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OVar &Sz[v(n),z(n)] = ASPACE &TIME[v(n),t(n)]

That is variables and size correspond preciscly to alternating space
and tiane respcctively. Returning to variablcs ranging ovcr an n
e)enlcnt universc, it fo)Jows that:

Abstract

We continue the study of first order expressibility as a measure
of complexity, introducing the new class Var &S7~v(n),z(n») of
languages expressible with v(n) variables in sentences of size z(n).
We show that when the variables are restricted to boolean values:

Var[O(l)] ASPACE[log n] PTIME

and noticed that only a constant nUlnber of variables were needed.
Furthennore while the existential quantifiers range over the
elemente; of the universe of the input. (Le. 1 to n), the universal
quantifiers could be boolean. Thus we let Var &SzIv(n),z(n}] be the
class of properties unifolmly expressible with exactly v(n) variables
and size Olz(n)]. Also let BUVar &Sz[v(n),z(n)] be the saIne class
with the additional restriction that the universal quantifiers are
boolean. Let "*" abbreviate 0[1]. We show that:

NSPACF~logn] ~ BUVar &S7~~,lognl ~

~ Var&Sz[*,logn] ~ DSPACE[log2(n)]

That is the family of properties uniformly expressible with a
constant number of variables is just PTIME.

These results hold for languages with an ordering on the objects in
question, e.g. for graphs a successor relation on the vertices. We
introduce an "alternating pebbling game" to prove lower bounds on
the number of variables and size needed to express properties
without successor. We show, for example, that k vatiables are
needed to express Clique(k), suggesting that this problem requires
DTIMF~nk] .

Introduction nod Sunnnary

In [fmm79] we proposed studying the complexity of a property,
C, via the size of a sentence from first order logic n~eded to express
C. We showed there that the memory space needed to check if a
given input has property C is closely related to the size of C's
S1l1al1est first order description. More precisely:

NSPACElftn)] ~ Size(tln)2 /Iog(n)] ~ DSPACE(t{n)2]

Here Size[g(n») is the family of all properties expressible by a
uniform sequence of sentences, F1 F2 ... , where Fn has O[g(n)]
symbols.

I~eading some papers by RUZlO ([Ruz79a), [Ruz79b», on
simultaneous resource bounds, we tried to find anaJagous results for
first order expressibility. First we reexamined our proof of the
above containtnent for f(n) =]og(n), i.e:

NSPACF~lognJ ~ Size[logn] ~ DSPACF~log2(n)],
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Savitch's simulation of NSPACE[logn] by })SPACE[log2(n)] may
be optimal, but one way of thinking of the difference bctween the
classes is that DSPACE[log2(n)] can simulate log(n) universal
quantifiers ranging from 1 to n. We conjecture that all three
containments in the above chain are proper, but none are known to
be.

It turns out that BUVar&Sz(*,log(n}] is idcntical to the natural
class Log(CFL) -- those languages log-space reducible to some
context free language. We will also see that the third telm in the
above chain, Var&Sz[*,log(n)1 is equal to
ASPACE&Alt[log(n),1og(n») -- the class of languages accepted by an
ASPACE[log(n)] Turing machine which Inakes only O[log(n)]
alternations between existential and universal states.

Once the idea of counting distinct variables was raised it was
natural to relax the size restriction. J)efine Var[*] = Uk =1.2... Var

&SzIk.nk] -- those properties expressible with a constant number of
variables. It turns out that Var[*] is identical to polynomial time!
The identity between P and Var[*] is a very pleasing result both
because it indicates that first order expressihility is a fruitful view of
cOlnplexity, and because it is another delnonstration of the
fundaiTIental importance and model independent nature of P.

One weakness of our previous definition of exprcssibility size is
that it makes usc of the notion of Turing machines in the definition
of a "unifonn" sequence of sentences. Our feeling at the time was
that the uniformity condition was an imperfect attempt to capture
the notion that we rcaJly had one sentence with a variablc number
of quantifiers, just as we have the notion of one Turing machine
with a variable amount of space. Indeed the use of constantly
many variables leads us to the realization that ther~ is a syntactic
uniformity -- the nth sentence ofa Var &Sz(k,z(n)] property is just
zen) repetitions of a fixed block of k quantifiers. rInis new
definition of uniformity makes Var[*] entirely a notion from logic
and thus increases the interest of the fact that it is equal to P.



Section A: J)efinitions and Motivations

'Ix 3y [ E(x.y) or F~y,x) ]

Continuing in our rcfinement notice that when wc write
Pn/2(u,v) we may reuse x,y,z -- their current values are no longer
needf'o. Being slightly wasteful for the sake of clarity. write:

Pn(X,y) - 3zVuVw (lu=x&v=z or u=z&v=y] =>

3x3y[x= u&y =v & Pn/2(X,y») (4)

(1)

(2)

{ G I a-+*-+b }GAP

P1(X,y) == (x = y) or E(x,y)

Pn(x,y) == 3~ ( pn/2(x,z) &Pn/2(z,y) )

Think of a directed graph, for example, as a universe, V, the
vcrtices, together with a binary edge relation E(-,-) on V. This is a
logical structure of silnitarity~ Ta = {E(-.-)}. The language of
a type, T. L[T]. consists of the sentences built up frOln the symbols
of T using the logical connectives &. "or", I, =>, variables x,y, ... ,
=, and quantifiers, 3x and 'Ix. ranging over the universe. For
example, considcr the following sentence from L[Toj:

GAP is known to bc complctc for NSPACE[log nl. (See [Sav73].)
We show in [lm80a] that GAP is complete in a very strong scnse -­
every problem C in NSPACE[log oj has a first order sentence
translating all instances of C into instances of GAP.

To express GAP we will write. down fOlmulas Pn(a,b) meaning,
wlberc is a path of length at most n from a to b." Wc dcfine Pn
by induction as follows:

S1 says that cach vertex, x, has an cdge cOIning out of it or an edge
going into it. A graph satisfies S) (in symbols OI=Sl) if it has no
isolated vertices. Notc that every graph 0 "understands" every
sentence S from I.[Ta], Le. Gt=S or GI=IS.

To motivate thc definitions for variable and sizc expressibility we
now consider a stepwise refinement of sentenccs exprcssing a
specific problem. Let GAP be the set of directed graphsG with
sped fied points a and b such that there is a path in G from a to b.
In symbols:

We propose to study the complexity of a condition, C, by asking,
"How difficult is it to express C?" For this expression we choose
the natural first order language of the objects undcr consideration.

Equation (2) defines Pn in a way that increases the quantifier
depth by one each time n is doublcd. However Pn/2 is written
twice on the right so the size of this Pn is twice the size of Pn/2 •
We can alleviate this problem using' the "abbreviation trick" (see
c.g. [FiRa74]). The trick uses uni"crsal quantifiers to pcnnit us to
write Pn/2 only once on the right. Thus:

Pn(x,y) == 3zVuVw [u=x&v=z or u=z&v=y ] => Pn/2(u,v) (3)

We have now written Pn with O(1og n] symbols, thus proving
that GAP is in Size[log n], to be defined.

The gatnes mentioned above give us lower bounds only on what
can be expressed without the successor predicate. We show, for
exmnplc. that Clique(k) -- the existence of a cOlnplete subgraph on
k vertices -- cannot be expressed with k-l variables. without Sue.
(Of course k variables suffice -- just say there exist xl ... xk forming
a clique.) This is a plausability argument that Clique(k) is not in
Var[k-l]. If we cpuld prove the latter result, i.e. that Clique(k)
cannot be expressed with k-l variables in the language with Suc,
then it would follow that the genel:al clique problem is not in
Var[*)' From this it would follow that p;t= NP.

Our definition of Val' &Sz gives the sentences access to some
arbitrary successor relation. Suc(-.-), on the universe of the input
structures. Without this added relation we cannot silTIulate Turing
nlachines -- there is no way to say, "Now the Turing Inachine
nloves its input head one space to the right." We, showed in
[ltnm79] that Suc(-,-) is not needed to express certain "natural"
graph problems such as connectivity; however, it is essential for
other uses such as counting the parity of a totally disconnected
graph.

Now that wc know that 1)'1'11\1 E[nk] is closely related to Var[k] it

is uscful to determine which graph properties can and· <;anot bc
expressed with k variables. In Section C we describe a
cOJnbinatorial gmne. a Inodification of Ehrenfeucht-Fraissc ganlcs,
(see lEhr61] or [Fra54]). with which we can prove lower .bounds on
what can be expressed in k variables. These new ganles are an
alternating version of pebbling games.

In Section D we also consider the graph isolnorphism problem.
If we knew. for example. that Graphlso were in IJrIME[n1og(n)]
then it would follow that this property could be written with log(n)
variables without successor. Thus a pair of graphs, <G,H>,satisfy
Fn . a sentence with log(n) variables. if and only if they arc
isolnorphic. Clearly <O.G>t= Fn . Now suppose that G==Var[JognlH,
Le. G and H agree on all log(n) variable sentences. It follows that
<G.H>t==Fn, and thus 0 and H are isomorphic. We have shown:

Oraphlso E Var(w.o. Suc)[v(n)] .....

VO VH (IOI=II-II=n => [G~H ++ G ==Var[v(n)] H])

In DTIME[n4v] we can check if G ==Var[v] H. Thus a near
optitnal algorithm fi)r Graphlso may be to find the correct v(n) in
the above equivalence, and check if G ==Var[v(n)] H .

We mentioned above a proof that Clique(k) cannot be expressed
in )(-1 variables without Suc. This is shown by building graphs G
and H' such that G .== Var[k-l] H and yet G has a k-cJiquc while H
does not. Clearly G and H are not isomorphic. Thus we have a k
variable (without Suc) lower bound on Graphlso. This is a
pJausahiJity argumcnt that' Graphlso is not in P.

In the following pages we give: .(A) Definitions and motIvations;
(B) Statements of some of the main relati()nships bctween
cxpressibility and Turing machine Time and Space; (C) The
altermtting pcbbling game; (I) Probabilistic graph arguments
following [Fag76] and [BIHa79] showing that Hamilton Circuit,
Clique, and Graphlso are not in Var(w.o. Suc)[*]; and (E)
Conclusions and directions for future rcsearch.
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We have succeeded in expressing GAP by a uniform sequence
of sentences, {Pn(a,b) I n~ l}, such that Pn has 5 variables and size
OlIogn]. This suggests the following:

Definition: A set C of structures of typc -r is expressible ill .YU!l
variables and size 1.!!}, (in symbols, C is in Var &Sl'!v(n),z(n»), if
there exists '3 unifonn sequcnce of sentences F] F2 ... froJn,
1.[-rU{Suc}) such that· :

a. For all structures G of type -r with IGI~ n, and for all
Suco(·'·) a valid successor relation on the universe of a,

a f. C ++ <G,Suco>t= Fn

b. rn has v(n) distinct variables and a total of O[z(n)] sylnbols.

As Ruzzo has shown in [Ru79b], unifonnity conditions may be
greatly varied without significantly changing a definition. The
following condition will suffice in what follows:

Let's return to Equation (4) .and notice lhat in sinllllaling an
NSPACE[logn] property, two universal quanlifiers ranging frOln 1
to 11 are lIsed. Their purpose is only to m.ake a choice between the
first half and the second half of the path. It nlakcs sense to
Inininlize the universal choices when sinllilating an existential class
so we replace "VuVv" in Equation (4) by "Vb", where b is boole""
valued. 'rhus:

Pn(X,y) == 3zVb3u3v ([(b=O&u=x&v=l) or (b= I &ti=l&V=Y»)

& 3x3y [x=u & y=v & Pn/2(X,y)]) (6)

l)Cfine BUVar&S:4v(n),z(n)] to be the farnily of properties
expressible in v(n) variables and sile O(z(n)J where the existential
quantifiers still range froln 1 to n, but the universal quantifiers arc
boolean. Thus it is easy to. sec that GAP is in BUVar &Sz[k,logn],
and Inore generally,

Uniformity Condition (*): The map n -+ Fn is generable in
I)SPAC"~v(n).logn] and l)rrIM~lz(n)].

lllcorem A.2: For s(n) ~ 10g(n),

NSPAcrts(n)] ~ nUVar &Sz[O(s(n)/log(n») ,s(n) 2/10g(n)]

Of course (*) does not capture our intuitive feeling that the Fn's
are all the sanle sentence with varying numbers of quantifiers. To
make the latter notion more precise abbreviate quantifiers with
restricted dOlnains as follows:

Section II: Variables~ Sile versus Tilne ~ Space

Unifonnity Condition (**): lbere exist constnnt c and fonnulas
A,n, and quantifier free fonnulas MI'" Mv all of which have
variables only xl'" Xv such that:

Fn - A «Ql xI . M1 ) ••• (Qy Xy. My) ) c.1~n) times D

Now we can write Equation (4) more compactly a~:

Pn(x,y) = 3zVu(Vv. M3 )3x(3y . Ms ) Pn/2 (x,Y) (5)

Here M3 = [u=x&v=z or u=z&v=y], ~nd M5=[x=u&y~vJ.

Equation (5) gives a model for the followmg totally syntactical
definition of uniformity for Var&S4v,z(n») :

We adopt (**) as our definition of unifonnity for Var
&S7Iv,z(n)] when v is a constant, otherwise we use (*). It follows
that GAP is in Var &Sl!5,logn), NSPACF~logn) is. in Var
&Sz[k,logn), and indeed:

Theorem A.1: For s(n) ~ 10g(n),

NSPAC~ls(n)] C Var &Sl[O[s(I1)/log(n)] , s(n) 2/log(n»)
- ~ I)SPAC~ls(n) ~

proof sketch: The proof is nearly the same as for Theorem 2 in
.[lmm79). We showed there that NSPACl-ls(n») ~ ·Size(s(n)2/log(n)]
~ IlSPAC"1s(n)2]. That proof noted that a Turing machine
instantaneous description (Ill) o( si7.e s(n) could be coded in
O[s(n)/log(n)] variables since the variables range over an n clement
universe. rlbus using equation (3) we asserted the existence of a
computation path of length e5fD); O[s(n)] ID's were needed. For the
proof of the first inclusion in Theorem A.l we use equation (4)
instead. 'll1us only a constant number of ID'~, requiring
O(s(n)/Iog(n)] variables, must be remembered at once. I

Recall a definition and result of Sudhorough [Sud78):

f)cfinition: AuxPDA(s(n),t(n») is the class of languages accepted by
a two way nondeterministic push down automaton with auxilliary
work tape of size s(n), running in time ten).

Fact (Sudborough): AuxPDA[1og(n), n*J = Log(CFL).

rnlenrem n.l: nUVar&SlIO(s(n)l1og(n») ,z(n)]
= ASPACJ..:&:TS[v(n)log(n), *z(n~

In [Ruz79a] Ruzzo defines an accepting cmnputation tree of ~n

alternating Turing machine M to be a tree whose root is a starting
II) of M, whosc nodes are intennediate II )'s, and whose Icaves are
all accepting configurations. ~:C1Ch universal node,· tI, has all its
possible next moves as offsiJring, while the existcntial nodes, e, lead
to exactly one of e's possible next moves. We say that a language
C is in "SPACE &TS[s(n).z(n») if all members of C of silc n are
acce(>ted in a computation tree using space sen) and tree size,
(number of nodes), z(n). RUllO relates this new measure to
auxiHiary pda's via,

Fact (Ruzzo): A~PACE &TS[s(n),z(n)*] = AuxPllA[s(n),z(n)*).

Notice that both the tree size mode) and the Auxl)I)A charge
much .nore for universal nloves than for existential ones. 'Inc
foll()wing theorem shows that we get the Sc1me classes in our
expressibiJity measure by restricting all universal quantifiers to be
b(x)lean. In a sense we charge .Iog(n) times as much for a universal
choice as for an existential.

proof: (~): Given an input structure G with n clement universe
we can generate Fn ' the nth sentence in our unifonn sequence.

We must show that in ASPACE &TS[v(n)log(n), *7.(n») we can check
if GI=Fn .

read, "There exists xsuch that M.It

read, "For all x such that M."
(3x . M) [ ] == 3z [M & ]
('Ix. M)[ ] == Vx[M => ]
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2. Conditions which can be expressed with v variables are just
those conditions which can be checkcd in DTIM~lnO[v] ]

The above corollary rounds out a pleasing relationship between
expressibiJity and computation. We have shown:

1. The size of a sentence needed to express condition C is
polynomia11y related to the amount of memory space needed
to check if C holds for an input, and,

(b): By our uniformity condition the nth sentence of a Var[v(n)]
property can be generated in DSPACF.(v(n)log(n)] and so it is of
size at most nO[v(n)] Restricting the universal quantifiers to be
boolean at worst increases the size by a factor of log(n). Thus:

Var[O[v(n)Jj = Var&Sz[O[v(n)],nO[V(n)]]
= BUVar&SltO[v(n»),nO[v(n)] ]

The next theorcm generalizes the above results giving a
remarkably close relationship between expressibi1ity and alternating
machine conlplexity. Let nVar &Sz[v(n),z(n)] be those properties
expressible in a sentence with v(n) booleall variables and sizez(n).
For each predicate symbol, E, we add the predicate symbols, E:t '
E2 ••• where En (b1 ••• blogn ' CI ••• clogn ) means E(b,c) where b has
binary vertex number til." b10gn •

111eorem B.3: ASPACE &TIMF~s(n),t(n)] = BVar&Sz[O[s(n)],t(n)]

I

Using Theorcm B.l,

= ASPACE&TS[v(n)log(n),2 nO[v(n)]]
= ASPAC~1v(n)log(n)]

= DTIME[nO[v(n)]]

(c): This is a special case of(b).

proof: (;J): Given an input structure 0 with n element universe
we can generate Fn the nth clement in our uniform sequence. We
must show that in ASPACE&TIMF~s(n),t(n)] we can check if
Gt=Fn •

To test.if G satisfies Fn we read the sentence from left to right
holding the present values of the variables bI ... bs(n) in our
mcmory. At quantifiers 3bi or \fbi we make the appropriate
existential or universal choice of a new value for bi . Similarly at
&'s (or "or"s) we universally (or ·existentially) choose one branch
and proceed. We have G and the values of the variables so we
may check the truth of atomic formulas: b=0, or E(bl ... clogn ) , in

number of.steps a constant times their length.

( ~): Going the other way we must write the sentence,
Acceptt(r) meaning that alternating Turing machine M when started
at instantaneous description r will reach acceptence in tsteps. We
accomplish this by saying that if r is existential then there exists
some next step x and Acceptt_l (x), whereas if r is univer&1l then for
all next steps x, Accep~_l (x) .

A technical difficulty here is that if at each step wc recopy the
entire 10 then the size of the resulting sentence will be s(n)t(n). To
simplify the problem let us assume that the moves of our Turing
machine alternate at every step and branch into at moSt two moves.
'Ibus we can write,

Accept(r.<ql ,Q2 ,Q3 ),z) - 3p ( Accept(r,<ql ,p),z) &

Accept(p,(q2,q3)'z) )

BUVar &Sz[*,log(n») ASPACE&TS[log(n),n*)
= AuxPDA[log(n),n*)
= Log(CFL)

3p (3s1 82 s3 ' a permutation of Ql q2 q3 )( Accept(r,(sl ,p>,z) &

Accept(p,(s2 ,s3 ),z) )

To test if G satisfies Fn we read the sentence from left to right
holding the present values of variables xl ... xv(n) in our v(n)log(n)
memory. Note that each non-boolean variable may have value 1 to
n corresponding to an clement of G. At existential quantifiers, 3xi,

we existentially choose some xi from the universe of G and at

universa.l choic~s, Vbj , we universally choose bj . When we come
to atomic predicates, e.g. F~xI ,x2 ) or bI7 =0, we can check their
truth because we have the current values of the variables. Note
that this accepting procedure has tree size *z(n) because we may
make a bin,try universal split O[z(n)] times.

( ;J): Here we fonow a proof of RUllO [Ruz79a). We must
express the property Accept(r,z) which means that the alternating
Turing machine M will accept in tree size z when started with ID r.
We express Accept(r,z) by choosing a point p in the middle of the
tree whose subtree is of size between 1/3 and 2/3 of the original
tree. 'Ibus,

Acccpt(r,z) == 3p ( Accept(r,(p),(2/3)z) & Accept(p,<>,(2/3)z) )

Here Accept(r,(ql ... qt),z) means that there is a computation
tree. of size z starting at r such that each leaf is either an accepting
configuration or one of qI ... qt .

Our only trouble is to insure that the list (ql ... qt> stays of
constant size. Whenever the list is of length three we take an extra
move to split it in half by finding a point p above two of the three
nodes in the list,

Thus we can write Accept(..) with a constant number of ID's, Le.
v(n) variables, and the size of the sentence is O[log(z)]. 1bis
proves Theorem B.1. I

Note that in the above we can add a boolean universal quantifier
and use the abbreviation trick to write Accept(-) only once on the
right. Also note that the above is a slight lie since we don't know
which pair of q's p will be above. In fact we would have to say,

Corollary. B.2:

a. BUVar&Sz{*,log(n») = Log(CFL)

b. Var[O[v(n)H = DTIME{nO[v(n)] )

c. Var(*] = PrIME

proof:
(a): From the above theorem, together with the results from

Ruzzo and from Sudborough:
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Let ASPAC~.:&Alt(s(n),a(n)] be those problems accepted in
alternating space s(n) with at most a(o) alternations between
existential and universal states. 'Illen:

Corollary B.4: For s(n) ~ 10g(n),

ASPACE&TIME(s(n),t(n)] ~ Var &8z(O[s(n)/10g(n)],t(n)]
~ ASPACE&TIMF~s(n),t(o)log(n)]

Corollary U.S: Let s(o) ~ a(n)log(n). '!ben:

ASPACE.&Alt[s(n),a(n)]
~ Var&Sz[O[s(n)/log(n)],(a(n)+s(n»s(n)/logn]

and in particular, ASPACE &Alt(log n,log n] =Var &Slt*,log n1

proof: To assert the acceptence of an ASPACE&AJt(s(n),a(n)]
computation we assert the existcnceof a(n) ID's where the
alternations occur. Each path hetwecn the IO's has no alternations
and so can be expressed in Var&S7JO[s(n)/log(n») ,. s(n)2 /Iog(n) ]
by Theorem B.1. We write ACCEPTa (100 ) to mean that 100
leads to acceptencc in a alternations:

Here "II)o-+bl ... bs-+ID1" means that there is a computation

whose jth movc makes the bj th choicc and leads from 100 to IDl in
s stcps. lois is a detenn inistic computation of length sand,
although we omit the details, it can be asserted to exist with O[s]
symbols. I

\Ve have demonstrated an exact relationship betwecn alternating
Turing machines and quantified boolean formulas. If we return to
the more natural language of the input stl1Jctures, Le. variables
ranging from 1 to 0, then the needed nUJnber of variables to
sitnulatc s(n) space becomes s(n)/log(n). It is not clear, however,
how to do better than size ten) to sitnulate time t(n) because the
machine might go through ten) alternations. Thus we can only
show:

Corollary 8.6: NSPACfllogn] ~ BUVar &Sz[k,logn]
~ Var &S7Jk,logn] ~ OSPACF~log2 (n)]

Corollary 8.6 which comes immediately from Theorems B.l and
B.2 sheds some light on the difference between DSPACE(log2 (n)]
and NSPACE[logll]. We conjecture that all three containments
above are proper, but it is not even known that NSPACE[log(n»)
:I: DSPACF~log2(n)] .

It makes sense to consider a sentence with k variables which is
of length greater than nk • Similarly we can consider an
ASPACFtlogn] machine whieh runs for more than nk steps.
Generalize the definition of ASPACE &TIMF~s(n),t(n)] to· be the
family of languages accepted by an ASPACE[s(n)] machine with a
t(11) clock. Such a machine's accepting configuration is an accept
state with th.e clock equal to 0, however the machine is never
allowed to look at its clock. With this definition Theorem 8.3
tnakcs sense and is true for aU ten). It is now possible to ask,
"What is ASPACE &TIME(s(n),t(n)] with t(n) > 2s(0) 1"

Corollary B.7:

a. ASPACE&TIM~llog(n),n*] = Var&Sz[*,n*] = Pl'IME

b. ASPACE &TIME[log(n),2n*] = Var &Sz[*,2n*] = PSPACE

proof: We have already shown line (a) in Corollary B.2. The left
hand equality of line (b) follows from Corollary B.4. lbe two
containments of the second equality are proved as follows:

*(Var &S71*,2n 1C PSPACE): We are given an input structure, G,
of size n, and a sentence, Fn ,with k variables and size 2nk. Check
whether GI=Fn as follows:

Assumethat all -,'s have been pushed through to the inside and
consider the parse tree. for Fn. Each of the k variables may take on
any of the n values of the universe of G. Starting at the leaves of
the parse tree make a list of all the k-tuples of assignments which
make the given nodes true in G. We can pass up the tree toward
the root computing the values making each node true as we go.

For example, an "&" node's list is gotten by intersecting the
two lists it leads to, a "'Ix i " node gets those tuples <-,x2 ... xk>
which are in the preceding node's list with all values of Xl •

When we reach the root either our list will have all nk

possibilities or it will be empty, since Fn has no .free variables.
01=Fn if and only if we are in the former. case. At most· two of
the k-tuples must be rcmbered at once, so PSPACE suffices.

* .(Var &Sz(*,2n J:> PSPACE): We show how to dcscnbe a
computation of Turing machine M runhing in
IlSPACfo.:&TIME(s(n),t(n)]. We will construct fonnutas. Ct(p,x),
meaning, "Symbol x occurs in cell P at time t." C

t
(p,x) will be

written with O[log(s(n»/Iog(n)] variables.

rIlle idea is to say tbat there exists a triple of cell values X-I Xo
x1 til the previous move which lead to x in one move of M, and Xi
occurs in r.cll p+ i at time t-1. In symbols:

I

= 3b1 \:I b2... Qs bs 31D1 ( IDo-+ b1 ... bs -+ IDl

& Accept(ID1] )

Accept[IDO]

ACCEPT21 (100 ) == 311)1 (EPath(Il)o ,ID1 ) & ACCEPT2a_l (101»

ACCEPT21-1 (lD1 ) == \:111)0 (APath(IDl ' IDo)~

ACCEPT2(a-1) (1°0 »

Note that in the above EPath(x,y) and APath(x,y) are the
Var&Sz[O[s(n)/log(n)],s(n)2/log(n)] formulas which assert the
existence of a computation path from x to y .all of whose
intermediate states are existential, respectively universal. We can
usc the abbreviation trick to conglomerate the two teoos on the
right, making the size of Accepta (-) equal to:

aes(n).log(n) + Size(EPath)
(a(n) + s(n) )s(n)/log(n), as desired.

The above corollary interested us especially because we now
have natural classes, Log(CFL) and ASPACE&Att(togn,logn],
identified with both of the the intermediate terms in the following
containment:

Ct (p,x) == 3x_1xOxl (X-1XoXl-+ 1-+ x & Ai=-l... l Ct-l(p+i~Xi»

We can usc the abbreviation trick to write Ct-l only once on the
right. Note that p is a O[lo~(s(n»/log(n)]-tuple of variables coding
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a tapc location Icss than 5(n). The sentence C
l

can be writtcn with
O[log(s(n»/log(n)]- variablcs and size O[t(I1)]. For a polynotnial
s(n) this gives a constant nUlnber of variables as desired. I

Right now line (a) is what we call ASPACE[log(n)] and Var[*],
but it is not clcar whether or not line (b) deserves at lcast t.he latter
name.

Section C: Alternating Pebbling Games

In this section we present a new pebbling game to obtain lowel
bounds for Var&Sz(w.o. Sue). This game is a modification of
Ehrenfcllcht-Fraisse games. (See [Fra54] or [Ehr61].) Two players
play the p pebble, m move game on a pair of structures G, H.
Player I places pebbles on points from 0 or H trying to
demonstrate a difference between theln while Player II matches
these points trying to keep the structures looking the same. We
will see in Theorem C.l that if Player II has a win for the p pebble,
m move game on 0 and H, then G and H agree on all properties
expressible in Var&Sz(w.o. Suc)[p,m).

Definition: 'rhe.12 pcbble. In move game on G and H is defined as
follows: Initially the pebbles. gl ... gp • hI'" hp ,are off the
board. On move i, Player J picks lip a pebble gj (or hj ), 1~j~p,
and places it on a vertex of G (or H). Player II answers by placing
h. (or g.) on a corresponding point of H (or G). Let gj (i) be the
p{>int o~ which gj is sitting just after move i. After each move i,
O~i~m, define the map ~ as follows:

fi : cO ~ cH , gj (i) ~ hj (i)

The map fj takes the constants in 0 to the constants in H, and
chosen points in G to the respective chosen points in H. We say
that Player II wins if for each i, O:S;i~m, fi is an isolnorphism of
the induced substructures.

The quantifier rank of a sentence, cp, is the depth of .~csting of
quantifiers in cpo Since the quantifier rank of cp is obviously less
than the size of cp, the following theoreln shows that the p,m game
gives a Var&Sz[p,m] lower bound on the expressibility of any
property on which G and H differ.

Theorem C.l: Player Il has a winning strategy for the p,m game
on G,H if and only if G and H agree on all sentences with p
variables and quantifier rank m.

We win give the proof, a minor Inodification of proofs in [Fra54]
and [El1r61], shortly. First we will give an exmnple. Consider the 4
pebble, d+ 1 move game on undirected graphs 0 and H where H is
disconnected while G is connected with diatneter d.

Player I wins the game as follows: On the first two moves he
pute; pebbles h2 ,h] on vertices a,b such that a and b are in
distinct components of H. Player II must place g2 ,g3 on some
vertices e,f from G. There is a path of length at most d from e to
f. Player I now uses the next d-l moves to walk along this path
with pebbles ~ and 81. Player II must answer with a path in II
starting at a, and thus never reaching b. Thus at move d + 1, two
pebbles will coincide in G but not in H and Player I wins.
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Figure I: 'I"he 4, d+ 1 game on G and H.

G

H

Notice that Player I's strategy was to follo~ the following
sentence, true in G but not in H: (Let M(u,v) == E(u,v) or u=v.)

Diam(d) == VX2VX 3 3) Xo (M(x2,xo) & 34 Xl (M(xo' xl) &

35 Xo(M(x1 ,xo)&...& 3d + 1 Xi( M(x1-i , Xi ) & M(xj , x3 » ...)

Also note that there is a sentence equivalent to I)jam(d) with
only 3 variables and log(d)+ 1 quantifier depth which Player I
would have played had he known about it.

proof of Theorem C.l: (=»: Suppose there is a sentence S with
p variables and quantifier rank m such that 0 satisfies S but H
does not. We must show that Player I wins the p pebble, m move
game on 0 and H. This is proved by induction on m:

base case: If m=O then G and H diffcr on a quantifier free
sentencc, Le. the constants in 0 satisfy a fornlula that the constants
in H do not Thus they arc not isomorphic so Player I wins the 0
move game.

inductive stcp: If S is of the form 'A, or A&B, then 0 and H

must disagree on one of A or B. Thus we may assume that S is of
the fonn 3x1 M(x1 ). Here Player I places pebble g1 on some
vertex gl (1) from G so that 01= M(g} (1». N~ Inatt~r what II
answers we will have Ht= -lM(h1 (1». 11lus by Induction Player
I will win.



Note that in the inductive step we have placed pebble g1 so we
must consider what happens if we later need gl again. The ,lflswer
is that in tv1(gJ (l) ) the subst.itution of g) (1) is made for ,111 free
occurrences of xI' If later on in the ganle we need to place g1
again it will be for some sentcnce S' = QX1 N(x1)' Inside S' an
occurrence of xl are bound by QX 1 ' thus gl (1) does not occur
and pebble gl may be safely reused.

( 4=): Conversely suppose that G and H agree on all sentences
with p variables and quantifier rank m. We must show that Player
II wins the p pebble, m move game on G and H. To facilitate an
inductive proof wc Inust slightly strengthcn our claim. We prove
the following:

Claim: Let k~p and stlpose that <O,cl
G ... ct

G) and <H, c1
II ...

ckH) agree on al1 sentences S with new constants c1 .•. ct ' variables
xl'" xlr quantifier rank m, and such that nowhere in S does ci
occur within the scope of a quantifier for xj ' Then Player II has a
win for the p pebble, In Inove gatnc 011 G and H when started with
the first k pebbles on c1G ••. ctG and c1H ••. ct

Il respectively.

Notc that with k= 0 the claim reduces to what we need to show.

We prove the claim by induction on m. For m=O the map
from the constants in G to the constanle; in Hand c1G •.• ctG to

c1
11 ••• ckH must be an isomorphisln or else there would be a

quantifier free sentence on which the two structures disagree.

For the inductive step asume that the premise of the c1ailn holds
and let Player I n10ve placing, let us SHY, pebble gl on g1 (1).

Consider the (finite) collection of sentences SI (Xl) ... Sr (Xl ), in

the language of 0 together with constants c2 ••. ct such that <0,c2°
... ckG) t= Si (gl (1». Let S == 3x1 ("i:1 ... r Si (Xl) ) .

Thus, <0,c20 ... ct o) t= S.

TI1US, by our assumption, <H, c2
H •.• ctH> also S<ltisfics S. Let

h1(1) be a witness for Xl in S. Now <0,g1(1),c20 •.. ckG) and

<H,hl(1),c2
11 ••• ckH) agree on all sentences, R, of quantifier rank

m-l and variables xl'" lie such that no Ci occurs within the scope
of a quantifier for Xi' This is because any such R(cl ) satisfied by
G would be an Si above and therefore also satisfied by .-1.

Our inductive asumption now shows that Player II wins the
remaining 01-1 moves of the game, proving the claiR1- This proves

Theorem C.l . I

Before we apply Theorem C.l it is useful to give a slightly
ditTerent characterization of G=varlt) H. What docs it mean when
G and H agree on all k variable sentences without successor? The
idea is that if Player ) chooses any r-tuple of points from G, r~k,

then there is a corresponding isomorphic r-tuple from H.
Furthermore if ~Iayer I adds a point to the tuple in 0, and r<k,
then there is a corresponding point in H which may be added
preserving the isomorphism.

We have thus deduced the existence of a relation R on pairs of
r-tuples from G and r-tuples from H, Le. R ~ Ur=o...t ot X Hk ,
satisfying:

a. R«>,(»

c. (R(g,h) & ,gl<k ) => (VxEG 3yEII R«g,x),<h,y»)

& (VyEU 3xEG R«g,x),<h,y»)

d. If g =<gl ... gr ), let ii = <g1 ... gj-l ,gi+ J ···gr) be the
r-l tuple with gi rel1loved. 'Il,en:

R(g,h) => R(ii1ij) i= 1, ... , r

Proposition C.2: G=Var(k] H if and only if there exists a relation R
satisfying (a - d) above.

proof: It should be clear that R corresponds to Player Irs winning
strategy in the k pebble ganlc Oil G and 1-1. 'nuls if such an R
exists then Player II can always win by lnatching chosen r-tuples in
G with R-related r-tuples in If. Assunle R«gl (s) ... gt (s» ,
<hl(s) ... hk (s») , Le. the chosen pOinl'i allcr 1110Ve s are R-related.
Think of Player I's Inoving of pe~ble g.,i as two actions. I:'irst he
picks up gi' By (d) we know R(gi (S). -IIi (s»). Next he places gj
back on some new point gj (s+ 1). By (c) there exists y in H
preserving the relation, Le. with hi (s+1) =y, R(g(s+ 1),h(s .... I».
In particular g(s+ 1) and h(s+ 1) are iSOlnorphic, and Player II wins.

Conversely, .if G=Varlk] H then define R from Player II's
winning strategy as follows:

R =

~
'

rille k pebble gmne on 0 and H, started}
«xl'" Xr)'<YI ... yr» with gi(O)=xi , hj(O) = Yi i= 1 ... r, is a

forced win for Player II.

The fact that Player II has a winning strategy for the k pebble
game on G and H gives us (a). (b), (c), and (d) follow fronl the
ru les of the game. I

Section I): Lower Bounds for Var(w.o. Suc)(kJ

Following [Fag76] and [BIHa79), we write certain axiolns for
graphs. First:

TO - Vx Vy ( .E(x,x) & [F~x,y) ~ F~y,x»))

To $Cays that G is loop free and undirected. We win assume in
this section that all graphs satisfy 10 .

~ix k and Jet 1~~k-l. The f(lJlowing sentences, St' , say that
fo~ any choice of di~tinct vertices, Xl ... Xi and xj + 1 ••• it-I' there
eXIsts a. vertex y different from the xi's with an edge to every
vertex In the first group and no edge to the second group.

Skj - 't/X1 ... VXt_1 ( ( "O<i<r<k Xi :I:. Xr ) =0>

3y [ "O<i<j+ 1 E(y,x i ) & "i<i<t (Y*X j & 'E(y,xi)'J)

We usc the Skj 's to write 1''1. ' an axiom which says that every
conceivable extension of a configuration of k-l points to a
configuration of k points is reali1.able.

b. R(g,h) ~ g ,...., h
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Theoreln III ([""38761, [BIHa79J): For any fixed k>O,

#O{ G 101==S, 101 =n} / #{ 01101 =n}

Thus the probability that none of a random n-(k-l) vertices is a
witness for Skj is:

{ <i , j> I 1 ~ i ~ k, 1~ j ~ n }
{«i1 ,jl >,<i2 ,j2 » I i1 ;t: i2 }=

=

Theorem 1).5: Clique(k+ I) is not in Var(w.o. Suc)[k].

proof: Recall that Clique(k + 1) is the set of graphs with a
completc subgraph of size k+ I. Clcarly any graph satisfying T
. . C.· c( . ) k+1
IS In Iqu k+l. Wc show that there exists a graph H 1= T
such that "k has no Ie +1 clique. Define the graph An = (~ ,E )
as follows: n n

Theorem 1),4: "Hamilton Circuit" is not in Var(w.o. Suc}[*] .

Using similar techniques we can show the following:

Notice that An has no k+ 1 clique because any set of k+ 1
vertices will have two with the same first coordinate.

Let An' = (Vn ,En' ) be a random subgraph of An ' Le. each
edge of En has probability 1/2 of being in E '. Now lim -+00

Prob(An' t= Tk ) = 1. (This follows from the ~me argumen~ as in
the proof of 'Illcorem 4.1, noting that every k-I tuple from V has
n points potentially satisfying Tk:) Let H be such a random

n
A '.

Thus Hn satisfies Tk but has no k+1 clique~ fl.I

A counting argument shows that almost all graphs satisfy Tk .
Define Pn (S), the probability that a graph of size n satisfies a
sentence S, as follows:

Iimn~OO Pn(1'k) =1

proof: Given j<k, and distinct vertices xl". xk-1 what is the
probability that a random vertex y is a witness for Sk.j? It's just
the probability that the k-] possible edges E(x i ,y) are correctly

present or absent, Le. l/2k-1 •

( 1- (l/2k-1 ) )n-(k-l)

The probability that any of the fewer than nk sequences, xl •••

xk-l ,. j , cause Tk to fail is less than

nk • at

and this last probability goes to 0 as n goes to infinity.

We are interested in Tk because of the next result:

Theoreln D.2: For any two graphs 0 and H,

(Ot=Tk&Ht=Tk ) => O=var[k]H

proof: Tk says that every k-l tuple may be extended to a k tuple
in any conceivable way. It follows that the relation:

R = {«a1 ... ar >,<b1 ... br »J O~r~k, ai EO, bi EH, & }
<a1 ... ak>~ <b1 ..• bk >

Almost a11 graphs have a Hamilton circuit; however, in [811-Ia79]
it is shown that for any k there is a graph Hk which satisfies Tk
and yet has no Hanli1ton circuit. Jt follows that there exist two
graphs, Ok' Hk , both satisfying l'k and yet differing on the
property of having a Hamilton circuit. Thus:

satisfies (a) - (d) of Proposition 4.3. Therefore 0 =Var[k] H. I

Corollary 0.,3: Oraph Isomorphism is not in Var(w.o. Suc)[k] .

proof: (f OraphIso were in Var(w.o. Suc)[k] then there would be
sentences F1 ,F2 ... with k variables each such that for graphs G
and H of size n,

By Theorem 4.1 there exist two non-isomorphic graphs Ok and
lit both satisfying Tt . Clearly (Ok' G~?t=Fn. But by Theorem
4.2, Ok ===Var[k] Hk · It follows that Player II wins the k pebble
game on <Ok' Hk>and <Ok' Ok>. Her strategy is to answer points
in the first compof.'..mt with the same point in the other copy of Ok'
and to use Player II's winning strategy for the k pebble game on
Ok and Hk to answer moves in the right component Thus,

<O,H> t= Fn

(Ok ,Hk > 1= Fn ,but Ok

This contradiction proves the corollary.

G~H

is not isolnorphic to Hk •

I

Section D: Conclusions

We have shown that first order expressibility is a viable view of
computational complexity. We fcel that it is a .natural way to

obtain both· upper and lower bounds. lbe alternating pebbling
games make the finding of optimal descriptions of graph properties
(without successor) a tractable problem. Furthermore our
simulation theorems show that optimal sentences (with successor)
for a property C can be easily translated to nearly optimal
algorithms for checking C.

The following general areas of exploration are suggested:

(1): Find upper and lower bounds on Var&Sz(w.o. Sue) for a
collection of graph problems such as planarity, graph
homeomorphism, vertex matching, ctc.

(2): Improve the simulations of Section n, and then try to prove
optimality. Exactly how many variables are needed to
describe a DTIMF~nkJ computation?

(3): Develop techniques to prove lower bounds on Var&Sz, i.e.
with successor. This seems hard but worthwhile; possible
techniques are discussed in [hn80a] and [lm80b).
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