
Descriptive Complexity� a Logician�s

Approach to Computation

Neil Immerman�

Computer Science Dept�

University of Massachusetts

Amherst� MA �����

immerman�cs�umass�edu

Appeared in Notices of the American Mathematical Society ������
������� ���	 
 �����

A basic issue in computer science is the complexity of problems� If one is doing a
calculation once on a medium�sized input� the simplest algorithm may be the best
method to use� even if it is not the fastest� However� when one has a subproblem that
will have to be solved millions of times� optimization is important� A fundamental
issue in theoretical computer science is the computational complexity of problems�
How much time and how much memory space is needed to solve a particular problem�
Here are a few examples of such problems�

�� Reachability� Given a directed graph and two speci�ed points s� t� determine if
there is a path from s to t� A simple� linear�time algorithm marks s and then
continues to mark every vertex at the head of an edge whose tail is marked�
When no more vertices can be marked� t is reachable from s i� it has been
marked�

�� Min�triangulation� Given a polygon in the plane and a length L� determine if
there is a triangulation of the polygon of total length less than or equal to L�
Even though there are exponentially many possible triangulations� a dynamic
programming algorithm can �nd an optimal one in O	n�
 steps�

�� Three�Colorability� Given an undirected graph� determine whether its vertices
can be colored using three colors with no two adjacent vertices having the same
color� Again there are exponentially many possibilities but in this case no known
algorithm is faster than exponential time�
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Computational complexity measures how much time and�or memory space is needed
as a function of the input size� Let TIME
t	n
� be the set of problems that can be
solved by algorithms that perform at most O	t	n

 steps for inputs of size n� The
complexity class Polynomial Time 	P
 is the set of problems that are solvable in time
at most some polynomial in n�

P �
��

k��

TIME
nk�

Even though the class TIME
t	n
� is sensitive to the exact machine model used in
the computations� the class P is quite robust� The problems Reachability and Min�
triangulation are elements of P�

Some important computational problems appear to require more than polynomial
time� An interesting class of such problems is contained in nondeterministic poly�
nomial time 	NP
� A nondeterministic computation is one that may make arbitrary
choices as it works� If any of these choices lead to an accept state then we say the
input is accepted� As an example� let us consider the three�colorability problem� A
nondeterministic algorithm traverses the input graph arbitrarily assigning to each
vertex a color� red� yellow� or blue� Then it checks whether each edge joins vertices
of di�erent colors� If so� it accepts�

A nondeterministic computation can be modeled as a tree whose root is the starting
con�guration� Every choice forms a branching node� The computation accepts if any
of the leaves is an accepting con�guration� The nondeterministic time of this com�
putation is the length of the path from root to accepting leaf � not the exponentially
larger size of the tree of all possible choices�

Continuing the example� given a graph G with v vertices� the nondeterministic three�
colorability algorithm de�nes a computation tree that has �v branches � one for each
possible coloring of the vertices� Each such branch ends in an accepting leaf if and
only if the corresponding coloring is a valid three coloring� It follows that there
exists an accepting leaf just if G is three�colorable� Thus� three�colorability can be
checked in nondeterministic O	n
 time � where n is the number of vertices plus edges�
Three�colorability is in NP�

The three�colorability problem as well as hundreds of other well�known combinatorial
problems are NP complete� 	See 
�� for a survey of many of these�
 This means that
not only are they in NP� but they are the �hardest problems� in NP� all problems
in NP are reducible to each NP�complete problem� 	A reduction from problem A to
problem B is a polynomial�time mapping from any input to A to an input to B that
has the same answer� It follows that if A is reducible to B and B is in P then A is in
P�
 At present� the fastest known algorithm for any of these problems is exponential�
An e�cient algorithm for any one of these problems would translate to an e�cient
algorithm for all of them�

The P ��NP question is an example of our inability to determine what can or cannot
be computed in a certain amount of computational resource� time� space� parallel
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time� etc� The only truly e�ective tool that we currently have for this is Cantor�s
diagonalization argument� This is very useful for proving hierarchy theorems� i�e��
that more of a given computational resource enables us to compute more�

TIME
n��
��
TIME
n��� NTIME
n��

��
NTIME
n��� SPACE
n��

��
SPACE
n��

However� there are no known techniques for comparing di�erent types of resources�
e�g� time versus nondeterministic time� times versus space� etc�

These notions of complexity might not seem fundamental� but rather tied to the sort
of machine that the algorithm will be performed on� On the contrary� the notions
of time� space� parallel time and even nondeterministic time are fundamental and
have many equivalent formulations� One such formulation which I will now describe
involves no machines at all� but relies instead on classic notions from mathematical
logic�

Complexity theory typically considers yes�no problems� this is the examination of
the di�culty of computing a particular bit of the desired output� Yes�no problems
are properties of the input� the set of all inputs to which the answer is �yes� have
the property in question� Rather than asking the complexity of checking if a certain
input has a property T� in Descriptive Complexity we ask how hard is it to express
the property T in a formal language� It is plausible that properties that are harder
to check might be harder to express� What is surprising is how closely mathemat�
ics mimics the physical world� when we use �rst�order logic� descriptive complexity
exactly captures the important complexity classes�

In Descriptive Complexity we view inputs as �nite logical structures� e�g�� a binary
string w � w�w� � � � wjwj is coded as

Aw � hf�� �� � � � � jwjg� Sw��i
consisting of a universe U � f�� �� � � � � jwjg of the bit positions in the string� the
monadic relation Sw de�ned so that Sw	i
 holds i� the ith bit of w is one� and � is
the usual total ordering on U �

A graph is a logical structure AG � hf�� �� � � � � vg� EGi whose universe is the set
of vertices and EG is the binary edge relation� A graph problem is a set of �nite
structures whose vocabulary consists of a single binary relation� Similarly� we may
think of any problem T in some complexity class C as a set of structures of some �xed
vocabulary�

Recall that in �rst�order logic we can quantify over the universe� We can say� for
example� that a string ends in a one� The following sentence does this by asserting
the existence of a string position x that is the last position and asserting S	x
� i�e��
the bit at that position is a one�

	�x
	�y
	y � x � S	x



As another example we can say that there are exactly two edges leaving every vertex�

	�x
	�yz
	�w
	y �� z � E	x� y
 � E	x� z
 � 	E	x�w
 � w � y � w � z
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For any structure A� we use the notation A j� � to mean that � is true in A�

In second�order logic we also have variables Xi that range over relations over the
universe� These variables may be quanti�ed�

A second�order existential formula 	SO�
 begins with second order existential quan�
ti�ers and is followed by a �rst�order formula� As an example� the following second�
order existential sentence� ��� says that the graph in question is three�colorable� It
does this by asserting that there are three unary relations� Red 	R
� Yellow 	Y
� and
Blue 	B
� de�ned on the universe of vertices� It goes on to say that every vertex has
some color and no two adjacent vertices have the same color�

�� � 	�R
	�Y 
	�B
	�x

h
	R	x
 � Y 	x
 � B	x

 � 	�y


�
E	x� y
 �

		R	x
 � R	y

 � 		Y 	x
 � Y 	y

 � 		B	x
 � B	y


�i

Descriptive Complexity began with the following theorem of Ronald Fagin� Fagin�s
theorem says that NP is equal to the set of problems describable in second�order�
existential logic� Observe that Fagin�s Theorem characterizes the complexity class
NP purely by logic� with no mention of machines or time�

Theorem � ����� A set of structures T is in NP i� there exists a second�order exis�

tential formula� � such that T � fA j A j� �g�

To capture complexity classes P and below� �rst�order logic is more appropriate�
Since �rst�order logic is weaker than second�order it is natural to let formulas grow
with the size of inputs�

For example� one can ask� �How long a �rst�order formula is needed to express graph
connectivity�� A graph G is connected i� G j� 	�xy
P 	x� y
 where P 	x� y
 means
that there is a path from x to y� We are interested in paths of length less than
n � jV Gj� First�order formulas of size O	logn
 are both necessary and su�cient to
express connectivity�

In order to characterize complexity classes as in Fagin�s theorem but via �rst�order
logics� one must look at the coding of inputs� A graph or other structure is given to a
computer in some order� e�g� vertices v�� v�� � � � � vn� Furthermore� algorithms may use
the ordering� e�g�� searching through each vertex in turn� To simulate the machine�
the logical languages need access to the ordering� 	This was also necessary for Fagin�s
theorem� but in SO� we may existentially quantify a total ordering on the universe�

From now on� we will assume that all �rst�order languages include a binary relation
symbol ��� denoting a total ordering on the universe� With this proviso� we can
relate computational complexity to �rst�order descriptive complexity�

Let FO�SIZE
s	n
� be the set of properties expressible by uniform sequences of �rst�
order formulas� f�ig

i�Z� � such that the nth formula has O	s	n

 symbols and ex�

presses the property in question for structures of size n� 	Uniform means that the

�



map n 
� �n has very low complexity� e�g�� SPACE
logn�� Later we will see that
purely syntactic uniformity conditions su�ce�


The following theorem shows that FO�SIZE is a good measure of space� In the
following� NSPACE is the nondeterministic version of space in which again we allow
algorithms to make arbitrary choices and we only count the amount of space used in
an accepting path� In ����� Walter Savitch proved that NSPACE
s	n
� is contained
in SPACE
s	n
��� a result that is not obvious 
���� It is not known whether Savitch�s
theorem is optimal� nor is it known whether SPACE
s	n
� is equal to NSPACE
s	n
��
The following theorem closely relates the descriptive measure FO�SIZE to space� by
�tting it within the bounds of Savitch�s theorem�

Theorem � ������ For s	n
 � logn� any problem in nondeterministic space s	n
 can
be expressed by �rst�order formulas of size 	s	n

�� logn� Any problem so expressible

is in deterministic space 	s	n

�� In symbols�

NSPACE
s	n
� � FO�SIZE
	s	n

�� logn� � SPACE
	s	n

��

One way to increase the power of �rst�order logic is by allowing inductive de�nitions�
This is formalized via a least �xed point operator 	LFP
�

As an example� suppose that we want to de�ne the transitive closure of the edge
relation of a graph� This would be useful if we were given a directed graph G �
	V G� EG� s� t
 and we wanted to assert that there is a path from s to t� Let E� be
the re�exive� transitive closure of the edge relation E� Given E� we can describe the
reachability property simply� �E�	s� t
�� We can de�ne E� inductively as follows�

E�	x� y
 � x � y � E	x� y
 � 	�z
	E�	x� z
 � E�	z� y

 	�


Equation � asserts that E� is a �xed point of the following map R 
� �	R
 of binary
relations�

�	R� x� y
 � E	x� y
 � 	�z
	R	x� z
 �R	z� y



Since R appears only positively� that is� without any negation signs� in �� this operator
has a least �xed point which we take as the meaning of the inductive de�nition ��
Thus� we can write�

E� � 	LFPR�x�y �


In fact� if we consider the sequence �	

 � �	�	


 � �	�	�	



 � � � �� then LFP	�

is the union of this sequence� Since the sequence is monotone� and there are at most
nk tuples in a k�ary relation� LFP is in fact a polynomial iterator of formulas� Thus
LFP is a particularly natural way to iterate �rst�order formulas� letting their size grow
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while the number of variables they use remain constant�� The following theorem says
that if we add to �rst�order logic the power to de�ne new relations by induction� then
we can express exactly the properties that are checkable in polynomial time� This
is exciting because a very natural descriptive class � �rst�order logic plus inductive
de�nitions � captures a natural and important complexity class� Polynomial time is
characterized using only basic logical notions and no mention of computation�

Theorem � ����	 ��	 ���� A problem is in polynomial time i� it is describable in

�rst�order logic with the addition of the least �xed point operator� This is equivalent

to being expressible by a �rst�order formula iterated polynomially many times� In

symbols� P � 	FO � LFP
 � FO
nO�����

Theorems � and � cast the P ��NP question in a di�erent light� 	In the following
we are using the fact that if P were equal to NP� then NP would be closed under
complementation� It would then follow that every second�order formula would be
equivalent to a second�order existential one�


Corollary 
 P is equal to NP i� every second�order expressible property over �nite�

ordered structures is already expressible in �rst�order logic using inductive de�nitions�

In symbols�

	P � NP
 � 	FO � LFP
 � SO

We mention two other natural operators that let us capture important complexity
classes� Let �	x�� � � � � xk� x

�
�� � � � x

�
k
 be a formula with �k free variables� We can think

of � as representing an edge relation over a vertex set V � Uk consisting of all k�tuples
from the original universe� De�ne the transitive closure operator� writing 	TC�x�x��

to denote the re�exive� transitive closure of the binary relation �� NSPACE
logn� is
an important complexity class that includes most path problems� 	The Reachability
problem mentioned at the beginning of this article is complete for NSPACE
logn��

The following theorem says that this complexity class is captured by 	FO � TC
�
	Note that transitive closures are a special kind of inductive de�nition� see Equation
�� Every time we reapply the inductive equation� the paths considered double in
length� That is why 	FO �TC
 � FO
logn��


Theorem � ����	 �
�� The complexity class nondeterministic logarithmic space is

equal to the set of problems describable in �rst�order logic with the addition of a

transitive closure operator� This is a subclass of the set of problems describable by

�rst�order formulas iterated logn times� In symbols�

NSPACE
logn� � 	FO �TC
 � FO
logn�

�We write FO�t�n�	 to denote those properties expressible for structures of size n by formulas
that consist of a block of restricted quanti
ers repeated t�n� times� What can be expressed with a
bounded number of variables is exactly what can be computed with polynomially much �hardware�

i�e�
 polynomial�space and polynomially many processors� The depth of nesting of quanti
ers needed
to express a property is precisely the parallel time needed to check it� See ���	 for a more detailed
survey of these results�

 



Suppose we are given a �rst�order formula �	R� x�� � � � xk
� where R is a new relation
variable� but in which R need not occur only positively� Then the least �xed point of
� may not exist� However� we may describe its �partial �xed point� 	PFP
 which is
equal to the �rst �xed point in the sequence �	

� ��	

� � � �� or 
 if there is no such
�xed point� Since this sequence must repeat after at most �n

k

steps� PFP may be
thought of as an exponential iterator�

The following theorem shows that the arbitrary iteration of �rst�order formulas �
which is the same as iterating them exponentially � allows the description of exactly
all properties computable using a polynomial amount of space�

Theorem � ����	 ��	 ���� A problem is in polynomial space i� it is describable in

�rst logic with the addition of the partial �xed point operator� This is equivalent to

being expressible by �rst�order formulas of polynomial size and also equivalent to being

expressible by a �rst�order formula iterated exponentially� In symbols�

PSPACE � 	FO � PFP
 � FO�SIZE
nO���� � FO
�n
O���

�

Complementation

One of the early successes of descriptive complexity was in response to questions con�
cerning database query languages� A very popular model of databases is the relational
model� In this model� databases are exactly �nite logical structures� Furthermore�
query languages are based on �rst�order logic�

As an example� suppose that we have an airline database� One of its relations might
be FLIGHTS� with arguments� �ight number� origin� departure time� destination�
arrival time� The query� �What are the direct �ights from JFK to LAX leaving in
the morning�� could be phrased as�

	�td� ta
	td � �� � FLIGHTS	x� JFK� td�LAX� ta



Note that this query has one free variable� x� The response to the query should be
the set of x�s such that x is the �ight number of a direct �ight from JFK to LAX
that leaves before noon�

Of course not all queries that we might want to express are �rst�order� For example�
the reachability query � is there a route� with no �xed limit on the number of hops�
taking me from s to t� � is not �rst�order� For this and related reasons� Chandra
and Harel proposed a hierarchy of query languages above �rst�order logic based on
alternating applications of quanti�cation� negation� and the least �xed point operator

��� It was known that for in�nite structures this gave a strict hierarchy 
���� the same
was conjectured for �nite structures�

There is a big di�erence between in�nite and �nite structures� Over an in�nite
structure� a least �xed point might never reach a stage of the induction at which
it has completed� Over a �nite structure� there is a �nite stage where the �xed
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point is realized� Furthermore� one can verify within the induction that this stage
has been reached� Thus� by saying that we have reached the �nal stage and that
tuple !t is not present� we can express the negation of 	LFP�
	!t
� It follows that the
�hierarchy� proposed by Chandra and Harel is not a hierarchy at all� Every formula
in 	FO � LFP
 is expressible as a single �xed point of a �rst�order formula� We say
that the �hierarchy� collapses to its �rst level�

Theorem � ������ Every formula in �rst�order logic with the addition of the least

�xed point operator is equivalent to a single application of least �xed point to a �rst�

order formula�

A related question could be asked about a proposed hierarchy of 	FO�TC
� In fact
the transitive closure �hierarchy� also collapses to its �rst�level�

Theorem 
 ���
�� Every formula in �rst�order logic with the addition of the tran�

sitive closure operator is equivalent to a single application of transitive closure to a

�rst�order formula�

Deterministic complexity classes are closed under complementation� It had been long
believed in the computer science community that nondeterministic space is a �one�
sided� class� not closed under complementation� In particular� it was believed that
the complement of the Reachability problem� that is� the set of graphs G � 	V�E� s� t

such that there is no path from s to t� was not recognizable in NSPACE
logn�� It is
conjectured that SPACE
logn� is strictly contained in NSPACE
logn� and the most
likely way to prove that appeared to be via showing that NSPACE
logn� is not closed
under complementation 
���� Thus the following corollary of Theorem � was quite
surprising�

Corollary � ���
	 ���� For s	n
 � logn� NSPACE
s	n
� is closed under comple�

mentation�

Coincidently� Corollary �� which had been open since �� �� was proved independently
by R"obert Szelepcs"enyi at almost exactly the same time� but using di�erent methods�

Lower Bounds and Ordering

One tantalizing feature of Theorems �� �� �� �� and  is that they hold out the prospect
that we can settle questions such as P ��NP via logical methods� In particular� there
are quanti�er games due to Ehrenfeucht and Fra#$ss"e that characterize the expressive
power of logical languages� Ehrenfeucht�Fra#$ss"e games are played on a pair of struc�
tures� A�B� There are two players� the Spoiler and the Duplicator� At each move�
the Spoiler chooses some element of the universe of one of the structures and the
Duplicator must respond with an element from the other structure� If at the end
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of the game the map from the elements chosen from A to those chosen from B is
an isomorphism of the induced substructures then the Duplicator wins� otherwise the
Spoiler wins� For most logical languages L there is a corresponding game GL with the
following fundamental property� Write A �L B to mean that for all � � L� A j� �
i� B j� ��

	Duplicator has a winning strategy for game GL	A�B

 � A �L B 	�


We use Ehrenfeucht�Fra#$ss"e games to prove that certain properties are not expressible
in certain logics� IfA and B disagree on property S and yet we can construct a winning
strategy for the Duplicator on GL	A�B
 then we have proved that S is not expressible
in L�
SO�	monadic
 is a subset of SO� in which the only second�order variables are relations
that take one argument� We can thus assert the existence of colorings of the vertices�
Fagin used Ehrenfeucht�Fra#$ss"e games to prove that

Theorem �� ����� Graph Connectivity is not describable by a second�order existen�

tial formula in which all relational variables are monadic�

However� non�connectivity is in SO�	monadic
� The following formula says that there
exists a set C of vertices that is not empty and not the whole universe that is closed
under edge connections� Thus Theorem �� implies that SO�	monadic
 is not closed
under complementation�

Not�Connected � 	�C
	�xy
	C	x
 � 	C	y
 � 	�xy
	C	x
 � E	x� y

 � C	y



Proving lower bounds on SO� when relational variables need not be monadic appears
hard� Lower bounds for �rst�order logic may be more tractable� A lower bound
corresponding to Theorem � was presented for the AGAP problem� AGAP is a
generalization of the graph reachability problem to and�or graphs and is complete
for P� The following theorem proves a lower bound on the size of �rst�order formulas
needed to express the AGAP property�

Theorem �� ������ The AGAP property is describable by linear�size �rst�order for�

mulas that do not include the ordering relation� However� it is not describable by such

formulas of size less than �
p

logn

The relationship between space and time is not well understood� We do know that

NSPACE
log n� � P �
��

k��

SPACE
nk�
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From Theorem � we know that NSPACE
log n� � FO�SIZE
logn�� Theorem �� is
a lower bound on languages without ordering� If Theorem �� could be shown with
ordering it would follow that AGAP is not in FO�SIZE
logn� and thus that P strictly
contains NSPACE
logn���

The Ehrenfeucht�Fra#$ss"e games become much less useful as a proof technique when
working with ordered graphs� This is because in a fairly weak ordered language we
can express the property of a vertex vi that it is the i

th vertex in the ordering� Once
a language has this strength� two structures will be equivalent i� they are identical�
	If we can assert about a graph G that vertex �� has an edge to vertex ���� then any
graph that agrees on all such sentences is identical to G�


On the other hand� if we just remove the ordering� then Theorems �� �� �� and  all
fail� For example� it is easy to show that without an ordering we cannot count� In
fact� if EVEN represents the query� �The size of the universe is even�� then�

Theorem �� ����� In the absence of the ordering relation� �rst�order logic with the

addition of the �xed point operator cannot describe the problem EVEN�

All the graph properties that we want to express are order independent� Thus� it
would be very nice to have a language that captures all polynomial�time computable
order�independent properties� This would be analogous to Theorem � which says that
	FO � LFP
 captures polynomial time for ordered structures�

Before ����� examples involving the counting of large� unstructured sets were the only
problems known to be in order�independent P but not in 	FO�wo���LFP
� Consider
the language 	FO�wo��� LFP � COUNT
 in which structures are two�sorted� their
universe is partitioned into an unordered domain D � fd�� d�� � � � � dng and a separate
number domain� N � f�� �� � � � � ng� We have the database predicates de�ned on D
and the standard ordering de�ned on N � The two sorts are combined via counting
quanti�ers�

	�i x
�	x

meaning that there exist at least i elements x such that �	x
� Here i is a number
variable and x is a domain variable�

For quite a while� it was an open question whether the language 	FO�wo���LFP�
COUNT
 was equal to order independent P�

Instead� in 
�� it was proved that 	FO�wo���LFP�COUNT
 is strictly contained in
order�independent P� In the following lower bound� the graphs are �almost ordered��
They consist of n�� groups of � vertices each and there is a given total ordering on
the groups�

�In fact
 it would follow that no P�complete problem is in SPACE��logn�k	 for any k� From
this
 we could conclude that P�complete problems do not admit the kind of extensive speed�up via
parallelism that problems such as reachability
 matrix multiplication
 and matrix inversion do ���	�
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Theorem �� ����� There is an order�independent property of graphs� T � that is very
easy to compute � in a complexity class well below P � but� in the absence of ordering�

is not expressible in �rst�order logic with the addition of the �xed point operator and

counting quanti�ers�

Most important complexity classes below P have had their languages without order�
ing� or with some partial orderings� separated 
��� ��� �� �� ��� No such separation
had been proved for the languages 	FO�wo���LFP
 and 	FO�wo���PFP
� In ����
Abiteboul and Vianu explained why by proving

Theorem �
 ����� The following conditions are equivalent�

�� In the absence of ordering� �rst�order logic plus the least �xed point operator

describes all the properties describable by �rst�order logic plus the partial �xed

point operator�

�� In the presence of ordering� �rst�order logic plus the least �xed point operator

describes all the properties describable by �rst�order logic plus the partial �xed

point operator�

	� P 
 PSPACE

Theorem �� is proved by showing that if two structuresG andH are 	FO�wo���LFP
�
equivalent� then they are 	FO�wo���PFP
�equivalent as well� Thus� ordering is not
the problem� but Ehrenfeucht�Fra#$ss"e games won�t help separate P from PSPACE�

Descriptive complexity reveals a simple but elegant view of computation� Nonethe�
less� the basic problems of how to compare di�erent computational resources remain
mysterious�
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