
The VLDB Journal
DOI 10.1007/s00778-012-0282-x

REGULAR PAPER

Auditing a database under retention policies

Wentian Lu · Gerome Miklau · Neil Immerman

Received: 7 May 2011 / Revised: 13 May 2012 / Accepted: 22 May 2012
© Springer-Verlag 2012

Abstract Auditing the changes to a database is critical for
identifying malicious behavior, maintaining data quality, and
improving system performance. But an accurate audit log is
an historical record of the past that can also pose a serious
threat to privacy. Policies that limit data retention conflict
with the goal of accurate auditing, and data owners have to
carefully balance the need for policy compliance with the
goal of accurate auditing. In this paper, we provide a frame-
work for auditing the changes to a database system while
respecting data retention policies. Our framework includes
an historical data model that supports flexible audit queries,
along with a language for retention policies that can hide
individual attribute values or remove entire tuples from the
history. Under retention policies, the audit history is partially
incomplete. Thus, audit queries on the protected history can
include imprecise results. We propose two different models
(a tuple-independent model and a tuple-correlated model) for
formalizing the meaning of audit queries. We implement pol-
icy application and query answering efficiently in a standard

The authors gratefully acknowledge the comments of the VLDBJ edi-
tors and the anonymous reviewers. Authors Lu and Miklau were sup-
ported by NSF CAREER Grant No. 0643681.

Electronic supplementary material The online version of this
article (doi:10.1007/s00778-012-0282-x) contains supplementary
material, which is available to authorized users.

W. Lu (B) · G. Miklau · N. Immerman
Department of Computer Science, University of Massachusetts,
140 Governors Drive, Amherst, MA 01003, USA
e-mail: wen@cs.umass.edu

G. Miklau
e-mail: miklau@cs.umass.edu

N. Immerman
e-mail: immerman@cs.umass.edu

relational system and characterize the cases where accurate
auditing can be achieved under retention restrictions.

Keywords Privacy · Auditing · Retention policy

1 Introduction

Auditing the changes to a database is critical for identifying
malicious behavior, maintaining data quality, and improving
system performance. But an accurate audit log is an histor-
ical record of the past that can also pose a serious threat
to privacy. In many domains, retention policies govern how
long data can be preserved by an institution. Regulations
mandate the disposal of past data and require strict retention
periods to be observed. For example, the Fair Credit Report-
ing Act limits the retention, by credit reporting agencies,
of personal financial records. In addition, institutions and
companies often adopt their own policies limiting retention,
choosing to remove sensitive data after a period of time to
avoid its unintended release, or to avoid disclosure that could
be forced by subpeona. Failure to dispose of the expired data
can result in serious consequences and is often viewed as an
institutional risk [50]. At the same time, other forces may
require the preservation of records, for example, when ongo-
ing litigation makes removal of data unlawful. Institutions are
increasingly recognizing that a consistently enforced reten-
tion policy reduces their legal risk by ensuring that electronic
data are handled properly [26].

Limited retention conflicts with the goals of accurate
auditing, analysis, and prediction based on past history.
This conflict is evident in the guidelines for record keep-
ing published by a records management trade group [2],
which includes principles of data availability and data reten-
tion along with data disposal. Data owners thus have to

123

http://dx.doi.org/10.1007/s00778-012-0282-x

W. Lu et al.

carefully balance the need for accurate auditing with the
privacy goals of retention policies. An emerging industry
has begun to address the needs of these institutions, building
systems that offer varying combinations of records and doc-
ument management, archiving, eDiscovery, retention, and
compliance services [9,15,31,33,35,51,52]. Unfortunately,
existing mechanisms for auditing and managing histori-
cal records have few capabilities for managing the balance
between these two objectives. Obeying a retention policy
often means the wholesale destruction of the audit log.

In this paper, we propose a framework for auditing the
changes to a database system in the presence of retention
restrictions. We consider an historical data model and pro-
pose two kinds of rules for selectively removing or obscuring
sensitive data from the record of the past. Despite the removal
of information, it is often still possible for an auditor to mon-
itor the record of actions taken on the database.

1.1 Applications

The tension between audit analyses and retention restric-
tions is present in a broad range of industries where sensitive
records are managed, including financial services, health-
care, insurance, technology, education, telecommunications,
and others. For example, financial legislation mandates lim-
ited retention periods for personal credit reports, including
special treatment of negative credit events that are purged
from records separately from other events. Search engines are
not governed by legislation in the United States, but many
elect to sanitize their search logs after 9 months. Logs are
generally not disposed of completely, but certain fields are
removed to reduce identifying information and to resist sub-
poenas and court orders.

Healthcare databases store sensitive information about
patients, physicians, test results, diagnoses, billing details,
and hospital procedures. State and federal laws specify record
retention time frames that may depend on whether a patient
is enrolled in medicare or medicaid, whether the patient is
a minor, whether the medical procedure involves immuniza-
tion, or on the statute of limitations for medical malpractice
claims. At the same time, after mandated retention periods
have passed, physicians may have discretion about how or
when to dispose of records, or whether to partially sani-
tize records to remove personally identifiable data or sensi-
tive diagnoses, while still permitting historical analysis. For
example, we will define the operation of redaction on fields in
a record. This could be applied to the diagnosis field of med-
ical records while still permitting an analysis of a physician’s
consistency of diagnosis based on test results.

As another example, the office of information technology
in a university is responsible for maintaining and monitoring
network services for faculty, students, and staff. Network logs
may contain information about machines, network connec-

tions, web browsing history, search engine requests, and/or
file transfers, where users are identified by IP address or
login name. Internal auditing may include analyzing logs
for evidence of security vulnerabilities with the university.
Researchers within the university may wish to perform traffic
analysis on network logs. Lastly, external authorities such as
the RIAA may request log data pertaining to specified users or
specified content. In this setting, retention restrictions arise
from privacy protections of individuals using the network.
Some logs that are retained for network security purposes
may be subject to removal of identifiers or sensitive content
like web addresses. In addition, information technology staff
reportedly prefer the timely removal of some network logs so
that they do not have to bear the cost of inquiries by external
authorities.

Next we provide an overview of the motivation and contri-
butions of this work through the following detailed example
over a simple employment database. The schema and queries
serve as a running example in later sections of the paper.

1.2 Example scenario

We begin with a database consisting of tables belonging to a
client schema. Clients interact with the database by submit-
ting queries and updates, always on the current snapshot. In
the running example used throughout this paper, the client
schema consists of a single table, S, describing employees:

S(eid, name, department, salary)

The auditor is responsible for monitoring access to the
database and tracking down malicious actions after they have
occurred. Auditors typically inquire about what happened to
the database, when it happened, and who did it.1 To enable
the auditor to query the state of the database over time, the
system maintains an audit log table, L S , for each table S
in the client schema. Each modifying operation, issued by a
client on S, is recorded in L S along with additional audit
fields describing the time of modification, the type of modi-
fication (insert, update, delete), and any other fields possibly
of interest to the auditor. Table 1 shows an audit log table
including audit fields recording the name of the issuing cli-
ent and their IP address.

The audit log can easily be converted to an alternative
transaction-time representation. Table 2 shows such a table,
denoted TS . It represents the complete data history of the
table, recording, in the from and to columns, the active period
of each tuple in the database. Throughout the paper, we will

1 We are concerned here with auditing modifications only. We do not
audit queries that read from the database.

123

Auditing a database under retention policies

Table 1 The audit log L S describing the history of operations per-
formed on a client table with schema S(eid, name, dept, salar y).
Columns client and IP are audit fields

client IP time type eid name dept sal

Jack 1.1.1 0 ins 101 Bob Sales 10

Jack 2.1.1 100 upd 101 – – 12

Kate 3.1.1 200 upd 101 – Mgmt –

Kate 4.1.1 300 upd 101 – – 15

Jack 1.1.1 0 ins 201 Chris HR 8

Jack 2.1.1 300 upd 201 – Mgmt 10

Kate 4.1.1 500 del 201 – – –

Table 2 The transaction-time table TS describing the data history of
the client table. It is derived from the audit log in Table 1

eid name dept sal from to

101 Bob Sales 10 0 100

101 Bob Sales 12 100 200

101 Bob Mgmt 12 200 300

101 Bob Mgmt 15 300 now

201 Chris HR 8 0 300

201 Chris Mgmt 10 300 500

use both the log-based and transaction-time representations,
as they each have benefits for expressing queries and defining
concepts.

These historical tables can support a variety of queries of
interest to the auditor. Some simple examples include:

A1. Return all employees who earned a salary of 10 at some
point in time.

A2. Return the clients who updated Bob’s salary and the
time of update.

A3. Return the clients who updated any employee’s dept
and the time of update.

A4. Return the time periods when Bob earns a salary of 10.

Some audit queries are conventional queries over a transac-
tion-time data model (such as A1, A4). Others ask specif-
ically about changes and reference the special audit fields
contained in the audit log (such as A2, A3).

The compliance officer is a trusted entity, responsible for
enforcing data retention restrictions arising from privacy reg-
ulations or institutional policies. These policies are typi-
cally non-negotiable—they must be respected by all users
of the system, including the auditor. We propose two kinds
of declarative retention rules for limiting the lifetime of data.
The compliance officer is also responsible for enforcing pres-
ervation rules, which reflect requirements to keep certain data
items in the database. Notably, these policies are expressed

Table 3 The transaction-time table, transformed under the follow-
ing retention policies: RedactS(name = Bob, {salar y}, [0, 250]) and
ExpungeS(dept = H R, [0, 300]). The gray row has been deleted

in terms of TS , the transaction-time table describing the data
history. This is the most natural choice because retention pol-
icies refer only to the client schema and to the notion of time.

Our first retention rule is called redaction. When redac-
tion is applied to an attribute value, it removes the value, but
does not hide its existence. For example, a redaction rule may
say: Hide Bob’s salary between time 0 and 250. The sec-
ond operation, called expunction, is more extreme. When
a tuple is expunged, it is completely removed, along with
all evidence of its existence. For example, an expunction
rule may say: Remove the record of all employees in the HR
department between time 0 and 300. We believe these rules
are sufficiently expressive for practical applications, allowing
users to selectively choose related data items, which could
be tuples, selected tuples, or individual attribute values [30].
We also support a basic rule for preservation, which takes
priority over the removal rules above, ensuring that specified
records are not altered or removed.

Applying a set of retention rules transforms the stored his-
tory of the database.2 Table 3 shows a new transaction-time
table, the result of applying the retention rules to the table
TS . In applying the redaction rule, salary values have been
replaced with variables (sx, sy). Instead of suppression with
NULLs, we use variables to support more accurate audit-
ing by retaining more information, as different values are
suppressed to different variables. Also note that there is an
extra row in Table 3 because the time interval [200, 300]
in the original data has been split into two intervals:
[200, 250], in which Bob’s salary is hidden, and [250, 300], in
which Bob’s salary can be revealed to be 12. In applying the
expunction rule, Chris’s membership in the HR department
has been removed from the history: he is now only in the
Mgmt department from time 300 to 500. For illustration pur-

2 As a practical matter, retention rules may be applied physically, alter-
ing storage of the table, or logically, in which access is restricted but
hidden data is still physically stored. Section 8 provides further detail.

123

W. Lu et al.

poses, the expunged row is included in Table 3, but displayed
with a gray background.

A main goal of this paper is to provide a proper seman-
tics for audit queries in the presence of retention policies.
Because the transformed history has tuples removed by
expunction and values obscured by redaction, the answers
to audit queries may be uncertain or, in some cases, provide
false information. We reconsider the previous audit queries
under retention restrictions:

A1. Return all employees who earned a salary of 10 at some
point in time.
This query is a straightforward selection on the trans-
action-time table. On the original data in Table 2, the
answer to this query is {Bob, Chris}. On Table 3,
under the retention policy, the answer to this query
includes Chris as a certain answer. However, Bob is
only a possible answer because the predicate depends
on the unknown value of variables sx and sy. Our imple-
mented system returns both answers, labeled appropri-
ately as possible or certain.

A2. Return the clients who updated Bob’s salary, and the
time of update.
The answer to this query on the original data is {(Jack,
100), (Kate, 300)}. The transformed history in Table 3
shows that Bob’s salary definitely changed at time 100
(from sx to sy) and at time 300 (from 12 to 15). In addi-
tion, it may have changed at time 250 (from sy to 12),
depending on the unknown value of variable sy. (Note
that the uncertainty about this change is crucial – if it is
possible to deduce that the change did not occur, then
it is clear that Bob’s salary was indeed 12 between 250
and 300, and the retention policy is violated.)
In order to fully answer the query, we must use the
audit log to get the names of the clients who issued the
update. Jack and Kate performed the updates at time
100 and 300, respectively, so the certain answers to
this query are: {(Jack, 100), (Kate, 300)}. A subtlety
here is how to return the possible answer for the update
at 250, since there is no known client that performed
that update. The possible answer that could be returned
is: (NULL,250), but not if it reveals that this is a fake
update.

A3. Return the clients who updated any employee’s dept,
and the time of update.
The answer to this query on the original data is {(Kate,
200), (Jack, 300)}, which can easily be computed from
the original audit log L S . In the transformed history
in Table 3, we find evidence of only one update to
the department field, at time 200. This is a result of
the expunction policy that removed Chris’ record from
time 0 to 300. Thus, the answer to this query under

the retention policy is {(Kate, 200)}, and the record of
Jack’s update is lost.

Notice that the answer to query A3 is incorrect: a tuple that
is in the true answer (i.e., with respect to the original data) is
omitted from the new answer. From the auditor’s perspective,
this is a worse outcome than that of A1 and A2 where the
true answer is one of the possible answers. One of the goals
of our framework is to provide answers to audit queries that,
while possibly imprecise, do not lead to false conclusions.
Also note that in reasoning about the answers to queries A2
and A3, we referred to the transformed transaction-time table
and used it to infer actions that were performed on the data-
base. Later in the paper, we make this process explicit by
computing a sanitized audit log, consistent with the reten-
tion policies, that can be queried directly.

The answer to an audit query under retention rules usu-
ally consists of two parts: certain tuples and possible tuples.
Such results are uncertain answers, because they are com-
puted on a history with incompleteness introduced by apply-
ing retention rules. On the contrary, querying the original
history without retention rules returns a real answer. Intui-
tively, each uncertain answer represents a set of real answers,
each of which is returned by the query over some original
history that is consistent with the transformed history under
the retention policies. In the case of A1, the uncertain result
could represent two real answers. One is {Chris} when A1
is executed over the history where neither sx nor sy is 10,
and the other is {Chris,Bob} when either sx or sy is 10.
Similarly, if the uncertain result of A1 contains two possible
tuples, say, Bob and Ann, we have four real answers rep-
resented, {Chris}, {Chris, Bob},{Chris, Ann}, and {Chris,
Bob, Ann}. Here, we simply assume the existence of each
possible tuple in a real answer is independent of others, and
thus, we have four different ways of choosing two possi-
ble tuples. In this paper, we propose the Tuple-Indepen-
dent model (TI) for answering audit queries under reten-
tion policies and define the semantics of uncertain answers
returned by TI under this independence assumption. Later
we will show, due to this assumption and the extended rela-
tional algebra, that there is no extra cost to decide certain
and possible tuples of the query results since they are effi-
ciently computed during query evaluation. Thus, TI guaran-
tees efficiency, and this fact serves as a major advantage of
the TI model, along with it simplicity. However, the inde-
pendence assumption is not always correct, and thus, the
information delivered by the uncertain answer is not pre-
cise, as demonstrated by the following query A4. To solve
this problem, we introduce a more sophisticated model, the
Tuple-Correlated model (TC), which does not rely on an
independence assumption and gives precise interpretations
of uncertain answers.

123

Auditing a database under retention policies

A4. Return the time periods when Bob earns a salary of
10.
The answer to this query on the original data is
{(0,100)}, which can easily be computed from the
original audit log L S . In the transformed history in
Table 3, our result is {(0,100),(100,200),(200,250)},
and all are possible answers due to the unknown value
of two variables sx and sy. When using TI, we assume
the three periods are independent of each other, and
therefore, we could interpret them as eight different
real answers. However, a closer look will tell us such
an assumption is invalid. (100,200) and (200,250) are
correlated because they are bound to the same variable
sy. (0,100) is also not independent of either (100,200)
or (200,250) because sx and sy are correlated: they are
not equal (recall that they represent distinct values). In
fact, this uncertain result only represents three different
real answers. If sx equals 10, then (0,100) is the output;
if sy equals 10, then (100,200) and (200,250) is the out-
put; finally if neither sx nor sy is 10, then the output is
empty. For a more accurate representation, we use the
TC model that can maintain the correlations among
three time periods. Instead of indicating “certain” or
“possible” directly for each tuple, TC records extra
information in the form of conditions associated with
each tuple. The example above may be represented as:

(0, 100) : sx = 10,

(100, 200) : sy = 10,

(200, 250) : sy = 10

Because all three equations are satisfiable, we have
three possible tuples. Tuples (100,200) and (200,250)
occur together, or not at all, depending on the assign-
ment to sy.

Query A4 demonstrates that there are cases where the
independence assumption fails, and thus, the TI model is
incapable of representing the result accurately. Our TC model
abandons the independence assumption and is able to provide
accurate answers by recording equalities and inequalities of
variables. We use this extra information to decide certain
and possible tuples. From the auditors’ perspective, the abil-
ity to calculate the correlation is important and delivers more
valuable information. For instance, given a possible suspect
Alice, if the auditor has some external information in Alice’s
favor, the TC model can help to answer questions like “Who
remains a suspect if I assume Alice is not a suspect?” Our
system (using either the TI or TC models) returns uncertain
answers that reflect the unavoidable imprecision of carrying
out an audit task in the presence of a partially removed his-

tory. In the absence of our techniques, a conventional system
would be unlikely to produce valid query answers at all.

We use the term expressiveness to measure the ability to
precisely represent the set of correct answers. TC is strictly
more expressive than TI because it can interpret the uncertain
answer of A4, but TI cannot. After analyzing their expressive-
ness and investigating other alternatives later in this paper,
we conclude that the combination of TI and TC meets the
needs of our application. We will see that the cost of TC’s
expressiveness is the decreased efficiency of deciding which
tuples are certain and which are possible.

In summary, the main contributions of this paper are as
follows:

– We propose declarative rules for expressing retention
restrictions over an historical data model (Sect. 4).

– We define the tuple-independent model (TI) for answer-
ing audit queries in the presence of retention restrictions,
and we analyze the impact of retention policies on the
accuracy of audit queries (Sect. 5).

– We present the tuple-correlated model (TC) for answer-
ing audit queries. Tuple-level correlations are captured
by additional conditions appended to each tuple. We
define the extended relational algebra for TC. We com-
pare the expressiveness of TI and TC and prove that TC is
a complete data model meaning that it can represent any
possible set of answers (Sect. 6). We show the advantages
of TI and TC in comparison to other models (“Appen-
dix”).3

– We discuss the complexity of deciding whether tuples are
possible or certain in Sect. 7. In TI, this is given explic-
itly by an extra column. In TC, deciding that a tuple
is possible is NP-complete and deciding that it is cer-
tain is coNP-complete. However, for a large subclass of
instances, we show that efficient scheduling algorithms
can determine possiblility in P.

– We implement our framework via extensions to Post-
gres, showing that uncertain answers can be computed
efficiently over both models (Sect. 8).

– We demonstrate (through simulation on sample data) that
useful auditing can be performed in the presence of reten-
tion restrictions, despite uncertain answers. The study of
the impact of retention policies on the accuracy of query
results under TI and TC shows cases where TC can sig-
nificantly improve accuracy over TI (Sect. 9).

We describe our threat model, in Sect. 2, and our data
model and queries, in Sect. 3. We distinguish our contribu-
tions from related work in Sect. 10.

3 See supplementary material associated with the online version of this
article on the journal’s web site

123

W. Lu et al.

2 Threat model and security objectives

2.1 Adversaries

Our threat model focuses on two major categories of adver-
sary: auditors and external authorities.

An auditor is an authenticated user of the system who is
permitted to ask queries about past events in the database.
We use the single term auditor to refer to either an entity
external to the enterprise, who is authorized to perform audit
tasks, or a user internal to the enterprise, who wishes to com-
pute analytics or monitor changes in the database. We assume
auditors are not capable of subverting standard authentica-
tion procedures or access controls imposed by the compli-
ance officer. In our framework, this means that the auditor is
restricted to the sanitized data history only.

An external authority is an entity, such as a legislative
body, a governmental institution, or a legal authority, capa-
ble of issuing audit queries that the enterprise is compelled
to answer using all information available in the database. An
external authority is not restricted by access controls imposed
by the compliance officer. However, information that is phys-
ically removed from the data history will no longer be avail-
able to anyone, even the external authority. In addition, the
external authority can issue a data hold to the compliance
officer, preventing the compliance officer from removing
specified data from the history.

2.2 Threats and security objectives

2.2.1 Data disclosure

The primary threat we address is unintended disclosure of
the data history. When the compliance officer intends to pro-
tect portions of the data history through one or more reten-
tion policies, but that data history is nevertheless exposed
to an auditor or external authority, then data disclosure has
occurred. For example, in our motivating scenario, if Bob’s
salary is not appropriately sanitized by Policy 1, the answer
to Query A1 may have Bob as a certain answer, resulting in
a compromise of Bob’s privacy.

2.2.2 Maintenance of data holds

We assume that if an external authority issues a data hold for a
portion of the data history, the enterprise is required to retain
that history for later audit queries by the external authority.
Failure to comply with this requirement may result in signif-
icant liability for the enterprise, so we consider maintenance
of data holds an important security property of our frame-
work.

We consider avoiding data disclosure and respecting data
holds as non-negotiable requirements of our framework,

treating these as hard constraints that must be met. Sub-
ject to these constraints, we desire to provide the best
utility and availability possible for auditing. In the best
case, audit answers are precise. If they are not precise,
the auditor may be faced with uncertainty about the actual
audit query answer, but we nevertheless insist that answers
be sound, so that they do not lead to false conclusions.
These assumptions favor compliance over auditing and imply
that some retention policies established by the compliance
officer may not allow accurate auditing for some auditing
queries. It is possible for the compliance officer to detect the
interaction between a retention policy and audit query (see
discussion in Sect. 4.3).

There are other enterprise security threats that are not
the primary focus of this work. We assume that conven-
tional methods are used to prohibit database clients from
altering the data history or log in any manner other than
through inserts, updates, and deletes on the current snap-
shot. We also assume that the compliance officer is trusted
to implement policies correctly: we do not defend against
the threat posed by an untrusted compliance officer inten-
tionally altering the log. Such threats have received consid-
erable attention elsewhere [10,17,18,31,35,39,42]. Lastly,
while external authorities are capable of accessing any data
stored by the enterprise, we assume they cannot carry out a
full forensic examination of the enterprise system to reveal
further data remnants that may be retained. Such threats have
been considered by prior work [46] and we assume suitable
countermeasures are employed.

2.3 Achieving security objectives

The retention policies described in this paper have a
single well-defined semantics (described in Sect. 4). But
applying the retention policies to the data history can be done
in one of two ways: physically or logically. Logical imple-
mentation addresses the threat of data disclosure only with
respect to auditors, but not external authorities. An advantage
of logical implementation is that it is easy to modify or reap-
ply the retention policy, and because data is not physically
removed, logical application never conflicts with data hold
requirements. Physical implementation, in which redaction
and expunction result in physical removal of data, is more
secure, addressing the threat of data disclosure for both audi-
tors and external authorities.

3 Data model and audit queries

In this section, we describe our data model, based on backlog
and transaction-time databases [21,22], and our language for
expressing audit queries.

123

Auditing a database under retention policies

3.1 Data model

Let (S1, . . . , Sk) be the client schema. We refer to each rela-
tion Si as a regular relation to distinguish it from transac-
tion-time relations defined below. tuples(Si) is the set of all
tuples that could occur in Si (i.e., the cross-product of the
attribute domains).

3.1.1 Audit log

An audit log is a complete record of the operations on a cli-
ent table over time, and we maintain an audit log table L S

for each table S of the client schema. Each row in L S repre-
sents a transaction modifying a tuple of S. Table 1 shows an
example audit log table. In general, the schema of L S is:

(〈audit- f ields〉, t time, t ype, 〈client- f ields- f rom-S〉)

The audit fields may contain an arbitrary set of attributes
describing facts about the transaction. In our examples, the
audit fields record the name of the issuing client and their IP
address, but in general, they may include many other fields
describing the context of the operation. t time is a time stamp,
from a totally ordered time domain T , reflecting the commit
time of the transaction. We assume each transaction receives
a unique time stamp. The type field describes the modifica-
tion as an insert, update, or delete. The fields of the client
schema describe the changes in data values. If the transac-
tion is an insert, each attribute value is included; for updates,
only modified values are included, with unchanged attributes
set to NULL; for deletes, all attribute values are NULL. This
description of an audit log is essentially a backlog database
[22] with the addition of audit fields.

We assume that each audit record refers to a unique tuple,
identified by the key of the client table. In practice, a trans-
action may affect multiple tuples. If necessary, this relation-
ship can be recorded in a statement-id, relating the changes
to tuples made by a statement. Without loss of generality, we
omit this.

3.1.2 Transaction-time relation

A transaction-time relation (a t-relation for short) represents
the sequence of states of a relation in the client schema.
Formally, a t-relation over S is a subset of tuples(S) × T .
A tuple (p1, . . . , pn, t) ∈ TS represents the fact that tuple
(p1, . . . , pn) is active at time instant t . In examples (and
our implementation) we use the common representation
for t-relations in which (p1, . . . , pn, from, to) means that
(p1, . . . , pn) holds at each instant t , for from ≤ t ≤ to.
Table 2 is an example of a t-relation.

3.1.3 Audit log versus T -relation

Given an audit log table L S , a unique t-relation can be com-
puted from it in a straightforward way by executing each
statement. After a modification, the values of a tuple are
active until the time instant of the next operation modify-
ing that tuple. We use exec to indicate this procedure, and we
define TS to be exec(L S) for each S in the client schema.

It is also possible to reverse this procedure, computing an
audit log from a t-relation (although no audit fields will be
included). This procedure, denoted exec−1, computes initial
insertion transactions at the time instant a new tuple is cre-
ated, subsequent update transactions at the instant of each
change to a tuple, and (for tuples that are no longer active)
deletion transactions. Notice that computing an audit log
from TS will reproduce a table similar to L S , but with the
audit fields removed: Πt time,t ype,S(L S) = exec−1(TS).

The audit log L S and the t-relation TS represent similar
information. As a practical matter, it is not necessary to main-
tain both. However, in the formal development presented
here, each representation serves an important purpose. We
will see in the next section that retention policies are defined
in terms of TS and can be applied directly to TS . But TS does
not include audit fields. We will also reconstruct an audit log
from the protected TS in order to make explicit the possible
inferences about changes to the database.

3.2 Audit queries

A variety of interesting audit queries can be expressed over
TS and L S . L S is a regular relation, but queries over t-rela-
tion TS may use extended relation algebra operators to cope
with transaction time. We omit a formal description of these
operators, which can be found in the literature [8,11], and
instead present examples highlighting their features.

The example audit queries from Sect. 1.2 are expressed as
follows on TS or L S :

A1. Return all employees who earned a salary of 10 at some
point in time. Πname(σsal=10(TS))

A2. Return the clients who updated Bob’s salary, and the
time of update.

Πclient,t time(σt ype=upd∧name=Bob∧sal �=NU L L(L S))

A3. Return the clients who updated any employee’s dept,
and the time of update.

Πclient,t time(σt ype=upd∧dept �=NU L L(L S))

A4. Return all the time periods when Bob earns a salary of
10. Π f rom,to(σsal=10(TS))

123

W. Lu et al.

Conventional joins on t-relations are possible, as well as
joins between a t-relation and regular relation. For example,
our audit log L S can be joined with TS on the ttime attribute.
In addition, we can use concurrent cross-product (denoted
×�) or concurrent join (denoted 	
�) as binary operators
on t-relations that combine tuples active at common time
periods. The following additional example query includes a
concurrent self-join on TS :

A5. Return all employees who worked in the same depart-
ment as Bob at the same time.

Πname(σname′=Bob(TS 	
�
dept=dept ′ T ′

S))

Finally, the time-slice operator restricts a t-relation to a
specified interval in time. For the interval [m, n], it can be
defined as: τm..n(R) = R×�{〈m, n〉} where {〈m, n〉} is a sin-
gleton t-relation without user-defined attributes. The result
of applying the time-slice operator is a t-relation. A regular
relation representing the snapshot database at time m can be
written as πS−{from,to} (τm..m(TS)).

4 Describing and applying retention policies

In this section, we define the semantics of our redaction,
expunction, and preservation rules, and discuss how they
are applied to the stored history. When the implementation
respects the semantics of these rules, the threats and security
properties in Sect. 2 will be satisfied.

4.1 Retention policy definitions

Retention policies are used to restrict access to tuples or attri-
bute values in one or more historical states of the database.
The need for retention policies arises from the sensitivity
of data items in the client schema. Thus, it is most natu-
ral to express retention policies in terms of the t-relation,
TS , which describes states of the client relation as it evolves
through time. We define our retention policies formally below
as transformations on TS .

Our first retention operation is called redaction. It sup-
presses attribute values in tuples for a specified time period.
Redaction is useful because it hides sensitive data values, but
preserves the history of modification of the tuple. Our second
retention operation is called expunction. An expunged tuple
is removed from history, and the historical record is modified
accordingly to hide its existence.

These two operators serve different purposes as they
enact value removal in the case of redaction and existence
removal in the other. Expunction is a more extreme oper-
ation because it does not merely suppress information, but
changes the historical record in ways that can substantially

change answers to audit queries. We believe that a variety
of privacy policies can be satisfied through the use of redac-
tion policies alone, which will lead to more accurate audit-
ing.

In the definitions that follow, a Boolean condition φ, on
client relation S, is a Boolean combination of comparisons
S.A θ c, or S.A θ S.B, for any θ ∈ {=, �=,<,≤,>,≥}.

Definition 1 (Expunction Rule) An expunction rule, over a
client table S, is denoted E = ExpungeS(φ, [u, v]) where φ
is a Boolean condition on attributes of S, and [u, v] is a time
interval (u, v ∈ T , and u ≤ v).

An expunction rule asserts that all tuples matching condition
φ should be removed from a specified interval in time. When
an expunction rule E is applied to a t-relation TS , the intended
result is a new t-relation. Denoted E(TS), this new t-relation
consists of all facts from TS except those that satisfy φ and
have time field in [u, v]:
Definition 2 (Expunction Rule Application) For a client
relation S, let TS be a t-relation over S, and

E = ExpungeS(φ, [u, v])
be an expunction rule. The application of E to TS , denoted
E(TS), is a new t-relation with the same schema: E(TS) =
TS − {x ∈ TS | φ(x) ∧ x .t ∈ [u, v]}
Unlike expunction, a redaction rule does not remove tuples
from the historical record. Instead, a redaction rule asserts
that the values of certain attributes should be suppressed in
all tuples that match condition φ and are active during a spec-
ified time interval.

Definition 3 (Redaction Rule) A redaction rule, over client
table S, is denoted R = RedactS(φ,A, [u, v]) where φ is
a Boolean condition on attributes of S, A is a subset of the
columns in S, and [u, v] is a time interval (u, v ∈ T , and
u ≤ v).

When a redaction rule R is applied to a t-relation TS , the
intended result is a new t-relation, denoted R(TS), in which
some attribute values have been suppressed. To formalize
R(TS), we use a suppression function supp(x,A), which
replaces attributes of A in the transaction-time tuple x with
variables. For example, if x = (101,Bob, Sales, 10, 300)
then supp(x, {dept, salary}) = (101,Bob, dx, sx, 300). We
assume that suppressions of distinct values always use dis-
tinct variable names and that all instances of a value are
replaced by the same variable.

Definition 4 (Redaction Rule Application) For a client rela-
tion S, let TS be a t-relation over S, and R = RedactS(φ,

A, [s, t]) be a redaction rule. The application of R to TS ,

123

Auditing a database under retention policies

denoted R(TS), is a new t-relation with the same schema:

R(TS) = {supp(x,A) | x ∈ TS, φ(x), x .t ∈ [u, v]}
∪{x | x ∈ TS,¬φ(x) ∨ x .t �∈ [u, v]}

We assume for simplicity that A does not contain the key for
table S. If the key for R is sensitive, and subject to retention
policies, a surrogate non-sensitive key attribute can be intro-
duced to the schema. This means that even if all attributes of
the schema are redacted, the history of changes to a tuple is
still preserved.

Having applied a redaction policy, the resulting table
R(TS) is formally an incomplete t-relation. It is a representa-
tion of a set of possible worlds, each resulting from a different
substitution of distinct values for the variables introduced by
the suppression of attributes. We define incomplete relations
formally in Sect. 5.

4.1.1 Retention policy composition

Retention rules can be combined to form composite retention
policies. A set of redaction rules is combined by hiding any
attribute value that satisfies the selection condition and time
period of any individual redaction rule. A set of expunction
rules is combined by removing all tuples satisfying any indi-
vidual expunction rule. Expunction rules take precedence
over redaction rules: a tuple satisfying both an expunction
and redaction rule will be removed rather than suppressed.

Example 1 In Sect. 1.2, we described informally two reten-
tion policies. The redaction rule that hides Bob’s sal-
ary between time 0 and 250 is written formally as R =
RedactS(name=‘Bob’,sal, [0, 250]). The expunction rule
that removes the record of all employees in the HR department
between time 0 and 300 is written E = ExpungeS(dept=‘HR’,
[0, 300]). Table 3 is the t-relation that results from applying
both E and R to the original table TS shown in Table 2.

4.1.2 Suppression by variables versus NULLs

The choice to use variables instead of NULL values for cell
suppression allows for improved audit accuracy, but can sac-
rifice confidentiality because it reveals when two redacted
values are identical. For example, suppose Bob’s salary was
10 at time x but is later redacted. If Bob has the right to
access both his and other employees’ information, he may
find Jack’s salary at time y is equal to his redacted salary at
time x , allowing him to infer that Jack has salary 10 at time
y, in violation of the redaction policy.

Nevertheless, we believe this is a worthwhile trade-off and
we show in Sect. 9 that the use of variables can substantially
increase auditing accuracy for some queries. Our framework

Fig. 1 Illustration of the relationships between original history (L S and
TS) and the history under retention policy P . P(TS) is defined directly,
while P(L S) is the sanitized log derived from P(TS) and including
audit fields from L S

can easily be adapted to a suppression function using NULL
values.

4.2 Sanitizing the audit log

Consider a policy P consisting of redaction and expunc-
tion rules. According to the definitions above, we apply the
policy to TS to get the t-relation P(TS). As we have seen
in the examples of Sect. 1.2, the answers to audit queries
are not determined completely by the table P(TS). For one,
the audit fields in L S are not present. We must use L S in
combination with P(TS) to answer queries that reference
the audit fields. In addition, the operations applied to the
database need to be inferred from P(TS), which represents
just the history of database states. In order to combine audit
field information, and to make explicit the changes to the
database that are implied by P(TS), we compute a sani-
tized log consistent with P(TS). This new log is denoted
P(L S) and has the property that running it results in P(TS),
that is: exec(P(L S)) = P(TS). The auditor, and other users,
will have access to both P(TS) and the sanitized audit log.
Together we refer to these as the sanitized history. The rela-
tionship between the audit log and transaction-time tables in
our framework is illustrated in Fig. 1.

When computing the sanitized history, we hope to satisfy
the following properties.

– A sanitized history is secret if it respects the semantics
of the policy, hiding tuples and values appropriately. This
means it is not possible to infer from the protected his-
tory anything that is not present in P(TS) (the defined
meaning). This property defines the fundamentals of pre-
venting data disclosure (in Sect. 2).

– A sanitized history is sound if it omits information, but
does not lead to false answers to audit queries. This
property is ensured for all queries if the possible worlds
implied by P(TS) include the original history. In that

123

W. Lu et al.

Table 4 A sanitized audit log, P(L S), transformed under the retention
policies of Sect. 1.2 and Example 1

client IP ttime type eid name dept sal

Jack 1.1.1 0 ins 101 Bob Sales sx

Jack 2.1.1 100 upd 101 – – sy

Kate 3.1.1 200 upd 101 – Mgmt –

NULL NULL 250 upd 101 – – 12

Kate 4.1.1 300 upd 101 – – 15

NULL NULL 300 ins 201 Chris Mgmt 10

Kate 4.1.1 500 del 201 – – –

case, the true answer to any audit query must be a possi-
ble answer under retention restrictions. This property is
essential for data utility (in Sect. 2), and it provides the
basis for answering queries precisely.

Note that for any redaction rule R and expunction rule
E , R(TS) and E(TS) are secret by definition. The chal-
lenge to secrecy comes from integrating L S . Also note that
expunction policies necessarily violate soundness. Because
an expunction policy changes history by removing records,
it produces false answers to audit queries.

Definition 5 (Sanitized Log) Let P be a retention policy con-
sisting of redaction rules, expunction rules, or both, and let
P(TS) be the (possibly incomplete) t-relation that results
from applying P to TS . The sanitized log under P is denoted
P(L S) and is defined as follows:

1. Treating any variables present in P(TS) as concrete data
values, compute the audit log table exec−1(P(TS))

2. Let L0
S = Π〈audit-fields〉,ttime(L S)

3. P(L S) = L0
S 	
=t time exec−1(P(TS))

This procedure first uses the exec−1 to compute an audit
log from P(TS). Then we extract the audit fields and time col-
umn from the original audit log. This table, L0

S , is then joined
with exec−1(P(TS)). We use a right outer join to preserve
tuples in exec−1(P(TS)), which may not have a match in L0

S .
This occurs when the application of a redaction policy splits
the active interval of one or more records. It suggests that an
update operation occurred in the history, but the time instant
of this update does not match any update in the original audit
log.

Example 2 Table 4 is the sanitized audit log computed
according to the above definition, for the policy described
in Example 1.

Note that Definition 5 is not itself an attractive strategy
for computing the sanitized log. We describe our implemen-
tation of policy application in Sect. 8. In addition, we will

see below that policies can be “applied” logically, in which
case P(L S) need not be materialized.

4.3 Retention policy analysis

We can show the following properties of the sanitized log.

Proposition 1 Let L S be an audit log, TS the t-relation
derived from it, and let P be a retention policy consist-
ing of a set of redaction rules R1 . . . Rn where each Ri =
RedactS(φi ,Ai , [ui , vi]).

– The computation of P(L S) is sound.
– The computation of P(L S) is secret iff

ui , vi ∈ Πt time(L S) for all i .

Proof (Sketch) Soundness follows from that fact that P(TS)

is sound, and the fact that P(L S) is consistent with P(TS),
in the sense that exec(P(L S)) = P(TS). It follows that the
original history is one possible world of P(L S). If the condi-
tion ui , vi ∈ Πt time(L S) fails, then there are dangling tuples
in the join described in Definition 5. The absence of audit
fields leaks information and violates secrecy. If the condition
holds, then there are no dangling tuples. Secrecy follows from
the fact that R(L S) is consistent with R(TS) and uses only
the projection, L0

S , of L S . ��
The sanitized log from Example 2 and Table 4 dem-

onstrates the problems that result from arbitrary redaction
intervals. These policies split intervals and suggest phan-
tom updates that cannot be convincingly represented in the
log. The failure of secrecy appears not to be merely an arti-
fact of the semantics of redaction, but instead a fundamental
difficulty in presenting an audit log that is consistent with
a redacted data history. It is possible that secrecy could be
achieved by introducing additional uncertainty about phan-
tom modifications, but this entails a more powerful model
of incompleteness, potentially sacrificing efficiency, and
degrading audit query accuracy. Further investigation is a
topic of future work.

As a practical matter, to avoid sacrificing secrecy for
redaction rules, the desired time interval [u, v] of each redac-
tion rule can be shifted, either forward or backward, to the
time of the nearest modification (to any field) in the log.

4.3.1 Policy/query independence

It is possible to decide statically, for a given policy and audit
query, whether the query answer will be unaffected by the
policy. This problem is closely related to the study of view
independence of updates [6,7]. Here the audit query occupies
the place of the view. Our retention policies can be considered
deletions (in the case of expunction) or updates (in the case of

123

Auditing a database under retention policies

redaction). Known results provide sufficient conditions for
determining policy–query independence in our framework.

4.4 Supporting preservation rules

Redaction and expunction are removal rules. They implic-
itly indicate the semantics of data holds: the system only
removes information that satisfies removal rules and retains
the rest. Thus, when there is a litigation hold, we change the
existing removal rules accordingly to prevent unwanted dele-
tion. However, a specific preservation rule may provide more
flexibility for compliance officers. Our framework is able to
support tuple-level preservation rules. A preservation rule
tells the system to retain all tuples matching the conditions
in ψ for a specified interval of time.

Definition 6 (Preservation Rule) A preservation rule, over
a client table S, is denoted H = PresrvS(ψ, [u, v]) where ψ
is a Boolean condition on attributes of S, and [u, v] is a time
interval (u, v ∈ T , and u ≤ v).

When a preservation rule alone is applied to a t-relation,
the t-relation is unchanged. When a preservation rule and a
removal rule are applied together, the process of generating
the new t-relation should ensure that those tuples match-
ing the preservation rule are always retained, taking priority
over the removal rule. To maintain data holds (described in
Section 2), preservation rules must be applied correctly.

Definition 7 (Preservation Rule Application) For a client
relation S, let TS be a t-relation over S, and P be the current
set of removal rules (expunction and redaction). If a pres-
ervation rule H = PresrvS(ψ, [u, v]) is added to P to get
P+ = P ∪{H}, then we generate a new set of removal rules,
P ′, from P by transforming each condition p.φ for p ∈ P
into p.φ ∧ (¬ψ ∨ (p.t �∈ [u, v])) where p.t is the speci-
fied time period in original rule p. If P+(TS) denotes the
application of all the rules, we then have: P+(TS) = P ′(TS)

The definition above defines the semantics of integrat-
ing preservation rules by logically transforming the original
removal rules. It follows from the definition that preserva-
tion rules take precedence over removal rules. Further, the
properties of removal rules and sanitization processes defined
earlier in this section hold also for policies that include pres-
ervation rules.

4.5 Physical versus logical policy application

The discussion above has implicitly suggested the physical
application of retention policies to the audit log and derived
transaction-time table, in which record removal and attribute
suppression are reflected in the storage system. Physical san-
itization is appropriate when it is necessary to defend against

external authorities as well as auditors, or when privacy pol-
icies mandate direct removal of data.

An alternative is logical removal, in which the audit log is
not physically changed. Instead, a logical view is computed,
which is consistent with the retention policy. Logical saniti-
zation can support multiple distinct retention policies that can
be associated with users or groups of users, in a manner very
similar to an access control policy, which physical deletion is
unable to support. Under logical log sanitization, our reten-
tion policies can be seen as a combination of fine-grained and
view-based access control over a transaction-time database.

By the semantics of preservation rules, we always physi-
cally enforce them. This fact applies to all preservation rules
with no exceptions. But whether to logically enforce them is
a choice made by compliance officers. For example, if pres-
ervation rules are the requirements of external authorities,
the compliance officer first prevents physical deletion of the
related tuples to maintain the data hold. At the same time, if
he thinks that these preservation rules are beyond the audi-
tor’s accessibility, he will probably choose to ignore them in
the logical application, which means allowing logical dele-
tion of the tuples matching these preservation rules. By doing
this, the system provides better privacy guarantees while still
satisfying data holds. Alternatively, the compliance officer
can add a data hold purely for the sake of preserving infor-
mation of interest to auditors. In this case, he will enforce
the preservation rule both physically and logically. But one
should be warned that in this circumstance, data could also
be exposed to external authorities, and thus, data disclosure
is not prevented with respect to them.

Based on the discussion above, we believe a hybrid
method of history sanitization, instead of purely physical
or logical application, would better accommodate common
scenarios. Assume P is the set of rules defined on the data-
base, containing preservation rules H and removal rules R.
The compliance officer can adopt a hybrid approach as fol-
lows. Physical application is always executed on all preser-
vation rules H since it does not prevent logical application
of these rules later. Physical application on removal rules
should be carefully chosen as logical sanitization is not avail-
able for them subsequently. So the officer selects a subset
consisting of important removal rules R1 ⊆ R for phys-
ical sanitization. Next, in the logical application step, for
each group of users/auditors, he decides what information to
retain for them and enforces a corresponding subset of pres-
ervation rules H1 ∈ H. For removal rules, he decides what
to be deleted logically for each group of users/auditors and
enforces a proper subset of non-physically applied removal
rules R2 ⊆ R − R1.

In Sect. 8, we describe the implementation of our policies
both physically (using an update program that transforms
stored tables) and logically (by rewriting incoming audit que-
ries to return answers in accordance with the stated policy).

123

W. Lu et al.

5 Audit queries under retention restrictions:
a tuple-independent model

Under a retention policy that includes a redaction rule, audit
queries must be evaluated over tables containing variables
in place of some concrete values, that is, this table contains
incomplete information or uncertainty. In this section, we
discuss the tuple-independent model (TI), using techniques
for querying incomplete information [20] to describe pre-
cisely the answers to audit queries under retention policies.
The major benefit of TI is that there is no additional cost of
deciding certain and possible tuples because extended rela-
tional operators can compute and label each tuple explicitly
on the fly.

5.1 Incompleteness in relations and t-relations

Both regular relations and transaction-time relations can be
incomplete. There are two main features that distinguish an
incomplete relation from a concrete relation. The first is the
presence of variables in attribute values. The second is a
status column, included in the schema of every incomplete
relation. The status column is C when the tuple is certain to
exist in the relation, and P, when the tuple may possibly exist.

Under a retention policy P , the inputs to our audit que-
ries are the audit log table P(L S) and t-relation P(TS). Both
tables may be incomplete, since they may contain variables.
In addition, each of their tuples is understood to have a status
of certain. In general, audit query answers will include both
possible and certain tuples.

An incomplete relation represents a set of possible rela-
tions. Let R be a relation schema (regular or transaction time)
and let IR be an incomplete relation over R. Also let IR =
I p

R ∪ I c
R where I c

R are the certain tuples and I p
R are the possible

tuples. If V is the set of variables appearing in R, and f is a
one-to-one function from the variables V into the domain of
R, then a possible world consists of the certain tuples under
f , plus any subset of possible tuples under f . Thus, the set
of possible worlds represented by IR , denoted rep(IR), is
defined as:

rep(IR) = {
f
(
I c

R

) ∪ X | f ∈ F, X ⊆ f (I p
R)

}

where F is the set of all one-to-one functions that assign val-
ues in the relevant domains to variables in V , and f (IR) is
the relation after replacing variables according to f .

Recall that in our framework, variables only appear in
attributes of the client schema—not in time stamps. Extend-
ing the definition of t-relation from Sect. 3, an incom-
plete t-relation over S is a set of tuples(S) × T × {P,C}.
A tuple (p1, . . . , pn, t, u) ∈ IS represents the fact that
tuple (p1, . . . , pn) is certainly active at time instant t (if
u = C) or possibly active at time instant t (if u = P).
Incomplete t-relations can also be represented as tuples

(p1, . . . , pn, from, to, u)which means that (p1, . . . , pn) has
status u at each instant t , for from ≤ t ≤ to.

5.2 Extended relational algebra on incomplete relations

Next we define the extended relational algebra operators on
incomplete relations. The semantics of these operators is
similar to the model of relational incompleteness presented
by Biskup [5], but includes extensions for transaction time.
Naturally, these operators return incomplete relations, inher-
iting variables from the input relations and computing the
status field appropriately for output tuples. We provide defi-
nitions of selection, cross-product, concurrent cross-product,
and set difference. Join and concurrent join are derived from
these, and projection, union, and the time-slice operator are
defined in a standard way.

5.2.1 Selection

Let IR be an incomplete relation, and E be a selection con-
dition that is the Boolean combination of comparisons of the
form R.x = c (for constant c) or R.x = R.y. Comparisons
can evaluate to P, C, or False. If the arguments are two dif-
ferent constants, or two different variables, the comparison
evaluates to False. The comparison of a variable with a con-
stant evaluates to P. If the arguments are identical variables,
or identical constants, the comparison evaluates to the sta-
tus value for the tuple. The Boolean combination of terms
is evaluated using the rules of three-valued logic where P is
interpreted as Unknown, and C is interpreted as True.

Tuples are included in the output of the selection operator
if their status evaluates to either P or C. When the condition
E has evaluated to P under the comparison of a variable with
a constant, this variable binding needs to be applied to the
output tuple. Formally we have

σE (IR)={〈 f (r.∗), E(r)〉 | r ∈ IR, E(r) = P ∨ E(r) = C}
The tuples returned have all non-status attributes (denoted
r.∗) with variables replaced under mapping f , and a new
status field E(r).

Example 3 Consider the selection condition R.a = 100 ∧
R.b = R.c. On the input relation {〈dx, dy, 9,C〉}, the selec-
tion operation will return {〈100, 9, 9, P〉}.

5.2.2 Cartesian product

If IR and IS are two incomplete relations over schema R and
S, the cartesian product IR × IS is defined as:

IR × IS = {〈r.∗, s.∗, status〉 | r ∈ IR, s ∈ IS}
where status is set to r.status ∧ s.status.

123

Auditing a database under retention policies

5.2.3 Concurrent cartesian product

If IR and IS are two incomplete t-relations over schema R
and S, the concurrent cartesian product IR × IS is defined as:

IR ×� IS = {〈r.∗, s.∗, f rom, to, status〉 | r ∈ IR, s ∈ IS,

[r. f rom, r.to] ∩ [s. f rom, s.to] �= ∅}
where status is set to r.status ∧ s.status, f rom =
max(r. f rom, s. f rom), to = min(r.to, s.to).

5.2.4 Duplicate elimination

Duplicates (on the non-status columns of a table) can arise
as a result of projection or union, as well as selection and
join (because of the substitution for variables). If a tuple is
both possible and certain, it is only necessary to preserve the
certain version of the tuple. In general, duplicates on the non-
status columns are eliminated by preserving a single tuple
with a status value equal to the disjunction of all duplicates’
status values. That is, it will be C if at least one duplicate had
status C.

5.2.5 Set difference

If IR and IS are two incomplete relations, then in comput-
ing IR − IS , the tuple 〈r.∗, status〉 will be removed from
IR only when there exists a tuple 〈s.∗,C〉 ∈ IS where r.∗
and s.∗ shares the same value or variables on each attribute.
Otherwise, write 〈r.∗,P〉 into result when there exists a tuple
〈s.∗, status〉 ∈ IS where evaluation of r.A = s.A (described
in operator Selection section) is P or C for all attributes A
in the client schema. The rest of the tuples in IR that do
not match the two cases above will remain unchanged in the
result. When IR and IS are t-relations, we must expand the
temporal intervals into instants (according to our definition
of t-relation), execute the set difference, and finally coalesce
them back into intervals.

Example 4 Recall from Sect. 1.2 that audit query A1 returns
all employees who earned a salary of 10 at some point in
time and can be written Πname(σsal=10(TS)). On the incom-
plete t-relation shown in Table 3 (for which the omitted status
column is uniformly C), we have the intermediate result of
σsal=10(TS):

eid name dept sal from to status
101 Bob Sales 10 0 100 P
101 Bob Sales 10 100 200 P
101 Bob Mgmt 10 200 250 P
201 Chris Mgmt 10 300 500 C

and the final result of Πname(σsal=10(TS)):

name status
Bob P

Chris C

6 Audit queries under retention restrictions:
a tuple-correlated model

As we have seen, in the query A4 of the motivating scenario,
TI is incapable of representing answers accurately due to the
failure of the tuple-independence assumption. In such cases,
the P and C status is no longer enough to preserve a precise
result. In this section, we introduce a tuple-correlated model
(TC) for the purpose of more accurate auditing. TC achieves
greater accuracy by maintaining correlations among tuples
explicitly. It appends additional conditions to each tuple dur-
ing query processing, instead of simply using “possible” and
“certain” indicators. We will define the TC model and its
relational algebra operations. Also we will show the benefit
in terms of the expressiveness. However, the extra conditions
make checking certain and possible tuples more complicated
(remember in TI there is no additional cost for that), and we
will discuss that in Sect. 7. Comparison with other models is
investigated in “Appendix”.4

6.1 Representing incompleteness

In the TC model, we associate the schema with an extra col-
umn cond. cond represents a conjunction of clauses, where
each clause is a variable–variable or variable–constant com-
parison, for example, X < Y and Z > 5. Consider a data-
base D consisting of relations over schemas R1, R2, Each
schema Ri = {Ai1, Ai2, . . . , Ai j , cond}. Let A = ⋃

Ai j .
We define a function h : A → T to classify each attribute
into some data type, where T is the set of all data types. In
TC, all the values (variables) in the same column have the
same data type, and values (variables) are only allowed to
compare with those of the same type. For example, attributes
salary and bonus are of the same type and are comparable.

Side conditionsη(D) (orη(IR)) are defined for database D
(or relation IR , the incomplete relation over schema R). η(D)
(or η(IR)) is a conjunction of inequalities, which captures the
distinctness among variables of the same type. The definition
of the side condition conforms to the semantics of retention
policies and captures constraints that apply to all the tuples,
in contrast to tuple-level conditions in the cond column. v(D)
(or v(IR)) represents all the variables involved in D (or IR).
For each variable x , dom(x) represents the domain of the
variable. Usually when a variable is corresponding to some
attribute, dom(x) is the domain of that attribute. Example 5
illustrates a relation r in TC.

4 See footnote 3.

123

W. Lu et al.

Example 5 r=

name sal cond
Bob x x < 50
Chris y true

η(r) = {x �= y}, v(r) = {x, y}, 0 ≤ dom(x) = dom(y) ≤
100

An assignment for database D is a mapping from all vari-
ables in v(D) to their domains, that is, ∀x ∈ v(D), f (x) ∈
dom(x). An assignment f for database D is qualified when
f |� η(D). A set of tuples S is a possible world represented
by D if and only if there is a qualified assignment f for D
and S is equal to the set of tuples when we replace all vari-
ables with values in D, that is, f (D) = S. Thus, the set of
possible worlds represented by database D, denoted rep(D),
is defined as:

rep(D) = { f (D) | f | = η(D)}
Example 6 For the database in Example 5,

f = {〈x, 10〉, 〈y, 20〉}
is a qualified assignment, therefore the possible world repre-
sented by f is f (r) =

name sal
Bob 10
Chris 20

6.1.1 TC versus TI

TI allows variables but no tuple-level local conditions. The
implicit constraint on distinctness of variables in TI is written
explicitly by the side condition in TC. Another difference is
that in TC you can specify domains of variables, while in
TI, variables are always assumed to have infinite domains in
order to simplify the constraints.

6.1.2 TC versus c-table

In a general c-table (conditional table) [20], each tuple is
associated with a condition, which is a Boolean combination
of equalities. A TC table can be viewed as an extended c-table
with general local inequalities and special global conditions,
as the side condition plus explicitly claimed variable domains
can be written as global condition in a c-table. In our applica-
tion, the side conditions are usually from retention policies,
and tuple-level conditions are generated by queries, thus TC
separates the two distinct types of constraints.

6.2 Extended relational algebra

We now describe a slightly different extended relational alge-
bra compared to TI (Sect. 5.2), since we have to incorporate

conditions in the query evaluation. The semantics of rela-
tional operators are defined as follows. Let IR , JR , and IS

be tables in database D. Note that the side condition of D
remains unchanged after query evaluation.

ΠA(IR) = {〈r.A, r.cond〉 | r ∈ IR}
σE (IR) = {〈r.∗, r.cond ∧ E(r)〉 | r ∈ IR}
IR × IS = {〈r.∗, s.∗, r.cond ∧ s.cond〉 | r ∈ IR, s ∈ IS}

IR ×� IS = {〈r.∗, s.∗, f rom, to, r.cond ∧ s.cond〉 |
r ∈ IR, s ∈ IS, [r. f rom, r.to] ∩ [s. f rom, s.to]
�= ∅} where f rom = max(r. f rom, s. f rom),

to = min(r.to, s.to)

IR ∪ JR = {〈t.∗, t.cond〉 | t ∈ IR ∨ t ∈ JR}

In projection (Π), we always preserve the cond column in
the result. For those duplicates with the same non-cond attri-
bute values but no cond formula, we could combine them into
a single tuple by taking the disjunction of all cond formulas.
In TC, we choose not to do this in order to keep each formula
succinct. This does not change the semantics of queries and
relations. In selection (σ), we return all non-cond attribute
values (denoted as r.∗) and extend the cond column by a con-
junction with the selecting condition E , which itself is a con-
junction. If the selection condition is E = E1 ∪ E2, we will
execute two selection operations followed by a union oper-
ation. Cross-product (×) is defined by combining tuples in
two inputs and taking the conjunction of their cond columns.
Concurrent cross-product (×�) is computed in a similar way
as in TI model, plus the process on cond columns as in a
normal cross-product defined above.

6.3 Expressiveness

In the context of incomplete databases, expressiveness mea-
sures the ability to represent sets of possible worlds. A data
model is said to be complete [37] when it can represent any set
of possible worlds. TI is not complete because it is impossi-
ble to represent a set of possible worlds in which two possible
tuples are mutually exclusive, as shown in query A4 in the
motivating scenario. However, TC is complete.

Theorem 1 TC is a complete data model, that is, any set of
possible worlds can be represented by a TC table.

Proof Assume we have any set of possible worlds W =
{r1, r2, . . . , rn}. Now we construct a table R in TC: we gen-
erate a new relation by adding each tuple in every pos-
sible world, as well as distinguishing them by appending
cond condition z = i for the i th possible world. Variable
z has dom(z) ∈ [1, n]. Therefore, any qualified assignment
f (z) = i will only associate with the i th possible world. It is

123

Auditing a database under retention policies

obvious that the relation R represents the exactly same set of
possible worlds of W . ��

We say that model A is at most as expressive as model B
(A � B) if for any relation a in A there exists some rela-
tion b in B such that rep(a) = rep(b) where rep() denotes
the set of possible worlds represented by the relation. A is
as expressive as B if and only if A � B ∧ B � A. From
the theorem above and the fact that TI cannot capture tuple
correlations, we have the following corollary.

Corollary 1 TC is more expressive than TI, that is, TI � TC
and TC �� TI.

7 Complexity

For the TI model, as we have seen, certain and possible tuples
are decided by the status column. However, we will show
the problem of checking if a given tuple in TC is possible is
NP-complete in Theorem 2. And Theorem 5 states that decid-
ing a certain tuple is coNP-complete. However, we show
in Theorems 3 and 4 that for a large subclass of instances,
the possibility problem is in polynomial time. The certainty
problem remains hard even within subclasses, therefore we
use an exhaustive search with heuristics to compute certain
tuples.

7.1 Deciding possible tuples

Given a TC table, there are usually tuples whose cond formu-
las are unsatisfiable, which means their existence is impossi-
ble. Computing possible tuples is the process of eliminating
those unsatisfiable tuples. We begin with the definition of
database satisfiability and possible tuples.

Definition 8 A database D in TC is satisfiable when it has
a qualified assignment.

It is clear satisfiability of D is decided by checking sat-
isfiability of η(D) ∧ ∧

x∈v(D) dom(x), where η(D) is the
side condition of the database, which indicates the distinct-
ness among variables of the same type and

∧
x∈v(D) dom(x)

defines all of the variable domains in D.

Definition 9 A tuple t is a possible tuple in database D when
there exists a qualified assignment f such that f |� t.cond.

Recall that a qualified assignment f of database D satis-
fies ∀x ∈ v(D), f (x) ∈ dom(x), and f |� η(D). Thus, it is
easy to see that deciding possibility of the tuple t is equivalent
to the satisfiability problem of the following formula:

ψ(t) = t.cond ∧ η(D) ∧
∧

x∈v(D)
dom(x)

Of course, the satisifiability of database D is a necessary
condition for the satisfiability of any of its tuples. When we
know that D is satisfiable, we can simplify the above con-
dition ψ(t) by replacing D with the current tuple t , that is,
t.cond∧η(t)∧∧

x∈v(t) dom(x). Hereη(t)∧∧
x∈v(t) dom(x)

are side conditions and domains only related to variables
involved in t.cond. The simplified ψ(t) is equivalent to the
original one when database D is satisfiable: assignments to
variables not in t.cond will not change the satisfiability of
tuple t . For simplicity, we assume that all of the variables in
t.cond have the same type.

Theorem 2 Given a database D in TC, and tuple t ∈ D,
deciding whether t is a possible tuple is NP-complete.

The proof is a reduction from the clique problem, which is
known to be NP-hard. The detailed proof is in “Appendix”.5

We next show that two natural restrictions of the satisfi-
ability problem can be solved in polynomial time. We avoid
the richness of constraints that lead to the above NP-com-
pleteness by restricting the kind of constraints that can occur
at the same time, namely we do not allow constraints to simul-
taneously express ordering, for example, X < Y , and dis-
tinctness from a given constant, for example, X �= C . Recall
that distinct variables are required to take distinct values. The
two subclasses of TC corresponding to these restrictions are
named TC< and TC �=.

Theorem 3 Given a database D in TC<, and tuple t ∈ D,
deciding whether t is a possible tuple is in P.

Proof We first rewrite the ψ(t) as an H -representation of
tuple t , Ht , consisting of two different sets of inequalities Ht,1

and Ht,2. 1) Ht,1: inequalities like X < Y . Since inequality
X < Y is equivalent to X ≤ Y − 1, we only need < to rep-
resent the relationship between variables (X �= Y is implicit
since we have X and Y the same type). These inequalities
define a topological ordering of variables. 2) Ht,2: inequali-
ties like X ∈ [X L , X R]. The lower bound of X is noted as X L ,
while X R is the upper bound. To compute the lower and upper
bound of each variable, we take advantage of the transitive
property of<-relationship. For example, if X > 5 ∧ Y > X ,
we have Y > X > 5, and because X �= Y , we further
have Y L = 7. That is, if X < Y , Y L will be updated to
max(Y L , X L + 1) and X R is updated to min(X R,Y R − 1).
This can be done by selecting variables in a topological order-
ing and inverse topological ordering.

It is clear that the H -representation Ht is equivalent to
ψ(t). Now we are ready to create a scheduling problem
such that there are n unit-time jobs (n equals the number
of variables in Ht) with release times (X Ls in Ht,2), dead-
line times (X Rs in Ht,2) and arbitrary precedence constraints

5 See footnote 3.

123

W. Lu et al.

(defined by Ht,1). It is easy to see finding a feasible sched-
ule for this problem is equivalent to our tuple satisfiability
in TC<. Since computing Ht is in P and finding a feasible
schedule for this problem is in P [24] , the tuple satisfiability
can be solved in polynomial time. ��
Theorem 4 Given a database D in TC �=, and tuple t ∈ D,
deciding whether t is a possible tuple is in P.

Proof Consider the H -representation ofψ(t), different from
Ht in TC<, we will have an empty Ht,1 since there is no
variable comparison and each variable has a union of sets
of intervals in Ht,2, instead of a single interval as in TC<.
For example, X > 1 ∧ X < 10 ∧ X �= 5 will result in
X ∈ [2, 4] ∪ [6, 9]. Now we are ready to create a schedul-
ing problem such that there are n unit-time jobs (n equals
the number of variables in Ht) with multiple release and
deadline times (defined by the intervals in H2). It is easy
to see that finding a feasible schedule for this problem is
equivalent to our tuple satisfiability in TC�=. Since com-
puting Ht is in P and finding a feasible schedule for this
problem is in P [40], the tuple satisfiability can be solved in
polynomial time. ��
Remark 1 Recall that we simplify tuple satisfiability by
assuming the database is satisfiable. Actually, database sat-
isfiability is a special case of Theorem 4 because the satisfi-
ability of formula

∧
x∈v(D) dom(x)∧η(D) does not contain

inequalities like X < Y . Thus, deciding database satisfiabil-
ity can be done in polynomial time. In addition, when uncer-
tainty is generated by applying retention policies defined in
this paper, the database is always satisfiable.

Remark 2 Consider the subclass TC=�= consisting of TC
restricted to conditions of the form X �= C and X = C in
t.cond ∧ ∧

x∈v(t) dom(x). Such conditions are common for
variables in enumerative domains in which there is no order-
ing among values, for example, department type. Recall that
TC �= allows all kinds of variable–constant comparisons, but
not variable–variable comparisons. Since TC=�= is a special
case of TC�=, we could use the algorithm for TC�=. Neverthe-
less, we can do it faster using an alternative method. Since
there is no ordering among variables and constants, all vari-
ables in t.cond are treated equally. We can randomly pick
one variable X and assign it a qualified constant C such that
C has not been assigned to other variables and X �= C does
not exist. If all variables are assignable, then it is satisfiable,
otherwise it is not.

Remark 3 When there are multiple variable types for tuple
t , we classify inequalities by data types. As long as the con-
straints concerning each distinct data type fall entirely in TC<
or TC�=, we can always compute possible tuples in polyno-
mial time. For example, t.cond ≡ Xsal < Ysal , Zdept �=
“HR” where Xsal < Ysal is in TC< (the salary type) and
Zdept is in TC �= (the department type).

Remark 4 A combination of TC< and TC �= provides ade-
quate expressiveness for our purposes. TC< is well designed
for ordered domains (e.g., integer domains like salary) and
TC�= is suitable for unordered domains (e.g., enumera-
tive domains like department). If we consider the WHERE
clauses of the TPC-H queries, each can be represented in TC<
and TC�= under any of our retention policies. This suggests
that in many cases, NP-hardness is not a practical problem.
Nevertheless, when the general TC model cannot be avoided,
we have to search the space for satisfiable assignments, and
the complexity bound is exponential in the number of vari-
ables, n, which is bounded by a property of the schema.
Variables are generated by redaction policies, and n cannot
exceed the number of columns belonging to the same data
type, thus we expect to see n very small. In the TPC-H work-
load, n cannot be larger than ten. With this small number of
variables, complexity exponential in n will be feasible and
add very limited additional burden when compared to TC<
and TC �=.

7.2 Deciding certain tuples

A tuple is certain when it occurs in every possible world
represented by the database.

Definition 10 Suppose we are given a database D, and the
set of possible worlds represented by D, W = { f1(D), f2(D),
. . .} where F = { f1, f2, . . .} is the set of all qualified assign-
ments for D. A tuple t is certain iff it exists in every possible
world fi (D), for any fi ∈ F .

As each possible world contains only constants, we can
infer that a certain tuple contains no variables. In addition,
if a tuple exists in every possible world, its cond formula
should be always satisfiable for all qualified assignments. To
compute the certain tuples in a TC table, we have a two-step
process. First, we compute the certain v-tuples. A certain
v-tuple is a relaxed version of a certain tuple, meaning its
cond formula is always satisfiable but it could have variables
in some columns. We merge tuples with the same non-cond
column into a new tuple t and generate the new t.cond for-
mula by making a disjunction of all the cond formulas. Then
if f (t.cond) = true for every qualified assignment f , t is
a certain v-tuple. Second, we transform certain v-tuples to
certain tuples. Obviously, a certain v-tuple is a certain tuple
when it does not contain variables. When t has a variable on
attribute A, it can be transformed to a certain tuple if and
only if there are another |dom(A)| − 1 certain v-tuples with
different variables of A. In other words, there are at least
|dom(A)| certain v-tuples with distinct variables of A, there-
fore, by distinctness of variables of the same data type, each
corresponds to a certain tuple. When the size of database is

123

Auditing a database under retention policies

unbounded, the difficulty of the first step dominates, since
step two can be computed efficiently.

Theorem 5 For each variant of the TC model discussed
above, namely TC, TC<, TC �= and TC=�=, the tuple certainty
problem is coNP-complete.

The proof involves reductions from the 3DNF tautology
problem to prove the coNP-completeness for the TC classes.
A detailed proof is in the “Appendix”.6

We can do an exhaustive search to detect certain tuples by
a backtracking method. We choose a variable, assign a value,
and then simplify the formula, recursively checking if it is
still a certain tuple. Assume a variable’s valid intervals con-
sists of the union of all intervals in which the variable could
find a qualified assignment that makes at least one of the
conditions in cond true. One necessary condition for a cer-
tain tuple is that each variable should have its valid intervals
equal to its domain. Thus, in each recursive step, if any var-
iable has a smaller valid interval than the domain, the tuple
is not a certain tuple. This heuristic will help to eliminate
non-certain tuples quickly.

The worst case complexity of calculating certain tuples is
primarily determined by a term exponential in the number of
variables n. Similar to our discussion in Remark 4 about pos-
sible tuples, n tends to be a small number. Thus, in practical
cases, for example, for schemas like TPC-H, the overhead
added here is limited.

8 Implementation

The implementation of our framework translates our his-
torical data model into standard relations in Postgres. Our
goal is to show the practical feasibility of our framework.
We optimize our implementation using commonly available
indexing strategies and query rewriting techniques. A fully
optimized implementation might make use of techniques spe-
cifically designed for transaction-time data, but these are
beyond the scope of our prototype. Note the earlier imple-
mentation described in [28,29] only includes the TI model.

As a performance optimization, both the audit log and the
transaction-time tables are stored in our implementation. As
noted earlier, the transaction-time tables are redundant since
they can be computed from the audit log. However, mate-
rializing these tables and maintaining them upon changes
to the log eases query expression and evaluation for some
audit queries. The efficiency gains seem well worth the space
overhead, which is roughly double that of storing the audit
log alone. The time stamp fields f rom and to are com-
bined into one attribute named trange, which is stored as an

6 See footnote 3.

interval type (actually a one-dimensional cube data type in
Postgres). Utilizing the cube data type simplifies the expres-
sion of the concurrent join, and we also use an available
R-tree implementation. In TI, status is represented as a
Boolean value. In TC, we split the conjunction in the cond
formula and put each inequality (or equality) into a text
value column.

Recall that the application of policies can be executed
either physically or logically (see the discussion in Sect. 4.5).
In the remainder of the section, we discuss the physical appli-
cation of retention policies followed by query evaluation on
physically sanitized data sets. Then we describe the logical
application of policies. Lastly we discuss the computation of
possible and certain tuples.

8.1 The physical application of retention policies

The application of retention policies is implemented by trans-
forming the input rules into a set of update operations on the
original t-relation and possibly the audit log. Inconsistencies
may arise if the subsequent application of new policy rules
touches the previously sanitized attributes [3,41]. For exam-
ple, one policy p1 removes the department information and
the other policy p2 hides employees’ salary in the HR depart-
ment. Applying p1 first will result in a different sanitized
history than if p1 is applied second. In this example, p2 will
remove nothing if p1 is already applied; however, the sani-
tized history will be different if p1 is applied first. To avoid
this, we assume we have all the policy rules at the time of
policy application. Policy application for all rules is accom-
plished in one-pass scanning of the table, sanitizing each
tuple against all rules, which guarantees that all the conditions
in the rules are fully evaluated on the current tuple before
removing any values from that tuple. For example, if an
employee is in the HR department, both his salary and depart-
ment information will be deleted when we have p1 and p2.

Redaction is implemented by replacing values with vari-
ables. As described previously, variables here preserve equal-
ity even after redaction. That is to say, the relationship
between value and variable is a strict one-to-one mapping.
In our current implementation, we use a cryptographic hash
function. Specifically, each data type has a distinct hash func-
tion, which allows consistent variable assignments on the
same values even across multiple tables. Remember that we
define the data type when introducing TC in Sect. 6, and this
concept can also be applied on TI. As a data type only relates
to the comparability and does nothing with the domain,
another benefit of utilizing a hash function for each data type
is to enable comparison of variables that belong to different
attributes, for example, comparing salary and bonus.

Since the policies are specified over t-relations, a policy
P with an arbitrary time condition [u, v] may require a split
of update intervals causing phantom updates in the sanitized

123

W. Lu et al.

log (as demonstrated from Example 2 and Table 4), which
results in residual disclosure and false conclusions in query
evaluation (meaning audit answers will no longer be sound).
To avoid this, we adjust the redaction period to the near-
est modification period of any field. However, this method
might be too restrictive and hinders periodic policy appli-
cation, especially when the nearest modification period is
much longer than that required by the retention policies. To
favor practicality and periodic application but still achieve
no residual disclosure and soundness, one possible approach
is to impose a system-wide “soft” limitation of the active
period of time for each tuple. As a tuple’s active period is
defined as to − f rom, the requirement ensures that no tuple
is going to stay in the current snapshot of the database longer
than the limit roughly. For example, if Bob’s salary remains
unchanged for about one year, which reaches the limit of a
tuple’s active lifetime, the system will input a new tuple with
the same salary starting from some randomly selected date
and archive the old tuple in the history. In the log table, all
audit fields of the new tuple are copied from the last update.
Thus, we can align the time with finer granularity and apply
policies periodically. This randomly cyclic strategy preserves
the soundness of query answering as long as we treat the sys-
tem’s behaviors as true updates of the history. Moreover, by
assigning consistent variables on the same values, auditors
can still correctly monitor the changes to values.

8.2 Audit query evaluation

Next we implement in SQL the semantics of extended rela-
tional operators over incomplete relations for both TI and TC.
The basic strategy is to rewrite SELECT-FROM-WHERE
blocks to accommodate incompleteness.

8.2.1 The TI model

To get uncertain answers for any given user query, the
query evaluator runs over the rewritten version of that query.
During query processing, it retains tuples whose status col-
umn evaluates to either P or C on the original WHERE clause
and eliminates all others. Then it computes the correct trange
(if necessary), the status column, and appropriate values of
variable bindings for the query results.

In the following algorithm, the function isvari(x) tests
if x is a variable. onevari(x, y) returns true only when one
of x and y is a variable. binds(x, y) represents the value
bindings, described in Sect. 5. It outputs x if x is a constant,
otherwise it outputs y. In addition, to simplify the represen-
tation, we assume that the WHERE clause of the user query
is always a conjunction of multiple condition expressions. If
there are attributes appearing in two conditions connected by
the OR operator, for example, sal=10 OR sal=20, we

can break the query into parts and later combine their results.
The algorithm for rewriting user queries is as follows:

1. WHERE clause: rewrite each condition by the following
rules. T .A stands for attribute A in table T . θ ∈ {=,�=,
<,≤,>,≥}. c, c1 and c2 are constants.

A θ c ⇒ (A θ c OR isvari(A)) (1)

Let Z ≡ (A θ B OR onevari(A, B))

A θ B

⇒ Z (if θ ∈ {=,≤,≥}) (2)

⇒ Z AND A ! = B (if θ ∈ {<,>}) (3)

if exists T1.A = c1 and T2.A = c2 (c1 �= c2)

⇒ append T1.A ! = T2.A (4)

The general idea of rewriting a condition is to allow the
query processing to keep not only those tuples satisfy-
ing the condition but also those that could possibly sat-
isfy the condition when variables are involved. Rule (1)
tells the query evaluator that when A is a variable it will
also retain the tuple. When comparing two attributes A
and B, by rule (2), the answer is yes when AθB is true,
or one of them is a variable. If both of them are variables
and the comparison is< or>, we additionally make sure
they are two different variables, by rule (3). Similarly,
in rule (4), the same attribute in different tables is com-
pared with different concrete values. Finally, we also add
conditions on trange when necessary.

2. SELECT clause: for each column A in the original
SELECT clause, we rewrite it by the following rules.
Assume W is the original WHERE clause.

If A is status : (5)

⇒ (W AND T .status) AS status

Elseif A ∈ W and exists T .A = c :
⇒ c AS A (6)

Elseif A ∈ W and exists T1.A = T2.A :
⇒ binds(T1.A, T2.A) AS A (7)

Else ⇒ A (8)

To calculate the status column, as shown by rule (5) above,
put the original WHERE clause into SELECT clause and add
a conjunction of related status columns to the term. Rule (6)
ensures the concrete value is returned if there is an equality
condition on that column. We must rewrite those columns
when they appear in both the SELECT list and some equal-
ity expression in the WHERE clause, in order to make sure
query evaluation returns the concrete value as shown in rule
(6), or the correct variable bindings for the selection as shown

123

Auditing a database under retention policies

in rule (7). Finally, compute the correct trange value if nec-
essary (i.e., for concurrent join).

Example 7 The following is an example query on complete
table emp:

SELECT name, t1.dept, t2.sal
FROM emp AS t1, emp AS t2
WHERE t1.dept=t2.dept AND

t1.sal=100 AND t2.sal=200

The algorithm above will produce the following rewritten
query if emp is incomplete:

SELECT name, binds(t1.dept,t2.dept) AS t1.dept,
200 AS t2.sal, (t1.dept=t2.dept AND
t1.sal=100 AND t2.sal=200 AND
t1.status AND t2.status) AS status

FORM emp t1, emp t2
WHERE (t1.dept=t2.dept

OR onevari(t1.dept, t2.dept))
AND (t1.sal=100 OR isvari(t1.sal))
AND (t2.sal=200 OR isvari(t2.sal))
AND t1.sal!=t2.sal

We first apply rule (1) and (4) to generate the AND-
terms in the new query since there are t1.sal = 100 and
t2.sal = 200. Rule (2) is also applied on t1.dept =

t2.dept. Rule (8) keeps name in the selection list. We have
200 AS t2.sal and binds... AS t1.dept by rule (6) and
(7). Finally, we use rule (5) to calculate status column in the
selection list.

As discussed in Sect. 5, duplicates may arise in the result
of operations such as union, projection, and join. The dupli-
cate elimination process can be achieved by grouping on all
non-status columns and then aggregating the (boolean) status
column using bitwise OR.

8.2.2 The TC model

We apply a similar rewriting process as we used in TI. The
difference is how to generate cond formulas in the result and
eliminate unsatisfiable tuples.

Example 8 Given a query asking for employees whose bonus
is more than his salary, we rewrite it as follows:

SELECT name,
CASE WHEN isvari(sal) or isvari(bonus)

THEN ’[money]’|| sal ||’<’|| bonus
ELSE NULL

END AS cond_1
FROM emp
WHERE (sal<bonus OR onevari(sal, bonus))

AND sal!= bonus AND
check_sat(cond, array[

’[money]’|| sal ||’<’|| bonus])

In the SELECT clause, we insert a case statement to out-
put cond formulas with each condition recorded in a single
column. In the example, as shown in the SELECT clause

above, we refer to it as cond_1. Because the query is com-
paring salary with bonus, the condition only exists in the
result when at least one of them is a variable. For example,
if salary is z and bonus is 10, by the CASE statement, the
produced inequality will be [money] z<10, because salary
and bonus both belong to the data type “money”. The num-
ber of inequalities generated, which is the number of CASE
statements needed, is determined by the length of the orig-
inal WHERE clause. (Actually we could reduce the size of
the original WHERE clause by the process of computing the
H -representation described in the proof of Theorems 3 and
4 when we treat each attribute name in the WHERE clause
as a variable).

In the WHERE clause, as the last step before results
are passed to the SELECT clause, a customized function
check_sat is called to check tuple satisfiability by inputing
two parameters: the current cond formula and inequalities
formed by the condition in the original WHERE clause.

8.3 Logical policy implementation

The implementation above is based on the physical removal
of expired information. We can also implement policies log-
ically, or virtually, without altering the stored contents of
the database. A query Q is not evaluated on the underlying
database directly, but is first composed with the policy P to
generate a rewritten query QP . The rewritten query can be
evaluated safely on the base relations and produces a result
equivalent to evaluating P on a physically altered database.

For simplicity, we assume that the redaction policies sat-
isfy the condition in Proposition 1 of Sect. 4.3, so that their
application is sound and secret. Generally the composition
will begin by adopting the rewriting algorithm in the previ-
ous subsection. Attributes appearing in either the SELECT
or WHERE clause are called critical attributes. A redaction
rule is relevant to Q when its redaction attribute list shares
some attribute with Q’s critical attributes. In addition to the
rewriting process in the previous subsection, we also make
the following changes:

1. FROM clause: for each table, add a case statement mod-
ification based on its relevant redaction rules.

2. WHERE clause: for any expunction rules (φ, [u, v]), add
conjunction of not (φ ∧ trange overlap [u, v]).

Note that the case statement modification is inspired by
similar work in [25], but we change the semantics from
NULLs to variables.

8.4 Improving query evaluation in TC

In Sect. 7, we discussed how to decide possible and certain
tuples given a TC table. Consider an incomplete history D

123

W. Lu et al.

generated by the application of retention policies, and sup-
pose we wish to compute possible and certain tuples of query
q over D. Since D has no cond column, the conditions in
the results will only be introduced by q’s WHERE clause.
In fact, the size of the WHERE clause might be reduced by
computing its H -representation, described in the proof of
Theorems 3 and 4. Each H -representation Ht contains two
sets of inequalities: Ht,1, inequalities like X < Y and Ht,2,
inequalities like X ∈ [X L , X R]. The size of Ht,1 is bounded
by O(n2) and the size of Ht,2 is bounded by O(n + c)where
n is the number of column names in q and c is the number
of �=-inequalities. So if there are few or no �=-inequalities
in q, the size of WHERE clause (the number of inequalities
introduced by q) is usually very limited when the number of
columns in the database D is small.

In TC, possible tuples can be checked during query pro-
cessing and certain tuples are computed as a separate step
after query evaluation is finished. To improve the perfor-
mance, we may be able to take advantage of static analysis
on the original query before rewriting and executing it on the
database system. A simple example is that if a query q has
only =-comparisons, its possible tuples are the same under
TI and TC. Moreover, if this q also contains only columns not
touched by retention rules, which means returned results are
always complete, TI and TC result in the same set of certain
tuples.

It is also possible to predetermine the satisfiability of
results for some queries. Consider the WHERE clause as
a formula. We first replace each attribute name with a differ-
ent variable of that data type. If there exists equality between
two variables x = y, we replace all occurrences of y with x
(this is important because of the distinctness among variables
of the same type). Now it is obvious the result is an empty set
(no possible tuples) if this formula is not satisfiable. When
this formula is a tautology (for any qualified assignment), and
all the columns in the WHERE clause are removed together
by redaction policies, then all possible tuples in the result are
certain v-tuples. (Recall that certain v-tuples are tuples with
variables and an empty cond column, defined in Sect. 7.2.)

9 Evaluation

In this section, we study the performance of query process-
ing in our framework and evaluate the impact of retention
policies on the accuracy of query results. Our experiments
address the following key questions:

Performance. We assess the performance overhead of
evaluating audit queries using both physical and logical pol-
icy application on TI and TC.

Accuracy of uncertain answers. We study the impact of
retention policies on the accuracy of query results under TI
and TC. Over sample data, we measure the precision and

recall of query answers as a function of the selectivity of
redaction policies. We characterize the cases where accurate
auditing can be achieved under retention restrictions. And we
show that TC can improve the accuracy significantly over TI
in some cases. We also compare the accuracy with suppres-
sion only using NULLs. Using NULLs is a common solution
in relational database research such as fine-grained access
control [25]. However, variables can hide values while pre-
serving more information about changes. We show that the
extra information kept by variables significantly increases
the accuracy of audit query answers.

9.1 Experimental setup

In all our experiments, we use Postgres 8.3 running on an
Intel Core2 machine with 2.26 GHz CPU and 4Gb mem-
ory. Our data sets are synthetically generated histories based
on our example client schema S(eid,name,dept,sal,bonus).
Here sal and bonus have the same data type that allows com-
paring between them.

We generated our history with an initial set of employees
that grows slowly over time through periodic insertions. We
apply a random sequence of independent updates to attributes
throughout the lifetime of individuals. Thus, the total tuples
in the t-relation and log is closely approximated by the prod-
uct of two parameters: the initial number of employees (the
original snapshot size) and the average number of versions
of each employee tuple (the history length). We measure the
query execution time by reporting the average of 10 runs with
the largest and smallest runs omitted.

9.2 Performance

We use three redaction policies7 and five queries in our exper-
iments. They are:

R1: (HideSal) Redact salary values for a set of departments
ds1 before a specified time t1.

R2: (HideBonus) Redact bonus values for a set of depart-
ments ds2 before a specified time t2.

R3: (HideDept) Redact department values in a specified
time period p1.

Q1: (GetAll) Return the whole emp table.
Q2: (GetEmp1) Return employees who are in department

d1 and have salary m1.
Q3: (GetEmp2) Return employees’ information where sal-

ary is less than m2 and bonus is larger than m3.
Q4: (GetCowker1) Return all employees who worked in the

same department as a specific employee e at the same
time.

7 We do not consider expunction and preservation rules since they will
simply remove or preserve tuples and change the size of the history.

123

Auditing a database under retention policies

Fig. 2 Performance of the five
queries. For each query, the bars
from left to right represent the
execution time on different
models. “physical”/“logical”
means policy application is
implemented physically or
logically. “w/” or “w/o cond”
decides whether the result will
contain condition formulas

GetAll GetEmp1 GetEmp2 GetCowker1 GetCowker2

E
xe

c.
 T

im
e

(s
)

0
2

4
6

8
10

12 Original
TI physical
TI logical
TC physical w/ cond
TC physical w/o cond
TC logical w/ cond
TC logical w/o cond

Q5: (GetCowker2) Return all employees who earned more
bonus than their salary and worked in the same depart-
ment with a given employee e, at same period of time,
as long as the returned employees have a smaller salary
than e, but a larger bonus than e.

We measure the execution time of each query under phys-
ical and logical implementation of TI and TC models. For
the TC model, we also consider the case of returning results
with and without cond formulas. The baseline (original) is
the time to compute the audit query without the retention
policy, that is, on the original tables. In GetEmp1, d1 is in
the set ds1, and thus, there is uncertainty in the answers due
to HideSal and HideDept. Note that GetAll has no WHERE
clause and GetEmp1 and GetCowker1 only contain =-com-
parison; therefore, they can be answered accurately by TI
model, and thus a satisfiability check by function call in the
database system is not necessary in TC. In GetEmp2, we set
m2 < m3, for example, m2 = 10 and m3 = 40. Consider
an employee has the same salary and bonus, both redacted to
variable x . Then he will not be a qualified result for GetEmp2,
because x < 10 ∧ x > 40 is unsatisfiable. GetCowker2 has
a more sophisticated situation. So rewriting GetEmp2 and
GetCowker2 in the TI model can not produce results accu-
rately. Only the TC model is able to answer these two que-
ries properly. The execution time on a history (roughly one
million tuples) with 10,000 initial employees (snapshot size)
and 100 versions for each one (history length) is illustrated
by Fig. 2. Generally, we find that evaluating queries under
retention restrictions has a modest overhead, to be expected
from the added clauses in the queries and the fact that result
sizes are increased because of uncertain tuples.

In the TC model, the online satisfiability check is imple-
mented as a function in the plpython language in PostgreSQL.
To estimate the overhead of the function call in PostgreSQL,
we create a fake satisfiability check function in plpython
that does nothing but returns a True value and insert it into
GetAll’s WHERE clause in TC. As GetAll returns all one mil-
lion tuples, the system will execute the fake function on each
of them, which results in a lot of the extra cost for TC model.
Considering this cost is introduced by the system and the

size of result, we consider this overhead acceptable. It would
be possible to reduce this overhead by using more efficient
native language of the database system.

Since GetEmp1 and GetCowker1 only contain equality
comparisons, checking tuple satisfiability is not needed, and
the only difference between TI and TC is the way they gener-
ate status and cond columns. As expected, the performance
is very close between these two models for both physical
and logical implementations. GetEmp2 and GetCowker2 add
an extra cost of checking tuple satisfiability. Each tuple of
GetEmp2’s result has a condition consisting of at most two
comparisons. In GetCowker2, there are at most four variables,
and the size of the WHERE clause is about eight. For these
two queries, Fig. 2 shows that computing possible (satisfi-
able) tuples in TC adds a modest extra cost to TI when we
take into consideration the cost of the system call discussed
above. When TC does not include the cond column in the
result, the performance is closer to TI.

In addition, the logical solution is uniformly slower than
the physical because of the more complex queries required
when policies are composed with queries. Another reason is
the lack of indexes. When a query is logically rewritten, the
only usable index is the one built on ttime column. A pos-
sible optimization is only integrating relevant policies into
query rewriting, for example, in GetCowker1, redaction rules
for removing two salary columns can be omitted from logical
queries.

It is worth noting that the certain tuples alone can be com-
puted more quickly than the original result in TI [29]. This is
because, given the rewritten query, computing certain tuples
can ignore variables, and the certain tuple set returned tends
to be smaller than the true result. In TC, computing certain
tuples is a separate step after query evaluation is done, and the
execution time could be slow, depending on the complexity
of formulas and the number of duplicates.

9.3 Accuracy of uncertain answers

Next we evaluate experimentally the accuracy of audit query
answers under retention policies. We demonstrate the cases
that TC and TI are at the same level of accuracy and the cases

123

W. Lu et al.

(a) (b)

Fig. 3 Result relationship in Venn Diagram: The answer space is I
(the largest box) and the original answer are O (shaded box), the cer-
tain tuples in our model are Ac, the possible tuples is Ap (both are boxes
with dotted-line). a General case. b Guarantee of precision = 1

when TC improves upon TI. Over the original data, an audit
query can be considered to partition the set of all feasible
query answers (determined by the active domain) into qual-
ified tuples and disqualified tuples. Under retention restric-
tions, an audit query partitions the set of feasible answers
into certain tuples, possible tuples, and disqualified tuples.

Our first measurement of accuracy considers the distribu-
tion of answers as a function of the selectivity of the redaction
policies. The second measurement is the precision and recall
of our answers with respect to the original answers. Assume
the answer space is I and the original answer is O . The cer-
tain tuples in our model are Ac, the possible tuples are Ap.
For simplicity, we assume no variables in the possible tuples.
Intuitively, we want to know how large O ∩ Ac (Fig. 3a) is
in proportion to O and Ac. Formally, the precision of certain
tuples is defined by O∩Ac

Ac
and the recall of certain tuples is

defined by O∩Ac
O .

We can also define precision and recall of the disqual-
ified tuples, which may be relevant to auditors since they
might have value in an investigation. Then I − O contains
the disqualified tuples in the original answers and I − Ac −
Ap is the set of disqualified tuples computed in the incom-
plete history. The precision of disqualified tuples is defined
(I−Ac−Ap)∩(I−O)

I−O and recall of disqualified tuples is defined
(I−Ac−Ap)∩(I−O)

I−Ac−Ap
. If we consider sound and secret retention

policies, as described in Sect. 4, then the precision of certain
and disqualified tuples is always equal to 1, shown in Fig. 3b,
because the soundness (Proposition 1) guarantees Ac ⊆ O
and O ⊆ Ac ∪ Ap.

The first experiment is performed on GetCowker1 in
the previous section (the concurrent self-join). The query
answers in TI and TC will have exactly the same set of pos-
sible and certain tuples, although they will differ in the way
they represent the condition. The answer distribution and
recall are shown in Fig. 4a, b. At the beginning, there are no
possible answers against the original history, and thus, the
recall of the certain and disqualified tuples is 1. When there
are values removed by retention rules, possible answers are
introduced. The percentage of possible tuples and the recall of
the certain and disqualified tuples all have an inflection point
as the selectivity goes up. This is because, when the removal

rate is low, fewer variables are introduced so we can retain a
high recall. When the rate increases, the number of variables
increases and the recall decreases. On the other hand, when
the rate is extremely high, the incomplete history is mostly
replaced with variables on the join attribute: department. We
will get high recall since the equivalence among variables
can be inferred accurately, for example, two employees both
working in HR department result in the same variable x in
their department attribute. Therefore, there are fewer pos-
sible answers and we get very high accuracy when all the
department information is removed, similar to the answers
under the original history.

There are also many queries where TC can obtain much
greater accuracy. Figure 4c, d show the difference in recall of
disqualified tuples for TI and TC given two queries. (We omit
the answer distribution figures here.) Since possible tuples in
the uncertain results are always coming from the disqualified
tuples in original results, these two figures actually illustrate
the difference in size of the possible (satisfiable) tuples. That
is, TI will output more tuples, which should be unsatisfiable
and eliminated. In Fig. 4c, we remove history by deleting
salary values. When salary is replaced with a variable X ,
the cond condition in the result will be bonus < X < 10,
that is, the tuple is possible only when bonus is less than
10. In TI, this fact cannot be captured. Therefore, when the
number of removed salary attributes increases, the size of
possible tuples grows and finally all the tuples are possible
when the removal rate reaches 100 %. However, in the case
of TC, the size increases linearly because salary and bonus
are generated randomly, and the probability of bonus less
than 10 is independent of the removal of salary. In Fig. 4d,
the WHERE clause in the query is an unsatisfiable formula.
Thus, no matter how we redact salary or bonus individually
or jointly, TC will always return an empty result (as does the
query over the original history) while TI increases quickly
when we remove more. Note that when all of the salary and
bonus attributes are redacted, TI does not return all the tuples
because it eliminates the tuple where salary and bonus are
replaced with the same variable. In fact, we can actually use
the static analysis discussed in Sect. 8.4 for TI to avoid this
but we can do nothing for the case of Fig. 4c.

Figure 4e, f show the recall of certain tuples for two dif-
ferent queries. In Fig. 4e, with condition salary < bonus, a
certain tuple in TC has conditions such as X < Y ∨ Y < X ,
or X < 10 ∨ 8 < X after merging tuples with identical non-
cond columns. Thus, we can expect a smooth reduction when
the removal rate increases. The result shows ten thousand cer-
tain tuples in the original history and half of the tuples in the
case when all of the salary and bonus are redacted. For TI,
the size of the certain tuples is decreasing in proportion to
increasing redaction and ending at 0. In Fig. 4f, according to
discussion in Sect. 8.4, the WHERE clause becomes a tautol-
ogy when salary and bonus are redacted jointly. In this case,

123

Auditing a database under retention policies

(a) (b) (c)

(f)(e)(d)

Fig. 4 Accuracy of uncertain answers. We measure the accuracy
(Y -axis) in terms of the removal rate of values in the history (X -axis)
defined by redaction rules. In a and b, we use the redaction rules defined
in the previous section. c is performed under a rule that removes only
salar y. d–f have the same redaction rule that deletes salar y and bonus
together. a Answer Distribution (GetCowker1). b Recall of Answers
(GetCowker1). c Recall of disqualified tuples, given q = select * from

emp where salary > bonus and salary < 10. d Recall of disqualified
tuples, given q = select * from emp where salary > bonus and sal-
ary<10 and bonus > 40. e Recall of certain tuples, given q = select
eid, dept from emp where salary < bonus. f Recall of certain tuples,
given q =select eid, dept from emp where salary = bonus and (salary
< 10 or bonus ≥ 10)

TC can capture the full semantics of the query no matter how
much salary and bonus is removed. As expected, TI’s result
becomes worse when more salary and bonus is removed.

9.3.1 Suppression using variables versus NULLs

In our final experiments, we apply redaction policies with a
suppression function that uses NULL values instead of vari-
ables. In the “Appendix”8 we show that using nulls in TI,
called TInull , has the same expressive power as Gadia’s model
[12] for incomplete temporal databases. Figure 5 shows the
recall of certain and disqualified tuples on GetEmp2 (with
condition on an early employee) compared with the vari-
able solution. Variables significantly outperform NULLs. For
example, with a selectivity of 25 %, the recall of certain tuples
is 97 % using variables, but just 56 % using NULLs. This is
because any two tuples with NULL on the join column will

8 See footnote 3.

produce a possible output tuple. With distinct variable assign-
ments, only identical variables will result in an output tuple.

10 Related work

Retention policies and problems of expiring historical data
have been studied in a variety of contexts. Garcia-Moli-
na et al. [13] considered expiring tuples from materialized
views in a data warehouse. An administrator can declara-
tively request to remove tuples from a view, and the sys-
tem will remove as much information as possible as long
as it does not impact views referencing the original view.
Toman proposed techniques for automatically expiring data
in a historical data warehouse while preserving answers to a
fixed set of queries [47]. Skyt et al. [41] consider vacuuming
a temporal database. Policies remove entire tuples, and the
authors are concerned with the correctness of vacuum spec-
ifications and mitigating actions to handle queries referenc-
ing missing information. The above works differ from ours

123

W. Lu et al.

Fig. 5 Compare the accuracy of query results between suppression
with variables and suppression with NULLs, measured by the recall of
certain and disqualified tuples

because they do not consider cell-level removal, do not view
the resulting database as an incomplete history from which
possible answers can be derived, and do not consider an audit
log accompanying the history. Ataullah et al. [3] considered
retention restrictions on complex business records, which
they describe by logical views over relations. They define
protective and destructive policies and reduce a number of
retention problems to well-studied relational view problems.

A number of authors have considered maintaining data
integrity and preventing deletion in the context of auditing.
Hasan and Winslett [17] considered the case when requested
information is subject to a litigation hold, and they addressed
the threat of an untrustworthy process vacuuming expired
records. Their solution uses write-once read-many (WORM)
storage and extra auditing actions for enforcement of a liti-
gation hold, instead of relying on a DBMS. In [18], they pro-
posed a transaction log architecture to ensure that database
contents are long-term immutable. Both of these solutions
are complementary to our framework when considering the
institution itself as an adversary. In a different setting, Perez
and Moreau consider the problem of securing provenance-
based audits [32] by protecting the integrity of provenance
information. Fabbri et al. [10] detect unauthorized access by
reexecuting a log of past operations. Encrypting audit logs
has also been widely studied in the literature [38,42,49] with
the goal of maintaining the confidentiality and integrity of log
records.

Our redaction policies (especially when implemented log-
ically) are related to fine-grained access control rules. Wang
et al. [48] studied the correctness of query answers under
cell-level access control policies and made an important
connection between that problem and models of incom-
plete information. To our knowledge, there is little work on
access control over time-varying data. Research into tem-
poral access control models [4] refers to access rights that

change over time, not the problem of negotiating access to
data with a time dimension.

Transaction-time databases have been studied extensively
by the research community including work on query lan-
guages and logical foundations [8,11,43], implementation
techniques [22,27,39], techniques for accommodating time
in standard databases [36,44], as well as implemented exten-
sions to existing systems [45]. Jensen [21] studied querying
backlog relations to monitor changes to a database. Incom-
plete information also has a long history in databases [5,14,
20], including in temporal databases.

The data model in this work combines technologies
in uncertain database and temporal database communities.
Temporal and transaction-time databases have been studied
for over 20 years. However, incomplete temporal databases
have attracted less attention. The data models of Gadia [12]
and Koubarakis [23] establish the foundations of this area.
A recent model U-relation [1] for uncertain databases can
also be extended with temporal information. We compare
with these works in detail in the “Appendix”.9

When computing possible tuples in TC, efficiently solv-
ing the satisfiability problem of conjunctive inequalities is
essential. Generally, the complexity depends on the domain
of variables (dense or sparse), which is determined by the
corresponding column in the schema, supported operators
(=,<,>,≤,≥, �=), form of conditions (X op Y , X op C
or more general linear inequalities), and type of formulas
(conjunctive or disjunctive). In [34], the authors proved the
general satisfiability problem for conjunctive inequalities is
NP-hard. Restricted versions, such as eliminating �= and only
considering the real domain, can be solved efficiently in lin-
ear time [16]. For disjunctive inequalities, Hochbaum [19]
proved that even 2I-SAT is NP-complete, when considering
linear inequalities. 2I-SAT only allows at most two inequal-
ities per clause. The distinctness among variables in TC dis-
tinguishes our problem from all of the above.

The scheduling problem has a close relationship to our
TC model. The “jobs” in the scheduling problem correspond
to variables in TC. The distinctness among variables guar-
antees that each job will start at a different time on a single
machine. TC< and TC �= can be solved by efficient schedul-
ing algorithms [24,40]. It is possible that other scheduling
solutions are applicable to TC and its variants.

11 Conclusions and future work

We have presented a framework for limiting access to his-
torical data, while still permitting auditing. Our redaction
rules hide values but preserve information about the lifetime

9 See supplementary material associated with the online version of this
article on the journal’s web site.

123

Auditing a database under retention policies

of tuples in a database, allowing an auditor to get accurate
answers from the historical record, despite the information
removed by retention restrictions. We demonstrated that our
techniques have a modest performance overhead, even when
implemented using a standard relational system, and that the
uncertainty introduced by sample retention policies is accept-
able. By proposing two different models, we allow users to
tune the system between accuracy and performance: TI gives
you better performance, but less accuracy, while TC offers
improved accuracy for audit queries under sanitized histo-
ries, at the expense of increased query processing complex-
ity.

We assume that retention policies are non-negotiable,
despite the auditors’ interest in analysis tasks. This
assumption could be reconsidered in the future work by pri-
oritizing auditing accuracy, at the potential cost of retention
policy secrecy. In addition, a compelling extension to our
sanitization model could use generalization or summariza-
tion of values instead of redaction. This would impose some
cost to confidentiality, but may significantly improve audit-
ing capabilities. Currently, our preservation rules consist of
tuple-level specifications. In the future we would like to inte-
grate more complex view-based preservation rules, such as
those considered by [3,17], or rules targeting specific attri-
bute values. We would like to investigate alternatives for
supporting the periodic application of retention policies as
a database evolves. And we would like to evaluate our sys-
tem using data histories based on well-known benchmark
databases such as TPC-H, or using real data sets and work-
loads, as well as explore other physical organizations that
could lead to improved performance.

References

1. Antova, L., Jansen, T., Koch, C., Olteanu, D.: Fast and simple rela-
tional processing of uncertain data. In: ICDE, pp. 983–992 (2008)

2. ARMA Internaltional: Generally Accepted Recordkeeping Princi-
ples. http://www.arma.org/GARP/

3. Ataullah, A., Aboulnaga, A., Tompa, F.: Records retention in rela-
tional database systems. In: Proceeding of the ACM Conference
on Information and Knowledge Management (CIKM), pp. 873–
882 (2008)

4. Bertino, E., Bettini, C., Samarati, P.: A temporal authorization
model. In: ACM Conference on Computer and Communications
Security (CCS), pp. 126–135. ACM Press, New York (1994)

5. Biskup, J.: A foundation of codd’s relational maybe-opera-
tions. ACM Trans. Database Syst. 8, 608–636 (1983)

6. Blakeley, J., Coburn, N., Larson, P.: Updating derived
relations: detecting irrelevant and autonomously computable
updates. TODS 14(3), 369–400 (1989)

7. Blakeley, J.A., Larson, P.A., Tompa, F.W.: Efficiently updating
materialized views. SIGMOD Rec. 15(2), 61–71 (1986)

8. Chomicki, J.: Temporal query languages: a survey. In: Temporal
Logic (ICTL’94), vol. 827, pp. 506–534 (1994)

9. EMC Corporation: http://www.emc.com

10. Fabbri, D., LeFevre, K., Zhu, Q.: PolicyReplay: misconfiguration-
response queries for data breach reporting. In: Proceedings of the
VLDB Endowment, vol. 3, no. (1–2), pp. 36–47 (2010)

11. Gadia, S.K.: A homogeneous relational model and query languages
for temporal databases. ACM Trans. Database Syst. 13, 418–
448 (1988)

12. Gadia, S.K., Nair, S.S., Poon, Y.C.: Incomplete information in rela-
tional temporal databases. In: 18th VLDB Conference (1992)

13. Garcia-Molina, H., Labio, W., Yang, J.: Expiring data in a ware-
house. In: VLDB Conference, pp. 500–511 (1998)

14. Grahne, G.: The Problem of Incomplete Information in Relational
Databases. Springer, Berlin (1991)

15. GRM LLC: http://www.grmdocumentmanagement.com
16. Guo, S., Sun, W., Weiss, M.: Solving satisfiability and impli-

cation problems in database systems. ACM Trans. Database
Syst. 21(2), 270–293 (1996)

17. Hasan, R., Winslett, M.: Trustworthy vacuuming and litigation
holds in long-term high-integrity records retention. In: Proceed-
ings of the 13th International Conference on Extending Database
Technology, pp. 621–632. ACM (2010)

18. Hasan, R., Winslett, M., Mitra, S.: Efficient Audit-based Compli-
ance for Relational Data Retention. UIUC Dept. of CS Tech Report
UIUCDCS-R-2009-3044 (2009)

19. Hochbaum, D., Moreno-Centeno, E.: The inequality-satisfiability
problem. Oper. Res. Lett. 36(2), 229–233 (2008)

20. Imielinski, T., Lipski, W.: Incomplete information in relational dat-
abases. J. ACM 31(4), 761–791 (1984)

21. Jensen, C.S., Mark, L.: Queries on change in an extended relational
model. IEEE TKDE 4, 192–200 (1992)

22. Jensen, C.S., Mark, L., Roussopoulos, N.: Incremental implemen-
tation model for relational databases with transaction time. IEEE
Trans. Knowl. Data Eng. 3, 461–473 (1991)

23. Koubarakis, M.: Database models for infinite and indefinite tem-
poral information. Inf. Syst. 19, 141 (1994)

24. Lageweg, B., Lenstra, J., Kan, A.: Minimizing maximum late-
ness on one machine: computational experience and some applica-
tions. Stat. Neerl. 30(1), 25–41 (1976)

25. LeFevre, K., Agrawal, R., Ercegovac, V., Ramakrishnan, R., Xu,
Y., DeWitt, D.: Limiting disclosure in hippocratic databases. In:
VLDB Conference, pp. 108–119 (2004)

26. LexisNexis: Document Retention & Destruction Policies for Digi-
tal Data. http://www.lexisnexis.com/applieddiscovery/lawlibrary/
whitePapers/ADI_WP_DocRetentionDestruction.pdf

27. Lomet, D.B., Barga, R.S., Mokbel, M.F., Shegalov, G., Wang, R.
Zhu, Y.: Transaction time support inside a database engine. In:
ICDE, p. 35 (2006)

28. Lu, W., Miklau, G.: AuditGuard: a system for database auditing
under retention restrictions. IN: Proceedings of the VLDB Endow-
ment vol. 1, no. 2, pp. 1484–1487 (2008)

29. Lu, W., Miklau, G.: Auditing a database under retention restric-
tions. In: IEEE International Conference on Data Engineering
(ICDE), pp. 42–53 (2009)

30. Mullins, C.S.: Database Archiving for Long-term Data Retention.
http://www.tdan.com/view-articles/4591 (2006)

31. OpenText Corporation: http://www.opentext.com
32. Perez, R.A., Moreau, L.: Securing provenance-based audits.

In: International Provenance and Annotation Workshop 2010.
Springer, Berlin (2010)

33. RainStor Inc.: http://rainstor.com
34. Rosenkrantz, D.J., Hunt, H.B.: Processing conjunctive predicates

and queries. In: VLDB Conference, p. 72 (1980)
35. SAND Technology: http://www.sand.com
36. Sarda, N.L.: Extensions to sql for historical databases. IEEE Trans.

Knowl. Data Eng. 2, 220–230 (1990)
37. Sarma, A., Benjelloun, O., Halevy, A., Widom, J.: Working models

for uncertain data. In: ICDE (2006)

123

http://www.arma.org/GARP/
http://www.emc.com
http://www.grmdocumentmanagement.com
http://www.lexisnexis.com/applieddiscovery/lawlibrary/whitePapers/ADI_WP_DocRetentionDestruction.pdf
http://www.lexisnexis.com/applieddiscovery/lawlibrary/whitePapers/ADI_WP_DocRetentionDestruction.pdf
http://www.tdan.com/view-articles/4591
http://www.opentext.com
http://rainstor.com
http://www.sand.com

W. Lu et al.

38. Schneier, B., Kelsey, J.: Secure audit logs to support computer
forensics. ACM Trans. Inf. Syst. Secur. 2(2), 159–176 (1999)

39. Shaull, R., Shrira, L., Xu, H.: Skippy: a new snapshot indexing
method for time travel in the storage manager. In: ACM SIGMOD
Conference, pp. 637–648 (2008)

40. Simons, B., Sipser, M.: On scheduling unit-length jobs with mul-
tiple release time/deadline intervals. Oper. Res. 80–88 (1984)

41. Skyt, J., Jensen, C., Mark, L.: A foundation for vacuuming temporal
databases. Data Knowl. Eng. 44(1), 1–29 (2003)

42. Snodgrass, R., Yao, S., Collberg, C.: Tamper detection in audit logs.
In: 13th VLDB Conference, pp. 504–515 (2004)

43. Snodgrass, R.T.: The TSQL2 Temporal Query Language. Kluwer
Academic Publishers, Norwell (1995)

44. Snodgrass, R.T.: Developing time-oriented database applications
in SQL. Morgan Kaufmann Publishers Inc., San Francisco (1999)

45. Snodgrass, R.T., Collberg, C.S.: The τ -BerkeleyDB Temporal
Subsystem. Published: Available at http://www.cs.arizona.edu/tau/
tbdb/

46. Stahlberg, P., Miklau, G., Levine, B.N.: Threats to privacy in the
forensic analysis of database systems. In: SIGMOD Conference,
pp. 91–102 (2007)

47. Toman, D.: Expiration of historical databases. In: Symposium on
Temporal Representation and Reasoning (TIME), pp. 128–135
(2001)

48. Wang, Q., Yu, T., Li, N., Lobo, J., Bertino, E., Irwin, K., Byun,
J.W.: On the correctness criteria of fine-grained access control in
relational databases. In: VLDB Conference, pp. 555–566 (2007)

49. Waters, B., Balfanz, D., Durfee, G., Smetters, D.: Building an
encrypted and searchable audit log. In: NDSS, vol. 6 (2004)

50. Wrozek, B.: Electronic Data Retention Policy (2001).
http://www.sans.org/reading_room/whitepapers/backup/electronic
-data-retention-policy_514

51. ZL Technologies, Inc.: http://www.zlti.com
52. ZyLAB: http://www.zylab.com

123

http://www.cs.arizona.edu/tau/tbdb/
http://www.cs.arizona.edu/tau/tbdb/
http://www.sans.org/reading_room/whitepapers/backup/electronic-data-retention-policy_514
http://www.sans.org/reading_room/whitepapers/backup/electronic-data-retention-policy_514
http://www.zlti.com
http://www.zylab.com

	Auditing a database under retention policies
	Abstract
	1 Introduction
	1.1 Applications
	1.2 Example scenario

	2 Threat model and security objectives
	2.1 Adversaries
	2.2 Threats and security objectives
	2.2.1 Data disclosure
	2.2.2 Maintenance of data holds

	2.3 Achieving security objectives

	3 Data model and audit queries
	3.1 Data model
	3.1.1 Audit log
	3.1.2 Transaction-time relation
	3.1.3 Audit log versus T-relation

	3.2 Audit queries

	4 Describing and applying retention policies
	4.1 Retention policy definitions
	4.1.1 Retention policy composition
	4.1.2 Suppression by variables versus NULLs

	4.2 Sanitizing the audit log
	4.3 Retention policy analysis
	4.3.1 Policy/query independence

	4.4 Supporting preservation rules
	4.5 Physical versus logical policy application

	5 Audit queries under retention restrictions: a tuple-independent model
	5.1 Incompleteness in relations and t-relations
	5.2 Extended relational algebra on incomplete relations
	5.2.1 Selection
	5.2.2 Cartesian product
	5.2.3 Concurrent cartesian product
	5.2.4 Duplicate elimination
	5.2.5 Set difference

	6 Audit queries under retention restrictions: a tuple-correlated model
	6.1 Representing incompleteness
	6.1.1 TC versus TI
	6.1.2 TC versus c-table

	6.2 Extended relational algebra
	6.3 Expressiveness

	7 Complexity
	7.1 Deciding possible tuples
	7.2 Deciding certain tuples

	8 Implementation
	8.1 The physical application of retention policies
	8.2 Audit query evaluation
	8.2.1 The TI model
	8.2.2 The TC model

	8.3 Logical policy implementation
	8.4 Improving query evaluation in TC

	9 Evaluation
	9.1 Experimental setup
	9.2 Performance
	9.3 Accuracy of uncertain answers
	9.3.1 Suppression using variables versus NULLs

	10 Related work
	11 Conclusions and future work
	References

