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Inimduclhm aml ~unlln:,ry 

Query lauguagcs [br relational databases have received 

cunsidcrablc atteution. In 1972 Codd [Cod721 showed that two 

natural mathcm::tical langnages tbr queries " " () ~] e algebraic and the 

odacr a version ¢~f first order predicate c~dculus -- had identical 

pm,,¢rs of cxprcsb:ibility. Query languages whi,:h are as expressive as 

Codd's Rclation,d Calcul,as are somctimes cal/cd comp]_e~. This 

lcrm is misleading, however, hccausc many interesting queries are 

not expressible in "completc" languages. 

In 1979, Aho and UIIman [Ahl_l179] noted that relational calculus 

does not suffice to express the transitive closure propcrty. They 

suggested adding a least fixpoint operator to relational calculus in 

order to crcalc a query language which can exprcss transitive closure. 

In 1980. Chandra and I larel [ChllaS0b l studied the cxprcssive power 

uf relational calculus with addcd primitives such as a least fixpoint 

operator. They dclincd a Fixpoint Hierarchy of query classes, the 

queries in each particular class being those expressible with a certain 

number of applications of the least fixpoint operator, followed by a 

certain number of alternations of ordinary quantification. In this 

paper we show: 

Thenrcm 2: The Fixpoint Hierarchy collapses at the first fixpoint 

level. 

That is, any query expressible with several applications of least 

fixpoint can already be exprcsscd with one. We also show: 

Theorem 1: Let 1. be a query language consisting of relational 

calctdus plus the least fixpoint operator. Suppose that L contains a 

relation symhol for a total ordering relation on the domain (e.g. 

lcxicographic ordering). Then the queries expressible in 1. are 

exactly the queries computable in polynomial time. 
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Theorem 1 was discovered independantly by M. Vardi [Var82]. It 

gives a simple syntactic categorization of those queries which can be 

answered in polynomial time. Of course queries requiring 

polynomial time in the size of the database are usually 

prohibitatively expensive. We also consider weaker languages for 

expressing less complex queries. 

Section I: Background and Notation 

This section will briefly dellne and give examples of the objects 

under considcratiun. The reader is referred to lUlls0], [l!nd72], and 

[AHU74] for excellent discussions of relational query languages, first 

order predicate calctth~s, .rod computational complexity, respectively. 

First, a rclatinnal database B = <D,R] . . .  Rk> consists of a finite 

domain I) = {e I . . . en}, and a finite set of relations on the domcim 

R i is an afary relation on D, i.e. R i (5 D ai 

As an example consider the database: 

B 0 = <D 0, Ft£MA1.E, PARENT, IIUSBAND> 

consisting of a domain of persons: 

D O = {Abraham, Isaac, Sarah, l.eah, Rebckah, Jacob, 

Rachel, Joseph, Benjamin . . . } 

B 0 has a monadic relatkm, FFMA1.E, true of the female members of  

the domain, i.e. 

FEMALE = {Sarah, Leah, Rebckah, Rachel . . . .  } 

and two binary relations, PARENT(x,y) true when x is a parent of y, 

and HUSBANI)(x,y) tr.,e when x is the husband of  y. 71ms, 

PARENT = {<Abraham,lsaac>,<Sarah,lsaac>,<lsaac,Jacob>, 

<R ebekah3acob>,<JacobJoseph>,<Jacob,Benjamin>, 

<l~,achel,Joseph>, <Rachel,Benjanfin> . . . .  } 

HUSBAND = {<Abraham,Sarah>,<Jacob,Leah>, <Jacob,Rachel>, 

<Isaac,Rebekah>, . . .  } 
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A relational scheme <R t . . . Rk> is just a finite list of  relation 

symbols. R i is an ai-ary relation symbol. For example B 0 is an 

instance o f  the relational scheme FAMII.Y = (FEMALE, PARENT, 

HUSBANI)>,  where "FEMALE" is a monadic relation symbol, and 

"PARENT" and "HUSBAND" are binary relation symbols. 

Generally, the difference between relations and relation symbols will 

be determined by context -- to be rigorous we should give the actual 

relations in B 0 the superscript "B0". 

We can now define Domain Relational Calculus, a query language 

based on first order predicate calculus. If S = <R 1 . . . Rk> is any 

relational scheme then L(S), the relational calculus language of S, is 

built up from the following: 

Relation Symbols: R 1 . . . . .  R k , = 

I.ugit:al Connectives: A , V , -1 

Variables: x , y , z . . . .  

Qu.nuif~els: IVx) , (3x) 

Wcll formed formulas (WFF's) are constructed using the above 

symbols in tile usual way. l:or example, we can express tile sibling 

relation by tlle formula: 

Sib(n,v)~ 3x ._ly ( x a y  A PARI{NT(x,u} A PARENT(x,v) 

A ua:v A PARI{NT(y.u) A PARENI(y,v) ) 

Sib is a WFF in I (FAMII.Y) with two frcc variahlcs, u and v. It 

can be thought of as a query to a FAMII.Y daabase B. The answer 

would be the set of pairs (el,e 2> from I) such that B satisfies 

Sib(et,e2). For example, Bo's resptmse would include the pair, 

<lienjamin,Joseph>, because B 0 satislies Sib(P, enjamin,Joseph) -- in 

symbols, II 0 I=Sib(l~cnjamin,Joscph). Note that any instance B of 

file relational schcme S "understands" any tbrmula from I.(S) 

because B has a relation corresponding to each relation symbol in S. 

The reader should convince himself or herself that many queries 

can be expressed in relational calcuh|s. As timber examples, we 

write the expressions for second cousin, ~md for second cousin once 

removed (Seer): 

2ndCos{u,v) ~ (3 x y 7. wJ(Sib(z,w) A PARENT(z,x) A 

I'A R ENT(w,y)A PA I~l~Nl'(x,u)A PAR ENT(y,v)) 

Scor(w,z) ~ (3x)([PARENT(x,w) A 2ndcos(x,b)] V 

[PAI~,ENT(x,z) A 2ndCos(x,w)] ) 

%gR)[x,y] ~ ( x : y  V 341'ARF.NT(x,z) A !~,(z,yll) 

For any FAMII,Y database, B, q~A maps each binary relation, Ri, on 
tile domain of I/ to the binary relation: 

¢#A(Ri) ~ { <x,y> I II ~ ~A(Rl)[x,y] } 

¢PA is monotone, i.e, R iCR 2 implies q~a(l~l)~q~A(l~). Thus for any 

da~lbase II, CpA has a least fixpoint, i.e. a relation R 0 such that 

¢PA(R0)=R0 and R 0 is minimal with this property. It is well known 
that an expression, ~(R), is monotone iff it is equivalent to an 

expression cp'(R) in which R occurs only positively. Following 

[AhUI791 we will use a least fixpoint operator, IJ:P, on monotone 

expressions such as g'a" It is easy to see, for example, that 

Anecstor = LFP(tpA ) 

It is interesting to consider the computational complexity of 

evaluating queries that use this least fixpoint operator. The fi)llowing 

proposition is due to Chandra and l larel, [Chlla80a]. 

Proposition l: Given a database, B=<D R 1 . . . Rk) , and a 

monotone operator ~ in tile language of B, l.FP(~) exists and is 

computable in time p([DI) for some polynomial p. 

proof~ Let n=ll)[, the size of the domain, and let a be the arity of 

¢p. Define R 0 = ¢p[na](~), i.e. R 0 is the relation resulting from 

composing ¢p with itself n a times and applying it to the empty set. 

Obviously Ro=LFP(cp) because each application of ¢p adds some 

tuples to the at most n a tuples in the relation. No additional tuples 

can be added after n a steps. Let 

~(R)[Xl..,Xa] --_ (QlZl . , . Qkzk) M(xl...Xa,Zl...zk,R) 
where M is quantifier free. Given R as a list of  tuples we can 

compute ep(R) in time na+klog(n) by cycling through all possible 

values of z 1 . . .  zk for each possible value of x. Iterating ~ n a times, 

we can compute l.Fl'(cp) in time n 2a+k+l = p(n). I 

Chandra and Hard have considered a Fixpoint Hierarchy, Ik~, 

which consists of alternating applications of quantification and 1J-'~. 

Inductively: 

Z 0 = 17 0 = { M [ M is a quantifier free query. } 

Za+  1 = {(3x)q/(x) I ~ e II a } 

nla = { ~ 1 ~o e 2 a } 

For ,8 a lintit ordinal, 

Eft = { 4'(v) [ ~ =l.FP(,p),cp monotone, rp e ~a,  a<,8} 

Section 2: Adding a I.easL Fixpoint Operator 

Relational Calcuhls corresponds exactly to the familiar notion of 

first order predicate logic. This language fomls a rich class of 

queries. Of course not all properties one might want to ask a 

database about are first order expressible. In the Relational Calculus 

for our FAMILY schcme it is impossible to express tile relation 

Ancestor(x,y). In [AhU179] Aho and Ulhnan suggest adding a least 

fixpoint operator to relational calculus so that transitive closures such 

as Ancestor(x#) may be expressed. 

For example, consider the following first order expression: 

Thuh Z n is die :,el of qumie~ c>Mressible with n alterm~tions of 

quailtifkalion beginning wid~ existential. Ewn is the set of queries 

expressible using n applicati~ms of I.FP with huermediate 

applications of quantification and negmion. The last line defines Zfl 

for ,8 a limil ordinal, as a substitutitm of variables, < into the l~zast 

fixpoint of a fiwmula q~ which is lu\xcr down in the hierarchy. N.B. 

we have slightly modilied the definition in [ChllaBtl] which did not 

allow such substitutions. 

It is known that additional alternations of first order quantification 

give increased cxpressibility and that transitive closure is not lirst 

order expressible. See [ChllaS0] and [AhU179], Tbus: 

148 



Fac__.~: The Fixpoint llierarchy is strict up to Xaa' that is, the 

following containments are all strict: 

E 0 C  Z 1 C  Z 2 C  , . .  C Eta 

Chandra and Harel ask whcthcr the hierarchy continues past Eta 

and we will show in 'Fheorcm 2 that it does not  'lhcy also 

considered the computational complexity of answering queries. Let 

QPTIME be the set of queries computable in polymnnial time in the 

size of  the database: 

QFFIME ~ { ~ I Graph(rp) C P } 

where Graph(cp) = {<Ikc> ] B I== ~(c) }. We have already seen in 

Proposition 1 that Eoa is containcd in QPTIME. It follows that FP 

C_ QI'TIME. Chandra and Harcl show that equality does not hold. 

Theorcm[ChHaS0b]: FP ~ QFq'IME 

q he proof bas to do with the fact that queries in FP don't 

necessarily have the ability to count. Thus for example the query 

concerning family databases, "Is there an even number of  females?", 

is not cxpi'cssible in the Fixpoint lticrarchy. 

The inability of  our queries to count can be eliminated by adding 

to the language an ordering of the domain. Such an ordering, e.g. 

by bit representation, is always available in real databases. Let 

Q(<_)PTIIVlE be the set of queries computable in polynomial time on 

ordered databases. Tlmt is we only consider databases which have a 

total order, <,  on the domain, l.ct FP(<)  be the queries in FP, 

where _< must be interpretated as a total ordering of  the domain. 

We shov,' in the next section that Q(<)PT1ME = FP(<), and in fact 

only one application of LFP is needed. 

Sectien 3: Mai, Results 

Theorem 1: Q(.<)PTIM E : Ere(<) 

proof skelci3: Tlmt Q(<)IrI'IMI?. contains 200(_< ) is clear. We must 

shmv the converse. 1.et S = {<B/,cl> . . . } be a set or pairs of 

ordered databases B belonging to a certain relational scheme and r- 

tuplcs, c, from B, l.et M be a Tming machine that accepts S in time 

n k. We must sllow that there is a query a(xp..xr) E Eaa which 

expresses S," i.e. 

S = { <B,c> ] BI== a(e) } . 

l:2Jch candidate for S is a pair, <Ill,c>, where B has an n element 

domain, 1), with a total ordering, < ,  on its elements. 'l13us we can 

fllink of I) as the set of integers fiom 0 to n-1. We can use k-tuplcs 

of variables to denote numbers between 0 and ok-1. We will use one 

application of LFP to write the query Cell(Xl...XrPr..Pk,tl...tk,a ) to 
express the statement that in M's computation the contents of cell 

number pl...pk at time tl...t t is a. More precisely, we will show that 

there is a first order sentence ~b(S)[xl...Xr,Pl...Pk,tl...tk,a ] such that 
Cell = LFP(4,), and that B satisties Cell(e,p,t,a) if and only if the 

instantaneous description of M*s computation on input <B,c> contains 

symbol a in cell p at time t. 

Once we have Cell we can let a(x) ~ Cell(x,C,nk-l,qr). Here a 

says that M is in its accept state, q~ after nLl  steps. Thus, as 
desired, 

B I= a(c) ~-~ <B,e> £ S . 

There are two steps to writing q, whose least fixpoint is Cell. 

First we must write the sentence M0(c,p,a) meaning that at time 0, 

cell p is a, i.e. that the initial input tape contains <B,c>. Suppose 

that B : <{0...n-1},R1...Rs>. Then the input will consist of an nal 

bit table for R> followed by an n a2 bit table for R 2, and so on, 

followed by some binary representation for c 1 ...c r It is easy to see 

that using < and relation symbols R! ... R k we can write the first 

order sentence M 0 saying that the input is correct. 

Consider the following monotone first order expression %: 

+(S)[x,p,t,al ~ (t = 0 A M0(x,p,a ) ) V 

3a.laoal(<a.laOal>-,a A S(x,p-l,t-i,a.l) 

A S(x,p.t-l,ao) A S(x.p+ 1,t-l,al) ) 

Here "<a_la0al>-+a" means that the triple <a la0al> leads to tile 
symbol a in one move of M. Thus each application of ~ gives us 

one more row of M's computation, so l_FP(q0 = Cell. 'Fo write 

a(x) = Ccll(x,0,nLl+qr ) would seem to require some quantification 

after the least fixpoint operator is used. In fact we can add an extra 

variable, z, to q, so that it does two things: case 1 (z;exl): compate 

Cell: case 2 (Z=Xl): check if Ccll(x,0,nk-l,qf) bolds. "lqms: 

A 

(3z' uva ' ) [z '~xtAu =OA v=n-1 

A a ' :  qf A S(z',x,u...u,v...v,a')]) 

l.et S O = I.FP(q,), and let a(xl...Xr) = So(xl,xl...xr,xr..Xl). Then 

a is equivalent to Cell(xl...Xr0,nk-l,qf) as desired, I 

If we do not have an ordering then it is not possible in general to 

simulate a computation. However we can show that tile hierarchy 

still collapses at the first fixpoint level: 

Theorem 2: FP = ~to • 

We first give the proof for an example: 

Claim: ~Ancestor E Z~o " 

proof: Recall the formula ~A such that 1.FP(~A) = Ancestor: 

~pa(R)[x,y] --: ( x : y )  V 3z(Par(x,z) A R(z,y)) 

Our problem is to monotonically add infimnation about ancestors 

to some larger relation S so that after finitely many steps we will be 

able to tell that we are done, and for which values Ancestor(x,y) does 

not hold. Define rank(x,y) : rain k : ~A(k~(~)[x.y]. That is, 

rank(x,y) is the minimum number of applications of CpA needed to 

discover that Aneestor(x,y) holds. Clearly rank(x,y) = 

distance(x,y)+l. Even though our language do,bs not have access to 

numbers we can use LFP to make statements about ranL We will 

write first ordcr expressions ~1' ~2, q)3, with least fixpoints GE, GT, 
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GS, respectively, meaning the following: 

GE(x,y,u,v) = ( rank(u,v)< oo A rank(x,y) >_ rank(u,v)) 

OT(x,y,u,v) ~ (rank(u,v) < oo A rank(x,y)> rank(u,v) ) 

GS(x,y,tD) ~ (rank(u,v) < O0 A rank(x,y) > ranl.{u,v)-:-l) 

Once we have these three predicates we can express -~,\nccstor 

withuut using negation, l:irst we can write l)iam(a,h) expressing tile 

propcrty that distance(a.b) is the maximum possible. 

S{}::IJ:I}(,I~), we have 

~ A  nccst{}r{x,y) ~ S0(x,x,x,x,x,x,y ) . 
This proves the claim. I 

Wc now sketch the general proof of Theorem 2. l.et R 0 = 
Ll:P{q~) be an arbitrary least fiXl)oint of arity r. As above we defnc 

the £~3//~6~.~) to he the minimum k such that 9}(k}(.~)lx] holds. "l]ten 

as in thc above cxamnplc we can define the relations, GE, GT, and 

GS, as simuhancous fixpoints where 

GF~x,n) ~ (rank(u) < oo A rank(x) > rank(u)) 

r 
I)iam{a,b) =_ GE(a,b,a,b) A ~Vuv)l_Gl!(a,b,u,v) 

V (GT(u,v,a,b) A GS(u.v,a.h) )] 

Diam(a,b) says that rank(a,b) is finite and that no pair u,v satis,qes 

rank(u,v)=rank(a,b)+l.  Now tile pairs of infinite rank are just 

those pairs with rank strictly greater than that of a diameter: 

~Anccstor(x,y) =-- 3ab(Diam(a,b) AGT(x,y,a,b)) 

Ilere are the fonnulas, tpl. ~2, and ~3' used to define GE, GT, 

and GS: 

~l(Rl)[x,y,u,vl =_ ( u = v )  V 

[~(x = y) A (3u' Vx')((Par(u,u') A 

I~{x=x '  V Par{x.x'))VRj(x',y,u',v)]}] 

eP2(R2)[x,y,u,v ] -= (u=v  A x~y) V 

J R ( x =  yVPar(x,y))A (3u' Vx')((Par(u,u') 

A [ ~ { x :  x' V Par(x,x') V R2(x',y,u',v)1)] 

~3(R3)[x,y,u,v] --= (u=v  A xeyA-",Par(x,y))V 

[ ~ ( x = y V P a r { x , y ) V  3z(Par(x,z)APar(z,y)) A 

(3u'x')((Par(u,u') A [~(x=x'VPar(x,x')VR3(x',y,u',v)] } ] 

It is easy to verify that GE=LFP(tct) ,  GT=LFP(qo2), and 

GS=LFP(~3).  We will be done once we show how to combine tpl, 

~P2, tP3 into one simultaneous LFP: 

O(S)[zpzz, zyu,v,x,y] 

V 

V 

V 

_= ( (z l~z  2 A z2~z s) A w](S)[u,v,x,y]) 

A A 

((Zl=Z 2 A z2~z 3) A qo3(S)iu,v,x,y]) 

( ( z l = z  2 A z2=z 3) A (3a b)[Diam'(a,b) 

A S(a,b,b,x,y,a,b)]) 

uses the three variables, Zl,Z2,Z 3, to break the definition into 
four cases. We are assuming that the domain is of size at least two 

and that tile diameter is nonzero. I~et l)iam'{a,b) be l)iam(a3}) ~ith 

S(a,b,a,u,v,s,y), S(a,b,b,u,v,x,y), S(a,a,bm,v,x,y) substituted for {}E, 

Gq', and GS, respectively. Thus Diam'(a,b) will hold only when the 

fixpoint has been reached and a and b are of maximal distance. In 

this case S(a,b,b,x,y,a,b) is equivalent to GT{x,y,a,b).. Thus letting 

GT(x,u) _= (rank(u) < ~ A rank(x) > rank(u)) 

GS(x,u) _= (rank(u) < oo A rank(x) > rank(u)+ 1) 

We can compute R 0 ahmg with its negation in a single fixpoint 
expression of arity 2r +3. Further steps of quantification and even 

other fixpoints can then be embedded in the last case of the 

definition of ~, as above. Using the next two lemmas we sketch the 

construction of q'l, eP2' and ~pj whose least fixpoints are GE, GT, 
and GS. respectively. 

1.emma 2.1 : Suppose that R is an r-ary relation symbul and that 

tp(R)[xl...Xr] is monotonic iu R. Then cp may be expressed in an 
equivalent fonn: 

rp(R)[Xl...Xr] ~ (Qizi .  Mi)...(Q t z t . Mi)(ax1...x r . Mr+ 1)R(Xl.-.Xr ) 

where M1...Mt+ 1 are quantifier free and contain no occurrences of  
R. Here, {Vz. M)P means (Vz)(M~P),  and 

(3z . M)P means (3z)(MAP). 

example: Let 

tPB(R)[xvx21 m (Xl=X 2 V Par(xt,x2)) V 3zlR(xpz) AR(z,x2) ] 

We can express ~B in the above fonn as 

~B(R)[xl,x2] m (Vz . M1)(3z)(Vu v . M2)(3xlx 2 . M3)R(xpx2) 

where M 1 ~_ ~ [ x t = x 2 V  Par(xpx2)] 

,'l 2 --_-~ [(u-:x: A ~=z) V f u - : z A  v=:x2)] 

M, ~:. [=l:=u A x2=v] 

1 hope th;lt the ~cadcr will convince herself {}r Ifimsclf that wc 

have indeed expresq,:d ~PB ill the corleCt filtH1. 'l'he proof of [.olrllD.fl 

2.1 would hc I)5 induction on tilt" complexity of % Note our use ,}f 

an abbreviation trick -- tile universal qll~/l'ltil]c:dion uf IJ and v, 

above, reduced the number of (~ccurrences of R. Sc¢ I.emma A.3 in 

[hnm82] for a similar result proved in some detail. 

I.emma 2.1 shows how to write any monotonic expresskm, tp(R). 

in a very simple form. For any such % tile folhB~ing ]emma shows 

how to write ~1, 'P2, ~3 whose fixpoims are GF, GS, and GT. 
respectively. The proof of Theorem 2 then follo',~s exactly as in the 

above example for ~Ancester. 
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l.emma 2.7: Supose 7,(R)[x] ~ QB(x)[R(x)] is in the form of 

I.emma 2.1, where 

QB(x) ~ (QtZl . Mi)... (Qtzt . Mi)(3x. Mr+l) 

1.et QB(u) _= QB(n,z'/x,z) i.e. QB(x) with u i 
substituted fi)r x i, i=  1...r. and z/ substituted fi)r zj. j = 1...t. 

Let QI"""~ be QB with all V's rcplaee by 3's and vice versa. Put 

qol(Rl)[X,U ] ~ ~(O)[u] V Rl[X,u]V 

rP2(Rz)[X,U ] ~- (~(Z)[u] A ~(~)Ix l )  V 1~2Ix,u] V 

(2) qo3(R3)[x,u] -~ (qo(~)lul-',~(~)[x]A~rp (~)[x]) V 

R2[x,u ] V [QI3(u)QI~x)](R3[x,u]) 

then: 

(a): l.FP(cpl) = GE 

(b): I.FP(~2) = GT 

(c): I.FP(~3) = GS 

proof of a: By induction on k we show fllat 

Cpl(k)(~)[X,U ] ~ ( rank(u)_<k A rank(x)>rank(u) ) (*) 

This is clear if k= l .  Assume that (*) holds for k and consider the 

following assertion: 

( rank(u 0) < k+ 1 A rank(x0)>rank(u 0) ) (t) 

This holds iff either of the following conditions is tnle: 

( rank(tl O) ~ k A rank(x°)_>rank(u O) ) (2) 

( rank(u 0) ~ k-F] A rank(x 0) > k ) (3) 

By induclion equation (2) is eqnivaleut to cptfk)(~)ix0,u0 ]. 
F.quation (3) is cquivalcnt to: 

Ck+ ~l(~)[uO l A ~,/k~(~)lx°l 
Which in turn is equiwilent to: 

[QB(u0)]lk+I) (false) A [QB~x°)] (k) (true) (4) 

Now, since the variables in QB(u 9) and QB(x 0) do not intersect, 

we may transform equation (4) to: 

[Q. ( ,@ (ra,se) ^ ) 
Or, in other symbols: 

QB(u°)QB(x°)( rank(u).<k A rank(x)> k-1 ) (5) 

We have shown that equations (3) and (5) are equivalent. A 

consequence of (5) is: 

QB(u°)@l(x°)( rank(n)<k A rank(x)>rank(u)) (6) 

Which, by the inductive assumption, is equivalent to: 

QB(u°)QB(x°)(¢pltlO(IZl)[x,u]) 

Thus, the disjunction of (2) and (3) implies: 

~l(k)(JZi)[xO, n 0] V QB(u°)QB(x0)(Cpl(k)(O)[x,u]) (7) 

and so ~oltk+ ])(~I)[X0,U 0] holds. In a like fashion we can reverse the 
steps from (7) to (1), thus proving our claim, (*). It follows that 

l.FP(qol)_= GE. The prooZs of (b) and (c) are similar. This 
completes the proof of lemma 2.2 and of the proof sketch of  

Theorem 2. I 

Section 4: Conclusions and Directions for Future Work. 

Another view of least fixpoint is as an iteration operator. For 

o/(R)[Xl...xk] monotone, the least fixpoint of qo is just q0 iterated n k 

times, i.e. LFP((p) ~ qo(nk). We propose a new query hierarchy 

which limits this iteration. Define lQ[f(n)] to be the set of queries 
expressible by iterating a first order query f(n) times to obtain a 

fixpoint, i.e. 

IQ[f(n)] ~ { R0(v) I R 0 ='P(ffn))(O) :: ~(ffn)+ I)(~) } 

This definition makes sense for non-monotone q0 in which ease tile 

iteration could proceed for more than n k steps and the fixpoi~lt 

computed need not be the minimal one. 

As an example, let 

qol(R#[x,y ] _= (x = y V Par(x,y) V (3z)[R(x,z) A R(z y)] ) 

It is easy to see that Anccstor = IJ:P(qO.r) = q0 (l°g n)(~). Thus 
Ancestor is in IQ[log n]. "llle following theorem states some results 

about IQ aud IQ(<). but many questions, such as, "Is there a strict 

hierarchy for IQ(<)?" remain unknown. 

Theorem 3: 

(a): IQ[1] = First Order Queries C_ QSPACE[log n] 

(b): IQ[Iog n] D Transitive Closures 

(c): IQ(<)[n k] = FP = QFFIME 

(d): IQ(<) = PSPACE 

Anothcr issue raised by Chhndra and Harel, among others, is that 

languages with an ordering such as FP(<) treat differently numbered 

isomorphic databases differently. That is, the answer to some queries 

will depend on the ordering: It would be nice to have a language 

rich enough to simulate Turing machines and yet without this 

difficulty. One suggestion is to add variables, i j . . . .  whose range 

for a database of size n will be the integers 1 . . .  n. We would also 

add the natural ordering, <_, on these number variables plus 

"counting quantifiers": (3 i x's)P(x), meaning, "There exist i distinct 
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x's such that P(x)." These counting quantifiers would remove the 

most obvious counterexamples to the cquality of IQ(n 'K) and 

QPT1ME. They are also no stronger than adding <.  More 

precisely: 

Propositio!~: For ffn)>log(n), 

IO(count)[f(n)] C tQ(<)[f(n)] . 

We have sho:~n tha;. all quelic~ using first order quantification 

and a least fixpoint operator may bc expres.~sed with a siu,~le 

occurrence of least fixpoint applied to a first order cxpressi,m. 

}:urthermorc. in the presence of a total ordering, <, the queries so 

expressible are exactly the P'I'IMI~ computable queries. Finally, a 

further study of the number of iterations needed to compute 

fixpuints is desirable. The following open problems merit 

investigation: 

I:ind classes of query languages wlaose cnmplcxity is clear from 

the syntax, as FP(<)=PTIME, but for feasible complexity classes 

from the database point of view, e .g .  TIME[n] and 

SPACE[logk(n)l . 

2. Design Query languages using iterated queries. 

expressibility, complexity and optimization. 

Study 

3. Prove Hierarchy theorems for: 

(a) 1Q[tf(n)] 

(b) 1Q(count)[ffn)] 

(c) IQ(<_)[ffn)] 

4. Prove or disprove: 

IQ(count)[nkl = IQ(<_)Inkl 
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