
Computing Applicability Conditions for Plans with Loops

Siddharth Srivastava and Neil Immerman and Shlomo Zilberstein
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

{siddharth, immerman, shlomo}@cs.umass.edu

Abstract

The utility of including loops in plans has been long
recognized by the planning community. Loops in a plan
help increase both its applicability and the compactness
of representation. However, progress in finding such
plans has been limited largely due to lack of methods
for reasoning about the correctness and safety proper-
ties of loops of actions. We present novel algorithms
for determining the applicability and progress made by
a general class of loops of actions. These methods can
be used for directing the search for plans with loops to-
wards greater applicability while guaranteeing termina-
tion, as well as in post-processing of computed plans to
precisely characterize their applicability. Experimental
results demonstrate the efficiency of these algorithms.

1 Introduction
Recent work in planning has highlighted the benefits of us-
ing loops in plan representation (Levesque 2005; Winner &
Veloso 2007; Bonet, Palacios, & Geffner 2009). Plans with
loops present two very appealing advantages: they can be
more compact, and thus easier to synthesize, and they often
solve many problem instances, offering greater generality.

Loops in plans, however, are inherently unsafe structures
because it is hard to determine the general conditions under
which they terminate and achieve the intended goals. It is
therefore crucial to determine when a plan with loops can be
safely applied to a problem instance. Unfortunately, there is
currently very little understanding of when the applicability
conditions of plans with loops can even be found, and if so,
whether this can be done efficiently.

This paper presents methods for efficiently determining
the conditions under which plans with some classes of sim-
ple and nested loops can solve a problem instance. We ini-
tially assume that planning actions come from a simple, but
powerful class of action operators, which can only incre-
ment or decrement a finite set of registers by unit amounts.
Then we show that many interesting planning problems can
be directly translated into plans with such actions.

The class of actions considered in this work is captured by
abacus programs–an abstract computational model as pow-
erful as Turing machines. The halting problem for abacus
programs is thus undecidable. That is, finding closed-form
applicability conditions, or preconditions for such plans is

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

undecidable. Despite this negative result, we show that
closed-form preconditions can be found very efficiently
for structurally restricted classes of abacus programs, and
demonstrate that such structures are sufficient to solve inter-
esting planning problems. Finally, we show how a recently
proposed approach for finding plans with loops can be inter-
preted as generating abacus programs of this very class. This
method can be used to translate plans with simple and nested
loops in many planning domains into abacus programs, thus
allowing applicability conditions to be computed for a broad
range of planning problems.

We start with a formal description of abacus programs.
This is followed by a formal analysis of the problem of find-
ing preconditions of abacus programs with simple loops and
a class of nested loops. We then show how plans with loops
can be translated into abacus programs, and conclude with a
demonstration of the scope and efficiency of these methods.

2 Abacus Programs
Abacus programs (Lambek 1961) are finite automata whose
states are labeled with actions that increment or decrement a
fixed set of registers. Formally,
Definition 1. (Abacus Programs) An abacus program
〈R,S, s0, sh, `〉 consists of a finite set of registers R, a fi-
nite set of states S with special initial and halting states
s0, sh ∈ S and a labeling function ` : S \ {sh} 7→ Act.
The set of actions, Act, consists of actions of the form:
• Inc(r, s): increment r ∈ R; goto s ∈ S, and
• Dec(r, s1, s2): if r = 0 goto s1 ∈ S else decrement r and

goto s2 ∈ S
We represent abacus programs as bipartite graphs with

edges from states to actions and from actions to states. In or-
der to distinguish abacus program states from states in plan-
ning, we will refer to a state in the graph of an abacus pro-
gram as a “node”. The two edges out of a decrement action
are labeled = 0 and > 0 respectively (see Fig. 1).

Given an initial valuation of its registers, the execution of
an abacus program starts at s0. At every step, an action is
executed, the corresponding register is updated, and a new
node is reached. An abacus program terminates iff its exe-
cution reaches the halt node. The set of final register values
in this case is called the output of the abacus program.

Abacus programs are equivalent to Minsky Machines
(Minsky 1967), which are as powerful as Turing machines
and thus have an undecidable halting problem:

S2

S1

{r } 2

S3

{r } 1

>0 =0

Figure 1: A simple abacus machine for the program:
while (r1 > 0) { r1 −−;r2 + +}

Fact 1. The problem of determining the set of initial register
values for which an abacus program will reach the halt node
is undecidable.

Nevertheless, for some abacus programs halting is decid-
able, depending on the complexity of the loops. A simple
loop is a cycle. A simple-loop abacus program is one all of
whose non-trivial strongly connected components are sim-
ple loops. In the next section we show that for any simple-
loop abacus program, we can efficiently characterize the ex-
act set of register values that lead not just to termination, but
to any desired “goal” node defined by a given set of register
values (Theorem 1).

Applicability Conditions for Simple Loops
Let S1, a1, . . . , Sn, an, S1 be a simple loop (see Fig. 2). We
denote register values at nodes using vectors. For example,
R̄0=〈R0

1, R
0
2, . . . , R

0
m〉 denotes the initial values of registers

R1, . . . , Rm at node S1. Let a(i) denote the index of the reg-
ister changed by action ai. Since these are abacus actions,
if there is a branch at ai, it will be determined by whether
or not the value of Ra(i) is greater than or equal to 0 at the
previous node.

We use subscripts on vectors to project the corresponding
registers, so that the initial count of action ai’s register can
be represented as R̄0

a(i). Let ∆i denote the vector of changes
in register valuesR1, . . . , Rm for action ai corresponding to
its branch along the loop. Let ∆1..i = ∆1+∆2+· · ·+∆i de-
note the register-change vector due to a sequence of abacus
actions a1, . . . , ai. Given a linear segment of an abacus pro-
gram, we can easily compute the preconditions for reaching
a particular register value and node combination:

Proposition 1. Suppose S1
a1−→ S2

a2−→ · · ·Sn is a linear
segment of an abacus program where Si are nodes, ai are
actions and F̄ is a vector of register values. A set of neces-
sary and sufficient linear constraints on the initial register
values R̄0 at S1 can be computed under which Sn will be
reached with register values F̄ .

Proof. (Sketch) We know F̄ = R̄0 + ∆1..n. We only need
to collect the conditions necessary to take all the correct ac-
tion branches, keeping us on this path. This can be done by
computing the register values at each node Si in terms of
R̄0, and using this expression to state the required inequality
for following the required branch of the next action.

Proposition 2. Suppose we are given a simple loop,
S1, a1, . . . , Sn, an, S1, of an abacus program. Then inO(n)
time we can compute a set of linear constraints,C(R̄0, F̄ , l),
that are satisfied by initial and final register tuples, R̄0, F̄ ,

Se

4S

S2

S1

a6

an
a1

a2

a3a4

a5

S6

S5 S3

Se

4S

S2

S1

a1

a2

a3a4

S6

S5 S3

a5

a6

an

4S’

S’6

Chosen start node

Figure 2: A simple loop with (right) and without (left) shortcuts

and natural number, l, iff starting an execution at S1 with
register values R̄0 will result in l iterations of the loop, after
which we will be in S1 with register values F̄ .

Proof. Consider the action a4 in the left loop in Fig. 2. Sup-
pose that the condition that causes us to stay in the loop af-
ter action a4 is that Ra(4) > 0. Then the loop branch is
taken during the first iteration starting with fluent-vector R̄0

if (R̄0+∆1..3)a(4) > 0. This branch will be taken in l subse-
quent loop iterations iff (R̄0+k ·∆1..n+∆1..3)a(4) > 0, and
similar inequalities hold for every branching action, for all
k ∈ {0, . . . , l−1}. More precisely, for one full execution of
the loop starting with R̄0 we require, for all i ∈ {1, . . . , n}:

(R̄0 + ∆1..i−1)a(i) ◦ 0

where ◦ is one of {>,=} depending on the branch that lies
in the loop; (this set of inequalities can be simplified by re-
moving constraints that are subsumed by others). Since the
only variable term in this set of inequalities is R̄0, we repre-
sent them as LoopIneq(R̄0). Let R̄l = R̄0 + l ×∆1..n, the
register vector after l complete iterations. Thus, for execut-
ing the loop completely l times, the required conditions are
LoopIneq(R̄0) ∧ LoopIneq(R̄l−1). These two sets of condi-
tions ensure that the conditions for execution of intermediate
loop iterations hold, because the changes in register values
due to actions are constant, and the expression for R̄l−1 is
linear in them. Note that these conditions are necessary and
sufficient since there is no other way of executing a complete
iteration of the loop except by undergoing all the register
changes and satisfying all the branch conditions.

Hence, the necessary and sufficient conditions for achiev-
ing the given register-value after l complete iterations are:

C(R̄0, F̄ , l) ≡ LoopIneq(R̄0)∧LoopIneq(R̄l−1)∧(F̄ = R̄l).
Each loop inequality is constant size because it concerns a
single register. The total length of all the inequalities isO(n)
and as described above they can be computed in a total of
O(n) time.

Note that an exit during the first iteration amounts to a lin-
ear segment of actions and is handled by Prop. 1. Further,
the vector F̄ can include symbolic expressions. Initial val-
ues R0 can be computed using Rl = F ; these expressions
for R0 can be used as target values for subsequent applica-
tions of Prop. 2. Therefore, when used in combination with
Prop. 1, the method outlined above produces the necessary
and sufficient conditions for reaching any node and register
value in an abacus program:

Theorem 1. Let ΠA be a simple-loop abacus program. Let
S be any node in the program, and F̄ a vector of register
values. We can then compute a disjunction of linear con-
straints on the initial register values that is a necessary and
sufficient condition for reaching S with the register values
F̄ .

Proof. Since ΠA is acyclic except for simple loops, it can
be decomposed into a set of segments starting at the com-
mon start-node, but consisting only of linear paths and sim-
ple loops (this may require duplication of nodes following
a node where different branches of the plan merge). By
Prop. 1 and 2, necessary and sufficient conditions for each
of these segments can be computed. The disjunctive union
of these conditions gives the overall necessary and sufficient
condition.

Nested Loops Due to Shortcuts
Due to the undecidability of the halting problem for abacus
programs, it is impossible to find preconditions of abacus
programs with arbitrarily nested loops. The previous section
demonstrates, however, that structurally restricted classes of
abacus programs admit efficient applicability tests. Charac-
terizing the precise boundary between decidability and un-
decidability of abacus programs in terms of their structural
complexity is an important open problem.

In this section, we show that methods developed in the
previous section can be extended to a class of nested loops
caused due to non-deterministic actions. Non-deterministic
actions are common in planning but do not exist in the orig-
inal definition of abacus domains. In the representation of
Def. 1, we define a non-deterministic action in an abacus
program NSet(r, s1, s2) as follows:

• NSet(r, s1, s2): set r to 0 and goto s1 ∈ S or set r to 1
and goto s2 ∈ S.

We assume that the register r is new, or unused by de-
terministic actions. A non-deterministic action thus has two
outgoing edges in the graph representation, corresponding
to the two possible values it can assign to a register value.
Either of these branches may be taken during execution. Al-
though the original formulation of abacus programs is suf-
ficient to capture any computation, the inclusion of non-
deterministic actions allows us to conveniently treat a pow-
erful class of nested loops (encountered in partially observ-
able planning) as a set of independent simple loops.

Definition 2. (Complex Loops) A complex loop in a graph
is a non-trivial strongly connected component that is not a
simple loop.

Definition 3. (Shortcuts) A shortcut in a simple loop is a
linear segment of nodes (without branches) starting with a
branch caused due to a non-deterministic action in the loop
and ending at any subsequent node in the loop, but not after
a designated start node. The start node must precede all of
the loop’s shortcuts (e.g., node S2 in Fig.2).

Simple loops with shortcuts form a very general class of
complex loops. This class of graphs captures many common
control flows, including those with doubly nested loops and

nested for loops such as:
for i=1 to n do {for j=1 to k do {xyz}}.

Actions which create shortcuts in such loops can be easily
transformed into non-deterministic actions followed by ac-
tions with the original conditions.

Applicability Conditions for Monotone Shortcuts
In the rest of this paper we consider a special class of simple
loops with shortcuts, where the shortcuts are monotone:

Definition 4. (Monotone Shortcuts) The shortcuts of a sim-
ple loop are monotone if the sign (positive or negative) of
the net change, if any, in a register’s value is the same due
to every simple loop created by the shortcuts.

For ease of exposition we require that the start nodes of
all shortcuts in a simple loop occur either at the common
start node, or before the end node of any other shortcut,
making shortcuts non-composable (i.e., only one shortcut
can be taken in every iteration). Non-composability allows
us to easily count the simple loops caused due to shortcuts
independently. For instance, we can view the loop with
shortcuts in Fig. 2 as consisting of 3 different simple loops.
Which loop is taken during execution will depend on the re-
sults of non-deterministic actions a3 and a5. Additionally,
we will only consider the case where non-deterministic ac-
tions occur on the outer, simple loop. Composable short-
cuts and branches caused due to non-deterministic actions
on shortcuts can be handled similarly by considering all
possible completions of the loop independently, as simple
loops. However, this may result in exponentially many sim-
ple loops in the worst case.

Suppose an abacus program Π is a simple loop with m
monotone shortcuts and a chosen start node Sstart. We con-
sider the case of l complete iterations of Π counted at its
start node, with k1, . . . , km representing the number of times
shortcuts 1, . . . ,m are taken, respectively. The final, partial
iteration and the loop exit can be along any of the shortcuts,
or the outer simple loop, and can be handled as a linear pro-
gram segment. Let k0 be the number of times the underlying
simple loop is executed without taking any shortcuts. Then,

k0 + k1 + . . . km = l. (1)

Determining Final Register Values We denote the loop
created by taking the ith shortcut as loopi, and the original
simple loop taken when none of the shortcuts are taken as
loop0. The final register values after the l =

∑m
i=0 ki com-

plete iterations can be obtained by adding the changes due
to each simple loop, with ∆loopi denoting the change vector
due to loopi:

F̄ = R̄0 +
m∑

i=0

ki∆loopi (2)

Cumulative Branch Conditions For computing sufficient
conditions on the achievable register values after k0, . . . , km

complete iterations of the given loops, the approach is to
treat each loop as a simple loop and determine its precondi-
tions. Note that every required condition for a loop’s com-
plete iteration stems from a comparison of a register’s value

with zero. We therefore want to determine the lowest possi-
ble value of each register during the k0, k1, . . . km iterations
of loops 0, . . . ,m, and constrain that value to be greater than
zero. For every register Rj , we first identify the index of
simple loop which can cause the greatest negative change in
a single, partial iteration starting at Sstart, as min(j), and
the value of this change as δmin(j). For readability we will
use ̂ to denote min(j) .

Let R+ and R− be the sets of registers undergoing
net positive and negative changes respectively, by any
loop. For Rj ∈ R+, the lowest possible value is R0

j + δb.
The required constraint on Rj is simply R0

j + δb ≥ 0
(“≥” because “>” must hold before the decrement),
since the value of Rj can only increase after the first
iteration. For Rj ∈ R−, the lowest possible value is
R0

j +
∑

i 6=b ki∆loopi + (kb − 1)∆loopb + δb, achieved when
loopb is executed at the end, after all the iterations of the
other loops. This leads to the following inequalities:

∀Rj ∈ R−
{
R0

j +
m∑

i=0

ki∆loopi +δb−∆loopb ≥ 0
}

∀Rj ∈ R+
{
R0

j + δb ≥ 0
}

Together with Eqs. (1-2), these inequalities provide suffi-
cient conditions binding reachable register values with the
number of loop iterations and the initial register values.
However, the process for deriving them assumed that for ev-
ery j, loopb will be executed at least once. We can make
these constraints more accurate by using a disjunctive for-
mulation for selecting the loop causing the greatest negative
change among those that are executed at least once. For reg-
ister Rj , let 0j , . . . ,mj be the ordering of loops in decreas-
ing order of negative change values caused by an initial seg-
ment of the loop starting at Sstart. We use ki<x = 0 as
an abbreviation for ∀i < x : ki = 0. We can then write a
disjunction of constraints corresponding to the first loop in
loop0j

, . . . loopmj
which has non-zero iterations:

∀Rj ∈ R−
∨

x=0j ,...,mj

{
ki<x = 0; kx 6= 0;

R0
j +

∑
i 6=x

ki∆loopi + δx −∆loopx ≥ 0
}

(3)

∀Rj ∈ R+
∨

x=0j ,...,mj

{
ki<x = 0; kx 6= 0;R0

j + δx ≥ 0
}

(4)

Constraints 3 & 4 are derived from the unnumbered con-
straints above by replacing ̂ with x, which iterates over
loops in the order 0j ..mj , specific to register Rj ; δx rep-
resents the greatest negative change in loop x for role j.

Accuracy of the Computed Conditions Note that these
conditions do not deal with equality conditions that may
have to be satisfied for staying in a loop. Equality condi-
tions are very constraining, and may constrain the execution
of a loop corresponding to a shortcut to occur exactly once,
when the equality condition holds. However, conditions (1-
4) can be extended to include equality conditions for the first
and last iteration of each loop. This will make (1-4) suffi-
cient conditions for situations where equality branches are

required to stay in the loop (in our experience this is rare in
planning domains). However, adding these constraints may
also make (1-4) unsatisfiable if the same register is used in
two different equality constraints corresponding to two dif-
ferent loops caused by shortcuts.

In order to discuss when conditions (1-4) are accurate and
not over-constraining, we first define order independence:
Definition 5. (Order Independence) A simple loop with
shortcuts is order independent if for every initial valuation
of the registers at Sstart, the set of register-values possible
at Sstart after any number of iterations does not depend on
the order in which the shortcuts are taken.

An equality constraint in a loop is considered spurious,
if no loop created by the shortcuts changes the register on
which equality is required. During the execution of the loop,
the truth of such conditions will not change. Consequently,
such equality conditions do not introduce order dependence.
In practice, these conditions can be translated into condi-
tions on register values just prior to entering the loop.

A simple loop with shortcuts will have to be order de-
pendent if one of the following holds: (1) the lowest value
achievable by a register during its execution depends on the
order in which shortcuts are taken. In this case, possible low-
est values will impose different constraints for each order-
ing; or, (2) a non-spurious equality condition has to be satis-
fied to stay in a loop. In the latter case, the non-deterministic
branch leading to the shortcut that has the equality condition
will have to be taken at the precise iteration when equality is
satisfied. In fact, the disjunction of these two conditions is
necessary and sufficient for a loop to be order dependent.
Proposition 3. A simple loop with shortcuts is order-
dependent iff either (1) the lowest value achievable by a
register during its execution depends on the order in which
shortcuts are taken or (2) a non-spurious equality condition
has to be satisfied to continue a loop iteration.

Proof. Sufficiency of the condition was discussed above. If
the loop is order dependent, then there is a register value that
is reachable only via a “good” subset of the possible order-
ings of shortcuts. Consider an ordering with the same num-
ber of iterations of these shortcuts, not belonging to this sub-
set. During the execution of this sequence, there must be a
first step after which a loop iteration that could be completed
in the good subset, cannot be completed in the chosen order-
ing. This has to be either because an inequality > 0 is not
satisfied before a decrement, which implies (1) holds, or be-
cause Rj = 0 is required to continue the iteration; this must
have been possible in the good loop orderings, but Rj > 0
must hold here, which implies case (2) holds.

A naive approach of even expressing the necessary condi-
tions for an order dependent loop can be exponential in the
number of shortcuts, even while considering just a single
iteration of each loop. Deriving better representations for
such conditions is an important direction for future work.
Example 1. Consider loops l1, l2 created by shortcuts in a
larger loop. l1 increases R1 by 5 and R2 by 1. l2 first de-
creases R1 by 4 and then increases it by 5. l1, l2 are mono-
tone shortcuts but their combination is order dependent: at

Sstart withR1 = 1, l2 cannot be executed completely before
executing l1. Expressing precise preconditions for reachable
register values thus requires a specification of the order in
which the shortcuts have to be taken.

We can now present two results capturing the accuracy of
the conditions (1-4).

Proposition 4. If Π is an order independent simple loop
with monotone shortcuts, then Eqs. (1-4) provide necessary
and sufficient conditions on the initial and achievable regis-
ter values.

Proof. By construction, the inequalities ensure that none of
the register values drops to zero, so that if a register value
satisfies the inequalities, then it will be reachable. This
proves that the conditions are sufficient. Suppose that a reg-
ister value F̄ is reachable from R̄0, after k0, . . . km itera-
tions of loop0, . . . , loopm respectively. Eq. (2) cannot be
violated, because the changes caused due to the loops are
fixed; Eq. (1) will be satisfied trivially. If R̄0, k0, . . . , km

don’t satisfy Eqs. (3-4), the lowest value achieved during
the loop iterations will fall below zero because the loop is
order independent. Therefore, (1-4) must be satisfied.

Proposition 5. If Π is a simple loop with monotone short-
cuts, then Eqs. (1-4), together with constraints required for
equality branches during the first and last iterations of the
shortcuts containing them give sufficient conditions on the
possible final register values in terms of their initial values.

Proof. By construction, conditions (1-4) and the equality
constraints ensure that every branch required to complete ki

iterations of loop i will be satisfied.

This leads to the main result of this section, which is anal-
ogous to Theorem 1 for simple loops:

Theorem 2. Let Π be an abacus program, all of whose
strongly connected components are simple loops with mono-
tone shortcuts. Let S be any node in the program, and F̄ a
vector of register values. We can then compute a disjunction
of linear constraints on the initial register values for reach-
ing S with the register values F̄ . If all simple loops with
shortcuts in Π are order independent, the obtained precon-
dition is necessary and sufficient.

Proof. Similar to the proof by decomposition for Theo-
rem 1, using propositions 4 and 5.

Semantics of the Computed Conditions In the result and
the conditions constructed above, the ki variables, which
count the number of times a non-deterministic action effect
occurs, appear to be measuring an inherently unpredictable
property (non-determinism) and seem to mitigate the utility
of the computed preconditions. However, as we will see in
the next section, non-deterministic abacus actions may stand
for sensing actions; while we may not be able to predict the
outcome of each sensing action, it may still be possible to
know how many times a certain outcome is possible, which
is all that we need for the conditions above. In addition, if
the ki are used as parameters, the sufficient conditions above

S
2

c

{obj, atL1}

{obj, atL2}

{truck, atL1}

{obj, atL1}

S
4

atL1(c)
choose c: obj(c)

atL1(c)
choose c: obj(c)

S
3 S

1

{obj, atL2}

{truck, atL1}

{obj, atL1}

Changes in role−counts: #{obj, atL1}−−

{obj, atL1}

{obj, atL2}

{truck, atL1}

{obj, atL1, inT}

#{obj, atL1, inT}++

#{obj, atL1}=1
#{obj, atL1}>1

loadT(c)

{truck, atL1}

c

{obj, atL1}

{obj, atL2}

Figure 3: A sequence of actions in a unary representation of trans-
port domain. Predicate object is abbreviated as obj.

capture their tolerable values under which a desired register
value may be achieved.

3 Transforming Plans into Abacus Programs
In the previous section we showed how to find precondi-
tions for a class of abacus programs. Abacus programs can
express any computation, including plans with PDDL ac-
tions. However, a translation of such plans into abacus pro-
grams is unlikely to employ only the kind of loops discussed
above. But, if planning actions can be treated as actions that
increment or decrement counters, the techniques developed
above can be directly applied. We have recently developed
an approach to accomplish that called ARANDA (Srivastava,
Immerman, & Zilberstein 2008).

We illustrate the relevant concepts of ARANDA with an
example. ARANDA uses canonical abstraction (Sagiv, Reps,
& Wilhelm 2002) to create abstract states by collecting ele-
ments satisfying the same sets of unary predicates into sum-
mary elements. The set of predicates satisfied by an element
is called the element’s role. Consider a simplified transport
domain where objects need to be moved from L1 to L2 by a
single truck of capacity one. The vocabulary for this domain
consists of unary predicates {atL1, atL2, inT, object, truck}.
Fig. 3 shows a sequence of actions applied on the initial ab-
stract state S1. Summary elements are drawn in the figure
using double circles; S1 has two summary elements, with
roles {object, atL2} and {object, atL1}. A summary ele-
ment of a certain role indicates that there may be one or
more elements of that role. Singleton elements (such as the
truck with the role {truck, atL1}) are drawn using single cir-
cles, and indicate that there is exactly one element of that
role. The abstract state S1 thus represents a situation with
unknown numbers of objects at L1 and L2, and exactly one
truck, at L1.

Planning actions in this framework become actions that
increment or decrement role-counts, or the number of ele-
ments satisfying certain role(s). Action loadT(x) in Fig. 3
loads object x into the truck. For such actions which require
arguments, ARANDA “draws-out” a representative element
of a role from its summary element if the role is not repre-
sented by a singleton. This results in two cases: either the
drawn out element was the only one with its role, or there
are other elements which have this role. This is illustrated by
the choose action in Fig. 3, which has two possible outcomes
corresponding to the number of elements, or the role-count
of the role {object, atL1}. Note that the intermediate states

S2 and S3 after choice and before action application do not
differ in any predicates–the drawn out element is marked
with a constant–and thus have the same role-counts. The
combination of choose and loadT on the other hand is ex-
actly like an abacus action application except that this com-
bined operation conducts a comparison with 1 instead of 0
during decrementing, and also increments another register.

We have characterized a class of domains called extended-
LL domains where the outcomes of any action application
resulting in multiple outcomes depend on whether or not a
role-count was greater than or equal to one. Examples of
such domains are linked lists, blocks-world scenarios, and
domains with only unary predicates as in Fig. 3. Assuming
this fact about extended-LL domains, we can state the fol-
lowing lemmas. The term linear in these results refers to
plans or programs consisting of a linear sequence of actions.

Lemma 1. Let S1
a1−→ S2 be an action operation in an

extended-LL domain, where S2 is one of the possible results
of a1. This operation can be translated into a linear abacus
program Πa whose start node is labeled S1 and terminal
node is labeled S2.

Proof. (Sketch) We create registers for every role-count that
is changed. Increments and decrements are conducted via
a sequence of abacus operators, with increments first. If a1

increments a role-count or makes no change in role-counts,
the translation is straightforward (using an extra register to
be incremented in the latter case). In order to translate a
decrementing operation on the role-count of a role R, we
make two decrements on the register R, a comparison with
0, and finally an increment operation to reverse the extra
decrement. Note that before the first action application the
role R has at least one element (otherwise R would not have
been present in S1).

A plan with extended-LL domain actions can therefore
be converted into an abacus program without changing its
structural complexity (its loop structure). The method for
computing preconditions of simple loops of abacus actions
(Prop. 2) can thus be used for plans with simple loops in
extended-LL domains. A similar translation can be used to
translate abacus actions into sequences of extended-LL do-
main actions, leading to the following result:

Lemma 2. Linear segments of abacus programs can be sim-
ulated by linear segments of programs in extended-LL do-
mains and vice versa.

As a result, the class of abacus programs is equivalent to
the class of plans with extended-LL domain actions:

Corollary 1. Plans with extended-LL domain actions can
simulate abacus programs without increasing the loop com-
plexity of the program, and vice versa.

Consequently, we have:

Theorem 3. Plans with extended-LL domain actions are
Turing complete.

Extended-LL domains thus represent a powerful class of
planning domains. Their action operations, however, are

Stop

#(se
rve

r,a
tD
1)=0

move(T2, D3); unload(T2); move(T2,L);move(T2,D2)

#(monitor,atD2)>0

#(server,atD1)>0

load(s, T1: server(s) & atD1(s))

move(T1, L)

unload(T1)

move(T1,D1)

move(T2,L)

load(m, T2: monitor(m)& atD2(m))

load(s, T2:server(s) & atL(s))

Figure 4: Solution plan for the transport problem

fundamentally simple and can be analyzed along the lines
developed in the previous sections.

The next section shows a range of problems which can be
represented in the form of extended-LL domains, and whose
actions can be treated as abacus actions. As a result, pre-
conditions and termination guarantees of a wide range of
plans with loops in these domains can be computed very ef-
ficiently. We also demonstrate our approach on plans with
complex loops created by non-deterministic sensing actions.

4 Example Plans and Preconditions
We implemented the algorithm for finding preconditions for
simple loops and order independent nested loops due to
shortcuts, and applied it to various plans with loops that have
been discussed in the literature. Existing approaches solve
different subsets of these problems, but almost uniformly
without computing plan preconditions or termination guar-
antees. For nested loops, our implementation takes a node
in a strongly connected component as an input and computes
an appropriate start node. It then decomposes the component
into independent simple loops and computes the precondi-
tions. Table 1 shows timing results for 10 different plans.

Plan Representation Figs. 4, 5 and 6 show solution plans
for some of the test problems. In order to make the plans
easy to read, we show only action nodes. The default flow
of control continues line by line (semi-colons are used as
line-breaks). Edges are shown when an action may have
multiple outcomes and are labeled with the conditions that
must hold prior to action application for that edge to be
taken (as with abacus programs). Only the edges required
by the plan are drawn; the preconditions must ensure that
these edges are always taken. For clarity, in some cases we
label only one of the outcomes of an action, and the others
are assumed to have the complement of that label. Actions
are written as “ActionName(args:argument-formula(args))”.
Any object satisfying an action’s argument formula may be
chosen for executing the plan. The desired halt states are
indicated with the action “Stop”.

Transport In the transport problem (Srivastava et al.,
2008) two trucks have to deliver sets of packages through a
“Y”-shaped roadmap. Locations D1, D2 and D3 are present
at the three terminal points of the Y; location L is at the in-
tersection of its prongs. Initially, an unknown number of
servers and monitors are present at D1 and D2 respectively;
trucks T1 (capacity 1) and T2 (capacity 2) are also at D1 and

move(T2, D3)

unload(T2); move(T2,L); move(T2,D2)

move(T2, D1)

move(T2,L)

move(T2,L)

server lost

load(m, T2: monitor(m)& atD2(m))

#(monitor,atD2)=0

load(s,T2: server(s)& atD1(s))

load(s, T2:server(s) & atL(s))

move(T1, L); unload(T1); move(T1,D1)

forkLift(s, T2)

heavy
forkLift(s, T2)

forkLift(s, T1)heavy

load(s, T1: server(s) & atD1(s)) Stop
#(server,atD1)=0

heavy

Figure 5: Solution plan for the conditional version of transport

D2 respectively. The goal is to deliver all objects to D3, but
only in pairs with one of each kind.

The problem is modeled using the predicates {server,
monitor, atDi, inTi, atL, T1, T2}. As discussed in the previ-
ous section, role-counts in this representation can be treated
as register values and actions as abacus actions on these
roles. The plan shown in Fig. 4 first moves a server from
D1 to L using T1. T2 picks up a monitor at D2, moves to L,
picks up the server left by T1 and transports both to D3. The
first action, load, uses as its arguments an object s (satisfying
server(s) ∧ atD1(s)), and the constant T1 representing the
truck T1. It decrements the count of the role {server, atD1}
and consequently has two outcomes depending on its value.
Note that the second load action in the plan also has two out-
comes, but only the one used in the plan is shown. In order to
reach the Stop state with the goal condition, we require that
final values of s1 =#{server, atD1} and m2 =#{monitor,
atD2} be zero. Let s3=#{server, atD3} and m3=#{monitor,
atD3}. The changes caused due to one iteration of the loop
are +1 for m3, s3 and −1 for s1,m1. Using the method de-
veloped in proposition 2, the necessary and sufficient con-
dition for reaching the goal after l iterations of the loop is
that there should be equal numbers of objects of both types
initially: m0

2 = l = s01.

Transport Conditional In the conditional version of the
transport problem, objects left at L may get lost, and servers
may be heavy, in which case the forkLift action has to be
used instead of the load action. Fig. 5 shows a solution
plan found by merging togther plans which encountered and
dealt with different non-deterministic action outcomes (Sri-
vastava, Immerman, & Zilberstein 2010). If a server is not
found when T2 reaches L, the plan proceeds by moving T2
to D1, loading a server, and then proceeding to D3. Note
that the shortcut for the “server lost” has a sub-branch, cor-
responding to the server being heavy. The plan can be de-
composed into 8 simple loops. Of these, 4, which use the
“server lost” branch use one extra server (loops 0, 5, 6 and 7
in the inequality below). Let role-counts s2,m2, s3,m3 be
as in the previous problem. Then, the obtained applicability
conditions are:
sf
3 = mf

3 =
P7

i=0 ki; mf
2 = m0

2 −
P7

i=0 ki = 0

sf
1 = s0

1 −
P7

i=0 ki − k0 − k5 − k6 − k7 = 0

mv(R, b: −empty(b))
#(−empty) = 0

Stop

PickObj(o: in(o,b))

senseType(o)

collect(o,c: forPaper(c)& −full(c)) collect(o,c: forGlass(c)& −full(c))

glasspaper

#(forPaper, −full)>0 #(forGlass, −full)>0

empty(b)

Figure 6: Solution plan for the recycling problem
Problem Time (s) Problem Time(s)
Accumulator 0.01 Prize-A(7) 0.02
Corner-A 0.00 Recycling 0.02
Diagonal 0.01 Striped Tower 0.02
Hall-A 0.01 Transport 0.01
Prize-A(5) 0.01 Transport (conditional) 0.06

Table 1: Timing results for computing preconditions

These conditions show that every possible loop decrements
the role-counts s andm; however, in order to have all objects
at D3 the conditions now require extra servers to be kept at
D1, amounting to the number of times a server was lost.

Recycling In this problem a recycling agent must inspect
a set of bins, and from each bin, collect paper and glass ob-
jects in their respective containers. The solution plan in-
cludes nested loops due to shortcuts (Fig. 6), with the start
node at PickObj. senseType is a sensing action, and the col-
lect actions decrement the available capacity of each con-
tainer, represented as the role-count of {forX, ¬full} where
X is paper or glass. Let e, fg, fp, p, g denote the role-counts
of non-empty bins, glass container capacity, paper container
capacity, paper objects and glass objects respectively. Let l1
denote the number of iterations of the topmost loop, l2 of
the paper loop and l3 of the glass loop. The applicability
conditions are:

ef = e0 − l1 = 0, fpf = fp0 − l2 ≥ 0,
pf = p0 + l2, fgf = fg0 − l3 ≥ 0, gf = g0 + l3.

Note that the non-negativity constraints guarantee termina-
tion of all the loops.

Accumulator The accumulator problem (Levesque 2005)
consists of two accumulators and two actions: incr acc(i)
increments register i by one and test acc(), tests if the given
accumulator’s value matches an input k. Given the goal
acc(2) = 2k − 1 where k is the input, KPLANNER com-
putes the following plan: incr acc(1); repeat {incr acc(1);
incr acc(2); incr acc(2)}until test acc(1); incr acc(2). Al-
though the plan is correct for all k ≥ 1, KPLANNER can
only determine that it will work for a user-provided range of
values. This problem can be modeled directly using regis-
ters for accumulators and asserting the goal condition on the
final values after l iterations of the loop (even though there
are no decrement operations). We get

acc(1) = l + 1; acc(2) = 2l + 1 = 2k − 1.
This implies that l = k − 1 ≥ 0 iterations are required to
reach the goal.

Further Test Problems and Discussion We tested our al-
gorithms with many other plans with loops. Table 1 shows a

summary of the timing results. The runs were conducted on
a 2.5GHz AMD dual core system. Problems Hall-A, Prize-
A(5) and Prize-A(7) (Bonet, Palacios, & Geffner 2009) con-
cern grid world navigation tasks. In Hall-A the agent must
traverse a quadrilateral arrangement of corridors of rooms;
the prize problems require a complete grid traversal of 5×n
and 7 × n grids, respectively. Note that at least one of the
dimensions in the representation of each of these problems
is taken to be unknown and unbounded. Our implementation
computed correct preconditions for plans with simple loops
for solving these problems. In Hall-A, for instance, it cor-
rectly determined that the numbers of rooms in each corridor
can be arbitrary and independent of the other corridors. The
Diagonal problem is a more general version of the Corner
problem (Bonet, Palacios, & Geffner 2009) where the agent
must start at an unknown position in a rectangular grid, reach
the north-east corner and then reach the southwest corner by
repeatedly moving one step west and one step south. In this
case, our method correctly determines that the grid must be
square for the plan to succeed. In Striped Tower (Srivastava,
Immerman, & Zilberstein 2008), our approach correctly de-
termines that an equal number of blocks of each color is
needed in order to create a tower of blocks of alternating
colors. In all the problems, termination of loops is guaran-
teed by non-negativity constraints such as those above.

5 Related Work
Although various approaches have studied the utility and
generation of plans with loops, very few provide any guar-
antees of termination or progress for their solutions. Ap-
proaches for cyclic and strong cyclic planning (Cimatti et
al. 2003) attempt to generate plans with loops for achieving
temporally extended goals and for handling actions which
may fail. Loops in strong cyclic plans are assumed to be
static, with the same likelihood of a loop exit in every iter-
ation. The structure of these plans is such that it is always
possible–in the sense of graph connectivity–to exit all loops
and reach the goal; termination is therefore guaranteed if this
can be assumed to occur eventually. Among more recent
work, KPLANNER (Levesque 2005) attempts to find plans
with loops that generalize a single numeric planning param-
eter. It guarantees that the obtained solutions will work in
a user-specified interval of values of this parameter. DIS-
TILL (Winner & Veloso 2007) identifies loops from example
traces but does not address the problem of preconditions or
termination of its learned plans. Bonet et al. (2009) derive
plans for problems with fixed sizes, but the controller rep-
resentation that they use can be seen to work across many
problem instances. They also do not address the problem of
determining the problem instances on which their plans will
work, or terminate.

Finding preconditions of linear segments of plans has
been well studied in the planning literature. Triangle ta-
bles (Fikes, Hart, & Nilsson 1972) can be viewed as a
compilation of plan segments and their applicability condi-
tions. However, there has been no concerted effort to find
preconditions of plans with loops. Static analysis of pro-
grams deals with similar problems of finding program pre-
conditions. However, these methods typically work with the

weaker notion of partial correctness, where a program is
guaranteed to provide correct results if it terminates. Meth-
ods like Terminator (Cook, Podelski, & Rybalchenko 2006)
specifically attempt to prove termination of loops, but do not
provide precise preconditions or the number of iterations re-
quired for termination.

6 Conclusions and Future Work
We presented a formal approach for finding preconditions
of plans with a restricted form of loops. We also presented
a characterization of the aspects of complex loops, which
make it difficult to find their preconditions. While the pre-
sented approach is the first to address this problem, it is also
very efficient and scalable. In addition to finding precondi-
tions of computed plans, it can also be used as a component
in the synthesis of plans with safe loops.

A greater understanding of the impact of a plan’s struc-
tural complexity on the hardness of evaluating its precondi-
tions is a natural question for future research. The scope of
the presented approach could also be extended by combin-
ing it with approaches for symbolic computation of precon-
ditions of action sequences.

Acknowledgments
Support for this work was provided in part by the Na-
tional Science Foundation under grants IIS-0915071, CCF-
0541018, and CCF-0830174.

References
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic deriva-
tion of memoryless policies and finite-state controllers using clas-
sical planners. In Proc. of ICAPS, 34–41.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003. Weak,
strong, and strong cyclic planning via symbolic model checking.
Artif. Intell. 147(1-2):35–84.
Cook, B.; Podelski, A.; and Rybalchenko, A. 2006. Termination
proofs for systems code. In Proc. of the 2006 ACM SIGPLAN
Conference on Programming Language Design and Implementa-
tion, 415–426.
Fikes, R.; Hart, P.; and Nilsson, N. 1972. Learning and executing
generalized robot plans. TR, AI Center, SRI International.
Lambek, J. 1961. How to program an infinite abacus. Canadian
Mathematical Bulletin 4(3):295–302.
Levesque, H. J. 2005. Planning with loops. In Proc. of IJCAI,
509–515.
Minsky, M. L. 1967. Computation: finite and infinite machines.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc.
Sagiv, M.; Reps, T.; and Wilhelm, R. 2002. Parametric shape
analysis via 3-valued logic. ACM Transactions on Programming
Languages and Systems 24(3):217–298.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008. Learning
generalized plans using abstract counting. In Proc. of AAAI, 991–
997.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2010. Merging
example plans into generalized plans for non-deterministic envi-
ronments. In Proc. of AAMAS (to appear).
Winner, E., and Veloso, M. 2007. LoopDISTILL: Learning
domain-specific planners from example plans. In Workshop on
AI Planning and Learning, ICAPS.

