show the W�TC operator to be equivalent in power to a group quanti�er for the

group S�� which is only one of the in�nitely many non�abelian simple groups

�� Directions for Further Research

� We have given robust de�nitions of uniformity for complexity classes within NC� We
can speak of uniform circuits� uniform expressions� special kinds of Turing machines�

or �rst�order formulas� and be talking about the same complexity classes �For the
classes explored in Section ��� one could as easily speak of uniform programs over a
�nite monoid� as in �BT���� Clearly the next step is to explore these new complexity
classes as P and NP have been explored To take one example� we might ask about an

NC� analogue of the Berman�Hartmanis conjecture �BH

�� are the two known kinds
of languages complete for NC� �non�solvable group and formula value� isomorphic by
�rst�order functions� We might hope major questions in this area can be answered

more easily� and lead to techniques and intuitions useful in the study of the more
powerful complexity classes

��



� We now see that the apparently technical addition of the BIT predicate �or the
majority operation� which can be used to de�ne it� to the �rst�order framework has

enormous consequences The two expressibility theories di�er provably in the case of
group quanti�ers� as we have seen A similar provable di�erence is known in the case
of iterated �rst�order formulas �Im�
b� � NC� requires #�log n� iterations without

BIT but O�log n
 log log n� with it �In the former case� the iterations su�ce to de�ne
BIT itself� What is so special about BIT � what other predicates would do as well�

� In the presence of BIT multiplication in one nonabelian simple group can be de�
�ned in terms of another� in sharp contrast to the pure �rst�order case Can BIT
and solvable groups de�ne any new �non�solvable� regular languages� If so� then

ACC � NC� in the uniform setting Can majority and solvable groups de�ne any
new regular languages� If so� then TC� � NC� in the uniform setting Thomas �per�
sonal communication� has asked whether even a very weak non�regular predicate� such

as �x � 	y�� can be used to de�ne any new regular languages A partial answer to
this comes from the fact that any language de�ned using �rst�order logic and purely
numerical predicates such as this must be in non�uniform AC� The regular languages
in non�uniform AC� have been characterized �BCST���� and are all solvable How�

ever� it is still open whether x � 	y might be used to de�ne a language such as the
strings of length divisible by �� which is is non�uniform AC� but not in FO Further
questions along these lines are considered in �BCST���

� Is it necessary in the absence of BIT for the majority quanti�ers to be able to range

over pairs of variables� and not just variables�
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