Upper and Lower Bounds for First Order Expressibility

Neil Immerman

Computer Science Department
Cornell University
Ithaca, New York 14853

Abstract

We continuc the study of first order expressibility as a measure
of complexity, introducing the new class Var &Sz[v(n),z(n)] of
languages expressible with v(n) variables in sentences of size z(n).
We show that when the variables are restricted to boolean values:

BVar &Sz[v(n),An)] = ASPACE &TIME|[v(n),t((n)]

That is variables and size correspond preciscly to alternating space
and time respectively. Returning to variables ranging over an n
clement universe, it follows that:

VafO(1)) = ASPACE[logn] = PTIME

That is the family of properties uniformly ecxpressible with a
constant number of variables is just PTIME.

Thesc results hold for languages with an ordering on the objects in
question, e.g. for graphs a successor relation on the vertices. We
introduce an “alternating pebbling game” to prove lower bounds on
the number of variables and size nceded to express properties
without successor. We show, for example, that k variables are
needed to express Clique(k), suggesting that this problem requires
DTIME[nY .

Introduction and Summary

In [Imm79] we proposed studying the complexity of a property,
C, via the size of a sentence from first order logic necded to express
C. We showed there that the memory space needed to check if a
given input has property C is closely related to the size of C’s
smallest first order description. More precisely:

NSPACE[fin)] C Sizc[f(n)? /log(n)] C DSPACE[f(n)}

Here Size[g(n)] is the family of all properties cxpressible by a
uniform sequence of sentences, F, F, ..., where F_ has Ofg(n)]
symbols.

Reading some papers by Ruzzo ([Ruz79a), [Ruz79b]), on
simultancous resource bounds, we tried to find analagous results for
first order cxpressibility. First we reexamined our proof of the
above containment for fln) =log(n), ie:

NSPACElogn] C Size[llogn] € DSPACF[logXn)],

* Rescarch partly supported by NSF grant no. MCS 78-00418

CH1498-5/80/0000-0074$00.75 © 1980 IEEE

74

and noticed that only a constant number of variables were nceded.
Furthermore while the cxistential quantifiers range over the
elements of the universe of the input, (i.e. 1 to n), the universal
quantificrs could be boolean. Thus we let Var &Szfv(n),2(n)] be the
class of properties uniformly expressible with exactly v(n) variables
and size O[z(n)]. Also let BUVar &Sz[v(n),2(n)] be the same class
with the additional restriction that the universal quantifiers are
boolean. Let "*" abbreviate O[1] . We show that:

NSPACE[logn] C BUVar &S7[*logn] C
C Var&Sz*Jogn] C DSPACE[iog%(n)]

Savitch's simulation of NSPACE[logn] by l)SPACE[Iogz(n)] may
be optimal, but one way of thinking of the difference between the
classes is that DSPACE[log(n)] can simulatc log(n) universal
quantifiers ranging from 1 to n. We conjccture that all three
containments in the above chain are proper, but none are known to
be.

It turns out that BUVar&Sz{* log(n)] is identical to the natural
class Log(CFL) -- those languages log-space reducible to some
context free language. We will also see that the third term in the
above chain, Var&Sz[* log(n)}, is equal to
ASPACLE&AItflog(n),log(n)] -- the class of languages accepted by an
ASPACF|log(n)] ‘Turing machine which makes only Oflog(n)]
alternations between existential and universal states.

Once the idea of counting distinct variables was raised it was
natural to relax the size restriction. Define Vaf*] = U, _,;, Var
&Sz[k.nk] - those propertics expressible with a constant number of
variables. It turns out that Var]*] is identical to polynomial time!
The identity between P and Var[*] is a very pleasing result both
because it indicates that first order expressibility is a fruitful view of
complexity, and because it is another demonstration of the
fundamental importance and modecl independent nature of P.

One weakness of our previous definition of expressibility size is
that it makes usc of the notion of Turing machines in the definition
of a "uniform” sequence of sentences. Our fecling at the time was
that the uniformity condition was an imperfect attempt to capture
the notion that we really had one scntence with a variable number
of quantificrs, just as we have the notion of one Turing machine
with a variable amount of space. Indeed the use of constantly
many variables lcads us to the realization that therc is a syntactic
uniformity -- the n' sentence of a Var &Sz[k,z(n)] property is just
7(n) repetitions of a fixed block of k quantifiers. This new
definition of uniformity makes Var[*] entircly a notion from logic
and thus increases the interest of the fact that it is cqual to P.

Now that we know that 1YTIMFE[n¥] is closcly related to Var{k] it

is uscful to determine which graph propertics can and canot be
expressed with k variables. In Section C we describe a
combinatorial game, a modification of Ehrenfeucht-Fraisse games,
(sce [Ehr61] or [Fra54]). with which we can prove lower bounds on
what can be expressed in k variables. ‘These new gamcs arc an
alternating version of pcbbling games.

Our dcfinition of Var &Sz gives the sentences access to some
arbitrary successor relation, Suc(--), on the universe of the input
structures. Without this added rclation we cannot simulate Turing
machines -- there is no way to say, "Now the 'Turing machine
moves its input head one space to the right” We. showed in
[Imm79] that Suc(-,-) is not needed to express certain "natural”
graph problems such as connectivity; however, it is essential for
other uses such as counting the parity of a totally disconnected

graph.

The games mentioned above give us lower bounds only on what
can be cxpressed without the successor predicate. We show, for
example, that Clique(k) -- the existence of a complete subgraph on
k vertices -- cannot be expressed with k-1 variables, without Suc.
(Of course k variables suffice -- just say there exist LI % forming
a clique.) This is a plausability argument that Cligue(k) is not in
Varlk-1] . If we could prove the latter result, ic. that Clique(k)
cannot be cxpressed with k-1 variables in the language with Suc,
then it would follow that the general clique problem is not in
Var[*]. From this it would follow that P#NP.

In Scction D we also consider the graph isomorphism problem.
If we knew, for example, that Graphlso were in IDTIME[n'&(®)]
then it would follow that this property could be written with]dg(n)
variables without successor. Thus a pair of graphs, <G,H>, satisfy
F, . a sentence with log(n) variables, if and only if they are
isomorphic. Clearly <G,.G>F=F, . Now supposc that GEVar[Iogn H,
i.e. G and H agree on all log(n) variable sentences. It follows that
<G,H>FF, and thus G and H arc isomorphic. We have shown:

Graphlso € Var(w.o. Suc)[v(n)] <
vGVH (|Gl=Hl=n = [G=H © GEVar[v(n)]H])

In DTIME[n®] we can check if G =vary H. Thus a near
optimal algorithm for Graphiso may be to find the correct v(n) in
the above equivalence, and check if G = Varjv(n)] H .

We mentioned above a proof that Clique(k) cannot be expressed
in k-1 variables without Suc. This is shown by building graphs G
and H-such that G =, k-] H and yet G has a k-clique while H
does not. Clearly G and H are not isomorphic. Thus we have a k
variable (without Suc) lower bound on Graphlso. This is a
plausability argument that” Graphlso is not in P.

In the following pages we give: (A) Definitions and motivations;
(B) Statements of some of the main relationships between
expressibility and Turing machine Time and Space; (C) The
alternating pebbling game; (1J) Probabilistic graph arguments
following [Fag76] and [BIHa79] showing that Hamilton Circuit,
Clique, and Graphlso arc not in Var(w.o. Suc)*}; and (E)
Conclusions and directions for future research.

75

Section A: Definitions and Motivations

We propose to study the complexity of a condition, C, by asking,
"How difficult is it to express C?" For this expression we choose
the natural first order language of the objects under consideration.

Think of a directed graph, for example, as a universe, V, the
vertices, together with a binary cdge relation E(--) on V. This is a
logical structure of similarity type TG = {E(-,-)}. The language of
a type, 7, Lr], consists of the sentences built up from the symbols
of 7 using the logical connectives &, "or”, =1, =>, variables x.y, ... ,
=, and quantifiers, Ix and Vx, ranging over the universe. For
example, consider the following sentence from Lfrgl:

Vx 3y [E(xy) or F(yx)]

S, says that cach vertex, x, has an edge coming out of it or an edge
going into it. A graph satisfics S; (in symbols GI=S8,) if it has no
isolated vertices. Note that every graph G "understands” every
sentence S from Lfrg) ie. GF=S or GE=—8.

S, =

To motivate the definitions for variable and size expressibility we
now consider a stepwise refinement of sentences cxpressing a
specific problem. Let GAP be the sct of directed graphs G with
specified points a and b such that there is a path in G from a to b.
In symbols:

GAP = { G| a»*>b}

GAP is known to be complete for NSPACE[log n). (See [Sav73).)
We show in [Im80a] that GAP is complete in a very strong scnse --
every problem C in NSPACFK[log n] has a first order sentence
translating all instances of C into instances of GAP.

To express GAP we will write down formulas Pn(a,b) meaning,
“There is a path of length at most n from a to b." We define P
by induction as follows:

Pi(xy) = (x=y)orExy) 1))

Py = (P00 & zy)) @

Equation (2) defines Pn in a way that increases the quantifier
depth by one cach time n is doubled. However P, is written
twice on the right so the size of this P is twice the size of P, .
We can alleviate this problem using the "abbreviation trick” (see
c.g. [FiRa74]). The trick uscs universal quantificrs to permit us to
write P, only oncc on the right. Thus:

P (xy) =

We have now written P with Oflog n} symbols, thus proving
that GAP is in Sizeflog n], to be defined.

LzVuVwu=x&v=z or u=z&v=y]=P_uy) (3)

Continuing in our refinement notice that when we write
P /5(u,v) we may reuse x,y,z -- their current values are no longer
needed. Being slightly wasteful for the sake of clarity, write:

FzVuVw ([u =x&v=z or u=z&v=y]=
Iy =u&y=v& P (x.y))

P (xy) =
@

We have succeeded in expressing GAP by a uniform sequence
of sentences, {P_(a,b) [n>1}. such that P has 5 variables and size
Ollogn). This suggests the following:

Definition: A set C of structures of - type = is expressible in v(n)
variables and size z(n), (in symbols, C is in Var &S[v(n),xn))), if
there exists a uniform scquence of sentences F| F, .
1[rU{Suc}] such that :

a For all structures G of type 7 with |G|<n, and for all
Sucy(-,) a valid successor relation on the universe of G,

GEC < <(GSwy>FF,

b. F, has v(n) distinct variables and a total of O[z(n)] symbols.

As Ruzzo has shown in [Ru79b], uniformity conditions may be
greatly varied without significantly changing a dcfinition. ‘The
following condition will suffice in what follows:

Uniformity Condition (*): The map n — F_ is generable in
DSPACE[v(n).logn] and DTIME[z(n)].

Of coursc (*) does not capture our intuitive feeling that the F’s
arc all the same sentence with varying numbers of quantifiers. To
make the latter notion more precise abbreviate quantificrs with
restricted domains as follows: .

x.M[.]=M&.]
(Vx . M).] = VxiM=.]

Now we can write Equation (4) more compactly as:
P (x.y) = JzVu(Vv.M,;)Ix3y . M) P, (xy) 5)

Here My = [u=x&v=z or u=z&v=y}, and M5=[x=u&y=v].
Equation (5) gives a model for the following totally syntactical
definition of uniformity for Var&Sev,z(n)] :

read, "There exists x such that M."
read, "For all x such that M."

Uniformity Condition (**): There cxist constant ¢ and formulas
A.B, and quantificr free formulas M, .. Mv all of which have

variables only x; .. x, such that:

F =

n

A (@Qx.M)..@Qx, . M,)) com times g

We adopt (**) as our definition of uniformity for Var
&S7[v,#(n)] when v is a constant, otherwise we usc (*). It follows
that GAP is in Var &Sz[5logn], NSPACE[logn] is in Var
&SzJk.logn), and indeed:

Theorem A.l: For s(n) > log(n),

NSPACH[s(n)] C Var&Sr{O[s(n)/log(n)],s(|1)2/log(n)]
C DSPACEIs(n)

proof sketch: The proof is nearly the same as for Theorem 2 in
{Imm79]. We showed there that NSPACE[s(n)] € Size[s(n)¥/log(n)]
C DSPACH[s(n))]. That proof noted that a Turing machine
instantancous description (ID) of size s(n) could be coded in
Ofs(n)/log(n)] variables since the variables range over an n clement
universe. Thus using equation (3) we asserted the cxistence of a
computation path of length c*™; Ofs(n)] ID's were nceded. For the
proof of the first inclusion in Thecorem A.l we use cquation O]
instead. Thus only a constant number of ID's, requiring
O[s(n)/log(n)] variables, must be remembered at once. 1

from,

76

Let's return to Equation (4) and notice that in simulating an
NSPACH[logn] property, two universal quantifiers ranging from 1
to n arc used. Their purpose is only to make a choice between the
first half and the sccond half of the path. It makes sense to
minimize the universal choices when simulating an existential class
so we replace "VuVv" in Equation (4) by "Vb", where b is boolean
valued. Thus:

P (xy) = 32¥bIudy ([(b=0&u=x&v=z) or (b=1&u=2&v=y)]
& MIy[x=u&ky=v & P ,(xy)]) ©

Define BUVar&Sz[v(n),z(n)] to be the family of propertics
cxpressible in v(n) variables and size O[#(n)] where the cxistential
quantificrs still range from 1 to n, but the universal quantifiers are
boolean. Thus it is casy to, sce that GAP is in BUVar &S[k,logn],

and morc generally,
Theorem A.2: For s(n) 2> log(n),

NSPACH[s(n)] C

BUVar &S7[O[s(n)/log(n)] . s(n) 2 /log(n)]

Section B: Variables & Size versus Time & Space

Recall a definition and result of Sudborough [Sud78]:

Definition: AuxPDA[s(n).t(n)] is the class of languages accepted by
a two way nondeterministic push down automaton with auxilliary
work tapc of size s(n), running in time t(n).

Fact (Sudborough): AuxPDA[log(n), n*] = Log(CFL).

In {Ruz79a} Ruzzo defines an accepting computation tree of an
alternating Turing machinc M to be a trec whose root is a smrti'ng
ID of M, whose nodes arc intermediate [1)'s, and whose leaves are
all accepting configurations. Each universal node, u, has all its
possible next moves as offspring, while the cxistential nodes, ¢, lead
to exactly onc of ¢'s possible next moves. We say that a language
C is in ASPACE & 1S[s(n).z{n)] if all members of C of size n are
accepted in a computation tree using space s(n) and tree size,
(number of nodes), z(n). Ruzzo relates this new measure to
auxilliary pda’s via,

Fact (Ruzzg): ASPACE &1S[s(n)z(n)*] = AuxPDA[s(n),2(n)"] .

Notice that both the tree size model and the AuxPDA charge
much morc for universal moves than for cxistential oncs. The
following thcorem shows that we get the same classes in our
expressibility measure by restricting all universal quantifiers to be
boolean. In a sense we charge log(n) times as much for a universal
choicc as for an existential.

Theorem B.1: BUVar&S#{O[s(n)/log(n)] , z(n)]
= ASPACE&TS[v(n)log(n), s*™]

proof: (C): Given an input structure G with n clement universe
we can generate F. , the n'™ sentence in our uniform sequence,
We must show that in ASPACE &1'S[v(n)log(n), **™] we can check
if GFF,

To test if G satisfies F,, we read the sentence from left to right
holding the present values of variables x, ... Xyn) in our v(n)log(n)
memory. Note that each non-boolcan variable may have value 1 to
n corresponding to an element of G. At existential quantifiers, I,
we cxistentially choose some x; from the universe of G and at
universal choices, Vb, , we universally choose b. . When we come

. X 1 R
to atomic predicates, e.g. E(x; ,x,) or bj; =0, we can check their
truth because we have the current values of the variables. Note
that this accepting procedure has tree size *%™ because we may
make a binary universal split Ofz(n)] times.

(2) Here we follow a proof of Ruzzo [Ruz79a). We must
express the property Accept(r,z) which means that the altcrnating
Turing machine M will accept in tree size z when started with ID r.
We express Accept(r,z) by choosing a point p in the middle of the
tree whose subtree is of size between 1/3 and 2/3 of the original
tree. Thus,

Accept(r,z) = 3p (Accept(r<p>,(2/3)z) & Accept(p,>,(2/3)z))

Here Accept(r.<q, .. q,>,z) means that there is a computation
tree of size z starting at r such that each leaf is either an accepting
configuration or one of q, .. q, .

Our only trouble is to insure that the list <q; .. q,> stays of
constant size. Whenever the list is of length three we take an extra
move to split it in half by finding a point p above two of the three
nodes in the list,

Accept(r<q,; .9,,q;>.2) = 3p(A¢:ccpt(r,<ql) &
Accept(p,<q,,93>,2))

Note that in the above we can add a boolean universal quantifier
and use the abbreviation trick to write Accept(-) only once on the
right. Also note that the above is a slight lie since we don’t know
which pair of q’s p will be above. In fact we would have to say,

3p (3s, 8, 55, a permutation of g, q, q;)(Accept(r,Ss) ,p>,2) &
Accept(p,<s, .83 ,2))

Thus we can write Accept(-) with a constant number of ID’s, i.e.
v(n) variables, and the size of the sentence is Oflog(z)] . This
proves Theorem B.1. 1

Corollary . B.2:

a. BUVar&Sz{*log(n)] = Log(CFL)

b. Var[O[v(n)]] DTIME[nOM®] |
c. Vard'] PTIME

1]

proof:
(a): From the above theorem, together with the results from

Ruzzo and from Sudborough:

BUVar &Sz[*,log(n)] ASPACE&TS[log(n),n*]
AuxPDA[log(n),n*]

Log(CFL)

77

(b): By our uniformity condition the n'h sentence of a Var{v(n)]
property can be generated in DSPACE][v(n)log(n)] and so it is of
size at most nOM™! Restricting the universal quantifiers to be
boolean at worst increases the size by a factor of log(n). Thus:

Var{O[v(n)y Var&SzO[v(n)},nOl®) |
BUVar&Sz{O[v(n)],nO"®]]

non

Using Theorem B.l,

ASPACE&TS[v(n)log(n),2 "OV™
ASPACE[v(n)log(n)]
DTIME[nOM®]

I

1]

(c): This is a special case of (b). 1

The above corollary rounds out a pleasing relationship between
expressibility and computation. We have shown:

1 The size of a sentence needed to express condition C is
polynomially related to the amount of memory space needed
to check if C holds for an input, and,

2. Conditions which can be exprcssed with v variables are just

those conditions which can be checked in DTIME[ROY)

The next theorecm generalizes the above results giving a
remarkably close relationship betwcen cxpressibility and alternating
machine complexity. lLet BVar &Sz[v(n),z(n)] be those properties
expressible in a sentence with v(n) boolean variables and size z(n).
For each predicate symbol, E, we add the predicate symbols, E; ,
E, .. where E (b, ... bl‘,gn 5 €y -) means E(h,c) where b has

7 “ Clogn
binary vertex number b1

logn *

Theorem B.3: ASPACE &TIME[s(n),t(n)] = BVar&Sz[O[s(n)],t(n)]

proof: (2): Given an input structure G with n element universe
we can generate F the n't clement in our uniform sequence. We
must show that in ASPACE&TIME[s(n),t(n)] we can check if
GkFF, .

To test if G satisfies F|| we read the sentence from left to right
holding the present values of the variables b, ... bs(“) in our
memory. At quantifiers 3b, or Vb, we makc the appropriate
existential or universal choice of a new valuc for b; . Similarly at
&'s (or "or"s) we universally (or existentially) choose one branch
and proceed. Wec have G and the values of the variables so we
may check the truth of atomic formulas: b=0, or E(b, ... Clogn), in

number of steps a constant times their length.

(€) Going the other way we must write the sentence,
Accept,(r) meaning that alternating Turing machine M when started
at instantaneous description r will reach acceptence in t steps. We
accomplish this by saying that if r is existential then there exists
some next step x and Accept,; (x), whereas if r is universal then for
all next steps x, Accept.; (x) .

A technical difficulty here is that if at each step we recopy the
entire 1D then the size of the resulting sentence will be s(n)t(n). To
simplify the problem let us assume that the moves of our Turing
machine alternate at every step and branch into at most two moves.
Thus we can write,

AccepID,] = 3b, ¥b,...Q, b, 3ID, (1D - b, ..b, - ID;
& Accepl[ID,])

Here "[D,—b; ... b—ID," means that there is a computation
whose i" move makes the bi"‘ choice and leads from 1D, to 1D, in
s steps. This is a deterministic computation of length s and,
although we omit the details, it can be asserted to exist with Ofs]
symbols. 1

We have demonstrated an exact relationship between alternating
Turing machines and quantified boolean formulas. If we return to
the morc natural language of the input structures, i.e. variables
ranging from 1 to n, then the needed number of variables to
simulatc s(n) space becomes s(n)/log(n). It is not clear, however,
how to do better than size t(n) to simulate time t(n) because the
machine might go through t(n) alternations. Thus we can only
show:

Corollary B4: For s(n) > log(n),

ASPACE&TIME]s(n),t(n)] C Var &Sz[O[s(n)/1og(n)},t(n)]
C ASPACE&TIME[s(n),t(n)log(n)]

Let ASPACE&AIts(n),a(n)] be those problems accepted in
alternating space s(n) with at most a(n) alternations between
existential and universal states. Then:

Corollary B.5: Let s(n) > a(n)log(n). Then:

ASPACE&AIt[s(n),a(n)]
C Var&Sz[O[s(n)/1og(n)],(a(n)+s(n))s(n)/logn]

and in particular, ASPACE &Altflog n,log n] = Var &Sz{* log n]

proof: To assert the acceptence of an ASPACE&AIt[s(n),a(n)]
computation we assert the existence of a(n) ID’s where the
alternations occur. Each path between the ID’s has no alternations
and so can be expressed in Var&Sz{O[s(n)/log(n)] , s(n)? /log(n)]
by Theorem B.1 . We write ACCEPT, (ID;) to mean that ID0
leads to acceptence in a alternations:

ACCEPT,, (ID,) = 31D, (EPath(iD; ,ID,) & ACCEPT,, , (ID)))

ACCEPT,, , (ID,) = VI, (APatn(D, , IDy) =
ACCEPTy,, (ID))

Note that in the above EPath(x,y) and APath(x,y) are the
Var&Sz[O[s(n)/log(n)},s(n)?/log(n)] formulas which assert the
existence of a computation path from x to y all of whose
intermediate states arc cxistential, respectively universal. We can
use the abbreviation trick to conglomerate thc two terms on the
right, making the size of Accept, (-) equal to:

aes(n).log(n) + Size(EPath)
= (a(n) + s(n))s(n)/log(n), as desired. |

The above corollary interested us espccially because we now
have natural classes, [.og(CFL) and ASPACE&AIlt[logn,logn],
identified with both of the the intermediate terms in the following
containment:

Corollary B.6: NSPACE[logn] C BUVar &Sz[k,logn]
C Var &Szk,logn] C DSPACE]log? (n)}

Corollary B.6 which comes immediately from Theorems B.1 and
B.2 sheds some light on the difference between DSPACE[log? (n)]
and NSPACE[logn] . We conjecture that all three containments
above are proper, but it is not even known that NSPACE[log(n)]
DSPACE[logX(n)] .

It makes sense to consider a sentcnce with k variables which is
of length greater than n¥ . Similarly we can consider an
ASPACE[logn] machine which runs for more than nk steps.
Generalize the definition of ASPACE &TIME[s(n),t(n)] to be the
family of languages accepted by an ASPACE[s(n)] machine with a
t(n) clock. Such a machinc’s accepting configuration is an accept
state with the clock equal to 0, however the machine is never
allowed to look at its clock. With this definition Theorem B.3
makes sense and is true for all t(n). It is now possible to ask,
“What is ASPACE &TIME[s(n),t(n)] with t(n) > 25® 7"

Corollary B.7:
a. ASPACE &’l‘lME{log(n),n'] = Var&Sz[*,n'] PTIME

b. ASPACE &TIME[log(n)2n"] = Var&Sz*2n"] = PSPACE

proof: We have alrcady shown line (a) in Corollary B.2 . The left
hand cquality of line (b) follows from Corollary B4. The two
containments of the second equality are proved as follows:

(Var &Szj‘,zn‘] € PSPACE): We are given an input structure, G,

of size n, and a sentence, F, ,with k variables and size 20", Check
whether G=F as follows:

Assume that all =’s have been pushed through to the inside and
consider the parse tree for F,. Each of the k variables may take on
any of the n values of the universe of G. Starting at the leaves of
the parse trec make a list of all the k-tuples of assignments which
make the given nodes true in G. We can pass up the tree toward
the root computing the values making each node true as we go.

For example, an "&" node’s list is gotten by intersecting the
two lists it leads to, a "Vx; " node gets those tuples <-x, ... x>
which are in the preceding node’s list with all values of Xy .

When we reach the root either our list will have all n*
possibilities or it will bec empty, since F, has no free variables.
GE=F_ if and only if we are in the former.case. At most two of
the k-tuples must be rembered at once, so PSPACE suffices.

(Var &S7*2""] D PSPACE): We show how to describe a
computation of Turing machine M runhing in
DSPACE&TIME[s(n),t(n)]. We will construct formulas, C(px),
mcaning, "Symbol x occurs in cell p at time t." C, (p.x) will be
written with Oflog(s(n))/log(n)] variables.

The idea is to say that there exists a triple of cell values X3 Xo
x; n the previous move which lead to x in onc move of M, and X;
occurs in cell p+i at time t-1. In symbols:

C.px) = I xgx, (x_lxox]-»l—’x & /\iz_l_..ICt_l(pH,xi))

We can use the abbreviation trick to write C_; only once on the
right. Note that p is a Oflog(s(n))/log(n)]-tple of variables coding

a tape location Iess than s(n). The sentence Cl can be written with
Ollog(s(n))/log(n)]- variables and sizc O[t(n)]. For a polynomial
s(n) this gives a constant number of variables as desired. B

Right now linc (a) is what we call ASPACE[log(n)] and Var{*],
but it is not clear whether or not linc (b) deserves at lcast the latter
name.

Section C: Altcrnating Pebbling Games

In this section we present a new pebbling game to obtain lower
bounds for Var&Sz(w.o. Suc). This game is a modification of
Ehrenfeucht-Fraisse games. (See [Fra54] or [Ehr61].) Two players
play the p pebble, m move game on a pair of structures G, H.
Player 1 places pebbles on points from G or H trying to
demonstrate a difference between them while Player II matches
thesc points trying to keep the structures looking the same. We
will sec in Theorem C.1 that if Player Il has a win for the p pebble,
m move game on G and H, then G and H agree on all propertics
cxpressible in Var&Sz(w.o. Suc)[p,m].

Definition: The p pcbble, m move game on G and H is defined as
follows: Initially the pebbles, g, - 8y h , arc off the
board. On move i, Player | plcks up a pcbblc g &)r h), 1<i<p,
and places it on a vertex of G (or H). Player Il answcm by placing
h (or g) on a corresponding point of H (or G). l.ct g (i) be the
pomt on which g is sitting just after move i. After cach move i,
0<i<m, decfine thc map f as follows:

A g @ = h @)

The map f; takes the constants in G to the constants in H, and
chosen points in G to the respective chosen points in H. We say
that Player 11 wins if for cach i, 0<i<m, f; is an isomorphism of
the induced substructures.

The quantifier rank of a sentence, @, is the depth of -csting of
quantifiers in ¢. Since the quantifier rank of ¢ is obviously less
than the size of ¢, the following thcorem shows that the p,m game
gives a Var&Sz[p.m] lower bound on the cxpressibility of any
property on which G and H differ.

Theorem C.1: Player 1T has a winning strategy for the p,m game
on GH if and only if G and H agrec on all scntences with p
variables and quantifier rank m.

We will give the proof, a minor modification of proofs in [Fra54]
and [Ehr61]}, shortly. First we will give an example. Consider the 4
pebble, d+1 move game on undirected graphs G and H where H is
disconnected while G is connccted with diameter d.

Player I wins the game as follows: On the first two moves he
puts pebbles h, , hy; on vertices a,b such that a and b arc in
distinct components of H. Player II must place g, , g; on some
vertices ¢,f from G. There is a path of length at most d from ¢ to
f. Playcr I now uscs the next d-1 moves to walk along this path
with pebbles gy and g, . Player Il must answer with a path in H
starting at a, and thus ncver rcaching b. Thus at move d+1, two
pebbles will coincide in G but not in H and Player I wins.

79

Figure I: The 4,d+1 gamc on G and H.

G

Notice that Player I's strategy was to follow the following
sentence, true in G but not in H: (et M(u,v) = E(u,v) or u=v.)

Diam(d) = Vx¥xy 3%y (Mo, x) & 3,5, (Mo x)) &
355y (M0 x) &8 34, (MG,) & MG, xy).)

Also noYe that there is a sentence equivalent to Diam(d) with
only 3 variables and log(d)+1 quantifier depth which Player I
would have played had he known about it.

proof of Theorem C.1: (=). Suppose there is a sentence S with
p variables and quantifier rank m such that G satisfics S but H
does not. We must show that Player T wins the p pebble, m move
game on G and H. This is proved by induction on m:

base case: If m=0 then G and H differ on a quantificr free
sentence, i.e. the constants in G satisfy a formula that the constants
in H do not. Thus they arc not isomorphic so Player I wins the 0
move game.

inductive step: If S is of the form —A, or A&B, then G and H

must disagrec on one of A or B. Thus we may assume that S is of
the form 3x; M(x;). Here Player [places pebble g; on some
vertex g, (1) from G so that GE= M(g; (1)). No matter what II
answers we will have HE= "1M(hl (1)) . Thus by induction Player
I will win.

Note that in the inductive step we have placed pebble g, so we
must consider what happens if we later need g, again. The answer
is that in M(g, (1)) the substitution of g, (1) is made for all free
occurrences of x, . If later on in the game we need to place g,
again it will be for some sentence §' = Qxy N(x;). Inside S’ all
occurrence of x; arc bound by Qx, , thus g, (1) does not occur
and pcbble g; may be safely reused.

(&). Conversely suppose that G and H agree on all sentences
with p variables and quantifier rank m. We must show that Player
1T wins the p pebble, m move game on G and H. 'To facilitate an
inductive proof we must slightly strengthen our claim. We prove
the following:

Claim: Let k<p and supose that (G,CIG ckG> and <H, c1”

ckH> agree on all sentences S with new constants c; ... ¢, variables
X; - %, quantifier rank m, and such that nowhere in S does c;
occur within the scope of a quantifier for x; . Then Player I has a
win for the p pebble, m move game on G and H when stasted with

the first k pebbles on ¢,% .. ¢,9 and ¢! .. ¢! Tespectively.

Note that with k=0 the claim reduccs to what we need Lo show.

We prove the claim by induction on m. For m=0 the map
from the constants in G to the constants in H and ch ckG to

c1" must be an isomorphism or clsc there would be a

oH
- €y
quantifier free sentcnce on which the two structures disagree.

For the inductive step asume that the premise of the claim holds
and let Player I move placing, let us say, pebble g on g (1.

Consider the (finite) collection of sentences S, (x;) ... S, (x;), in
the language of G together with constants c, ... ¢, such that <G.c26

noOEs @) tas=3x (AL, | Sa)).
Thus, <Gc,® .. ¢ = 8.

Thus, by our assumption, <H, ¢,1 ... ckH> also satisfies S. Let
hy(1) be a witness for x; in S. Now <G.g,(1)c,% ... ¢,©> and
(H,hl(l),czu ckH> agrec on all sentences, R, of quantifier rank
m-1 and variables x; ... x, such that no c; occurs within the scope
of a quantifier for x; . 'This is because any such R(cl) satisfied by
G would be an §; above and thercfore also satisfied by H.

Our inductive asumption now shows that Playcr Il wins the
remaining m-1 moves of the game, proving the claim. This proves
Theorem C.1 . 1

Before we apply ‘Theorem C.1 it is uscful to give a slightly
different characterization of G=y, 5, H. What docs it mean when
G and H agree on all k variable sentences without successor? The
idea is that if Player 1 chooses any r-tuple of points from G, r<k,
then there is a corresponding isomorphic r-tuple from H.
Furthermore if Player | adds a point to the tuple in G, and Kk,
then there is a corresponding point in H which may be added
preserving the isomorphism.

We have thus deduced the existence of a relation R on pairs of
r-tuples from G and r-tuples from H, i.e. R C U ook G* X HE,
satisfying:

a R(G,O)
b. R(igh) = g =~ h

80

¢ (Regh& igkk) = (Vx€G Iy€l RKgx>hy>)
& (VyeH :EG Rigad><hy»)

d. Ifg =<g, ... g > let 'g‘i =<g; - 8. Biyq B > bethe
r-1 tuple with g; removed. ‘Then:
Righ) = REH;) i= 1.

Proposition C.2: GEVarlk] H if and only if there exists a relation R
satisfying (a - d) above.

proof: It should be clear that R corresponds to Player [I's winning
strategy in the k pebble game on G and H. ‘Thus if such an R
cxists then Player II can always win by matching chosen r-tuples in
G with R-related r-tuples in H. Assume R(<g; (s) ... g, (s>,
<hy(s) ... hy (sP) i.c. the chosen points after move s are R-related.
Think of Player I's moving of pebble g as two actions. [irst he
picks up §g; . By (d) we know R(f;\i (s), 1?. (s))>. Next he places 8
back on somc new point g, (s+1). By (c) there exists y in H
preserving the relation, i.c. with hi (s+1) =y, R(g(s+1)hs+1)).
In particular g(s-+1) and h(s+1) arc isomorphic, and Player 11 wins.

Converscly, . if G"‘-—'Var[k] H then define R from Player II's
winning stratcgy as follows:
R =

The k pebble game on G and H, started
(<X e x 2y ¥ fwith g(O)=x; h(@)=y; i=1.. 1, isa
forced win for Player 11,

The fact that Player II has a winning strategy for the k pebble
gamc on G and H gives us (a). (b), (c), and (d) follow from the
rulcs of the game.]

Section D: Lower Bounds for Var(w.o. Suc)[k]

Following [Fag76] and [BIHa79], we write certain axioms for
graphs. First:
vavy (—Ho) & [Bo) = Fyol)

T, says that G is loop free and undirccted. We will assume in
this scction that all graphs satisfy Ty .

T0 =

Fix k and let 1<j<k-1. The following sentences, S, o say that
for any choice of distinct vertices, x, ... x, and Kig1 = Xgp there
exists a vertex y different from the X; 's with an edge to every
vertex in the first group and no cdge to the second group.

¥y Vo (g 1% %,) =
Iy [N1 BOX) & A (v2x; & DB ”)

Sk,j =

We use the S, . s to write T, , an axiom which says that every
conccivable cxtension of a configuration of k-1 points to a
configuration of k points is realizable.

T, = A(Xj(k Sy

A counting argument shows that almost all graphs satisfy T, .
Define P (8), the probability that a graph of size n satisfies a
sentence S, as follows:

P.(S) = #{G|GES,|Gl=n}/ #{G||G] =n}

Theorem D.1 ([Fag76], [BIHa79]): For any fixed k>0,

limy 00 Py(Ty) =1

proof: Given j<k, and distinct vertices x; .. x,, what is the
probability that a random vertex y is a witness for S, . 7 It's just
the probability that the k-1 possible edges E(x; .y) are correctly

present or absent, ie. 17251
Thus the probability that none of a random n-(k-1) vertices is a
witness for S, i is:

(1-qzxry)mD < ot

The probability that any of the fewer than nk

Xgq » J » cause Tk to fail is less than

nk-ak

sequences, X; ..

and this last probability goes to 0 as n goes to infinity. []

We arc interested in T, because of the next result:
Theorem D.2:
(GET, & HE= Tk)

For any two graphs G and H,

=

G =varf) H

proof: Tk says that every k-1 tuple may be extended to a k tuple
in any conccivable way. It follows that the relation:

R = {2 ><b;..b,) ’ 0<r<k, 2 €G,b; €H, & }
<a;..a >=~<b,..b>

satisfics (a) - (d) of Proposition 4.3 . Thercfore G =varjk] H. 1

Corollary D.3: Graph Isomorphism is not in Var(w.o. Suc)k] .

proof: If Graphlso were in Var(w.o. Suc)k] then there would be
sentences F; JF, ... with k variables cach such that for graphs G
and H of size n,

GHEF,

© G~H

By Thcorem 4.1 there exist two non-isomorphic graphs G, and
H, both satisfying T, . Clearly <G,, G >F=F, . But by Theorem
42, Gk Syark Hk . It follows that Player 11 wins the k pcbble
game on <G, le> and <G, Gp>. Her strategy is to answer points
in the first compor.nt with the same point in the other copy of G,,
and to usc Player II's winning stratcgy for the k pcbble game on
G, and H, to answer moves in the right componcnt. Thus,

<G, H > F Fn , but G, is not isomorphic to H, .

This contradiction proves the corollary.]

Almost all graphs have a Hamilton circuit; however, in [BIHa79]
it is shown that for any k there is a graph H, which satisfies T,
and yet has no Hamilton circuit. It follows that there exist two
graphs, G,, H, , both satisfying T, and yet differing on the
property of having a Hamilton circuit. Thus:

81

Theorem D.4: “Hamilton Circuit” is not in Var(w.o. Suc)[¥].
Using similar techniques we can show the following:

Theorem D.5: Clique(k+1) is notin Var(w.o. Suc)[k] .

proof: Recall that Clique(k+1) is the set of graphs with a
f:omplctc subgraph of size k+1. Clearly any graph satisfying T
is in Clique(k+1). We show that there exists a graph H, =T

such that H, has no k+1 clique. Dcfine the graph A, =(V E s
as follows: e

Vn
En

{<i.p11<i<k 1<j<n}
{01 2K.0,2) | iy #0, }

Notice that A has no k+1 clique because any set of k+1
vertices will have two with the same first coordinate.

Let A" = (V, ,E,") be a random subgraph of A, . ic. cach
edge of E has probability 1/2 of being in En’. Now lim,_, o
Prob(An’ = T,) = L. (This follows from the same argument as in
the proof of Theorem 4.1, noting that every k-1 tuple from V, has
n points potentially satisfying Ty) Let H,, be such a random A ",
Thus H, satisfics T, but has no k+1 clique. !

Section D: Conclusions

We have shown that first order expressibility is a viable view of
computational complexity. We feel that it is a natural way to
obtain both upper and lower bounds. The alternating pebbling
games makc the finding of optimal descriptions of graph properties
(without successor) a tractable problem. Furthermore our
simulation thcorems show that optimal sentences (with successor)
for a property C can be easily translated to nearly optimal
algorithms for checking C.

The following genecral arcas of exploration are suggested:

(1): Find upper and lower bounds on Var&Sz(w.o. Suc) for a
collection of graph problems such as planarity, graph

homeomorphism, vertex matching, etc.

(2): Improve the simulations of Section B, and then try to prove
optimality. Exactly how many variables are needed to

describe a DTIME[n¥] computation?

(3): Develop techniques to prove lower bounds on Var&Sz, i.e.
with successor. This scems hard but worthwhile; possible

techniques are discussed in [Iin80a] and [Im80b).

Warm thanks to Juris Hartmanis, my thesis adviser.

Acknowledgements

Many

thanks to John Hopcroft, Albert Meyer, and Michael Morley for
helpful technical discussions. Thanks to MIT’s Laboratory for
Computer Science for letting me visit the summer of 1980, where
and when this paper was completed.

[AHU74]

[BIHa?9] :

[ChSt76] :

[Ehr61] :

[End72} :

[Fag74] :

[Fag76] :

[FiRa74] :

[Fras4] :

[HIMT8] :

[Imm79] :

(Im80a] :

References

Aho,A., HopcroftJ., UllmanJ.,, The Design and
Analysis of Computer Algorithms, Addison-Wesley,
1974.

Blass,A., Harary,F., "Properties of Almost All
Graphs and Complexes,” J. of Graph Theory Vol. 3,
1979, pp. 225-240.

Chandra,S., Stockmeyer,L., "Alternation,” Proc. 17th
FOCS, 1976, pp. 98-108.

Fhrenfeucht,A., "An Application of Games to the
Completeness Problem for Formalized Theories,”
Fund. Math, Vol. 49, 1961, pp. 129-141.

Enderton,H., A Mathematical Introduction to Logic,
Academic Press, 1972.

Fagin R., "Generalized First-Order Spectra and
Polynomial-Time Recognizable Sets,” in Complexity
of Computation, (ed. R.Karp), SIAM-AMS Proc. 7,
1974, pp. 43-73.

, "Probabilities on Finite Models,” JSL
Vol 41, No. 1, 1976, pp. 50-58.

Fischer M., Rabin M., "Super-Exponential
Complexity of Presburger Arithmetic,” in
Complexity of Computation, (ed. R.Karp), SIAM-
AMS Proc. 7, 1974, pp. 27-41.

Fraisse,R., "Sur les Classifications des Systems de
Relations,” Publications Sc. de I'Universite d'Alger,
L 1954.

Hartmanis,J., Immerman,N., Mahaney,S., “"One-Way
Log Tape Reductions,” Proc. 19th FOCS, 1978, pp.
65-72.

Immerman,N.,, "Length of Predicate Calsulus
Formulas as a New Complexity Measure,” Proc.
20th FOCS, 1979, pp. 337-347.

, "First Order Expressibility as a
New Complexity Measure,” Ph.D. Thesis, Cornell
University, August, 1980.

82

[Im80b] :

[Koz76] :

[Rei79] :

[Ru79a] :

[Ru79b] :

[Sav70] :

[Sud78}:

, "Number of Quantifiers is
Better than. Number of Tape Cells,” to appear in
JCSS, 1980.

Kozen,D., "On Parallclism in Turing Machines,"
Proc. 17th FOCS, 1976, pp. 89-97.

Reif)., "Universal Games of Incomplete
Information,” Proc. 1lth SIGACT, 1979, pp. 288-
308.

Ruzzo,W, "Tree-Size Bounded Alternation,” Proc.
11th SIGACT, 1979, pp. 352-359.

, "On Uniform Circuit Complexity,"
Proc. 20th FOCS, 1979, pp. 312-318.

Savitch,W., "Maze Recognizing = Automata and
Nondcterministic Tape Complexity,” JCSS 7, 1973,
pp. 389-403.

Sudborough,l., 'On the Tape Complexity of
Deterministic CFL's," JACM Vol. 25, No. 3, 1978,
pp. 405-414.

