Relational Queries Computable in Polynomial Time

Extended Abstract

Intecduction and Summary

Query Lingmages for relational databases have received
In 1972 Codd [Cod72} showed that two

natural mathematical languages for querics - one algebraic and the

considerable attention,

other a version of first order predicate caleutus -- had identical
powers of expressibility. Query Tanguages which are as expressive as
Codd's Relational Calculus are sometimes called complete. This
tern is misleading, however, because many interesting qucrics arc

not expressible in “complete” languages.

In 1979, Aho and Ullman [ARUI7Y] noted that relational calculus
docs not suffice to express the transitive closure property, ‘They
suggested adding a least fixpoint operator to relational calculus in
order to create a query language which can express transitive closure.
In 1980, Chandra and Harel [Chit1a80b] studicd the expressive power
of relational calculus with added primitives such as a least fixpoint
operator. They defined a Fixpoint Hicrarchy of query classes, the
querics in cach particular class being those expressible with a certain
number of applications of the least fixpoint operator, followed by a
certain number of alternatiens of ordinary quantification. In this
paper we show:

Theorem 2: ‘the Fixpoint Hicrarchy collapses at the first fixpoint
level.

That is, any query cxpressible with several applications of least

fixpoint can alrcady be expressed with one. We also show:

Theorem 1: Let 1. be a query language consisting of relational

calculus plus the least fixpoint operator. Suppose that L. contains a
relation symbol for a total ordering relation on the domain (c.g.
lexicographic ordering). Then the queries expressible in 1. are

cxactly the querics computable in polynomial time.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-067-2/82/005/0147 $00.75

147

Neil Immerman

Tufts University Laboratory for Computer Science
Dept. of Mathematics M.LT.
Medford, Mass. 02155 Cambridge, Mass. 02139

Theorem 1 was discovered independantly by M. Vardi [Var82). It
gives a simple syntactic categorization of those querics which can be
answered in polynomial time. Of course queries requiring
polynomial time in the size of the database are usually
prohibitatively expensive. We also consider weaker languages for

expressing less complex querics.

Scction 1: Background and Notation

This scction will briefly define and give examples of the objects
under consideration. The reader is referred o [UNISO], [}ind72], and
[AHU74] for excellent discussions of relational query languages, first
order predicate calculus, and computational complexity, respectively.

First, a relational database B = <DD.R, ... R> consists of a finite
domain 1D = {e, ... ¢} and a finite sct of relations on the domein.

R, is an a-ary relaton on D, ie. Ry C DA

As an cxample consider the databasc:

B <Dy FEMALE, PARENT, HUSBAND>

0 =
consisting of a domain of persons:

Dy = {Abraham, Isaac, Sarah, 1.cah, Rebekah, Jacob,
Rachel, Joscph, Benjamin . . . }

B, has a monadic relation, FEMALE, true of the female members of
the domain, i.c.

FEMALE = {Sarah, Leah, Rcbekah, Rachel , . . . }

and two binary relations, PARENT(x.y) true when x is a parent of y,
and HUSBAND(x,y) troc when x is the husband of y. Thus,

PARENT = {<Abraham,Isaac><Sarah,Isaac><Isaac,Jacobd,
<Rebekah, Jacobd <Jacob Josephd,<Jacob.Benjamind,
<Rachel Josephd, <Rachel,Benjamind, . . . }

HUSBAND = {<Abraham,Sarah><{Jacob,Leahd, <Jacob,RacheD,
(Isaac,Rebekahd, . . .}

A relational scheme <R, ... R,> is just a finite list of relation
symbols. R; is an a-ary rclation symbol. For cxample B, is an
instance of the relational scheme FAMILY = <FEMALE, PARENT,
HUSBANDD, where "FEMALE" is a monadic relation symbol, and
"PARENT” and "HUSBAND" arc binary relation symbols.
Generally, the difference between relations and relation symbols will
be determined by context -- to be rigorous we should give the actual
relations in B, the superscript "By".

We can now define Domain Relational Calculus, a query language
bascd on first order predicate calculus. If § = <R ... Ry> is any
relational scheme then 14S), the relational calculus language of S, is
built up from the foilowing:

Relation Symbols: Ry, ..., Ry, =
Logival Connectives: A, V , ™
Varisiies: X .Y .t ...
Quuntifiers: (¥x) , (3x)

Well formed formulas (WEI's) are constructed using the above
symbuls in the usual way. For example, we can express the sibling

relation by the formula:

Sivyyz= 3 3y {x=y A PARENT() A PARENT(xv)
A u#y A PARENT(y0) A PARENT(y.v))

Sib is a WEF in T{FAMILY) with two frce variables, u and v. 1t
can be thought of as a query to a FAMILY database B. The answer
would be the sct of pairs <epey> from D such that B satisfies
Sib{c}.¢,).
<Benjamin,Josephd, because By satislies Sib(Benjamin, Joseph) -- in
symbols, By E=Sib(Benjamin,Joseph). Note that any instance B of
the relational scheme § “understands” any formula from 1(S)

For example, By's response would include the pair,

because B has a relation corresponding to cach relation symbol in 8.

The reader should convince himsell or herself that many querics
can be expresscd in relational caleulus. As further cxamples, we
write the expressions for second cousin, and for second cousin once
removed (Scor):

MiCostuv) = (3 xye w)(Sib(z,w) A PARENT(z,x) A

PAR)EN')'(w,y)/\PAR}ZN'I‘(x,u)/\PAREN’]‘(y,v))

I

Scorwz) = @0([PARENT(wW) A 2Cos(xb)] V
[PARENT(2) A 20Cosxw)])

I

Section 2: Adding a Least Fixpoint Operator

Relational Caleulus corresponds cxactly to the familiar notion of
first order predicate logic. This language forms a rich class of
querics. Of course not all properties one might want to ask a
database about are first order cxpressible. In the Relational Calculus
for our FAMILY scheme it is impossible to express the relation
Ancestor(x.y). In [AhUIT9] Aho and Ullman suggest adding a least
fixpoint operator to relational calculus so that transitive closures such
as Ancestor(x,y) may be expressed.

For ecxample, consider the following first order expression:

148

ea®fs] = (x=y V BPARENTG) A R(p))

For any FAMILY database, B, ¢ A maps cach binary relation, R > on
the domain of B to the binary relation:

G | B E o)k}

@, is monotane, i, R,CR, implics PARDCH,R,). Thus for any
databasc B, @, has a least fixpoint, ie. a relation Ry such that
PRy = Ry and R, is minimal with this property. 1t is well known
that an cxpression, @(R), is monotone iff it is cquivalent to an

PARY =

cxpression @'(R) in which R occurs only positively. Following
[AWUI79] we will use a least fixpoint operator, LIP, on monotone

expressions such as @,. It is casy to sce, for cxample, that

LiT(g,)

It is interesting to consider the computational complexity of

Ancestor =

evaluating gueries that use this least fixpoint operator, ‘The following
proposition is duc to Chandra and Harcl, [Chlta80a].

Proposition_1: Given a database, B=<D Ry ... R, and a
monotone operator @ in the language of B, LFP(p) cxists and is
computable in time p(|D}) for some polynomial p.

proof: Let n=|D}, the size of the domain, and let a be the arity of
. Define Ry = (p["a](ﬁ), ie. Ry is the relation resulting from
composing ¢ with itself n? times and applying it to the cmpty set.
Obviously Ry=LFP(p) because cach application of ¢ adds some
tuples to the at most n? tuples in the relation. No additional tuples
can be added after n? steps. Let

P(R)x.x) = Qg - .. Q) M(x;..x,.2,..2,,R)
where M s quantifier free. Given R as a list of tuples we can
compute @(R) in time n”'*klog,(n) by cycling through all possible
values of 7y . - . 7, for cach possible value of x. Iterating ¢ n? times,
we can compute LFP(@) in time n2+*+1 = p(n), 1

Chandra and Harel have considered a Fixpoint Hicrarchy, FP,
which consists of alternating applications of quantification and LFP.
Inductively:

2y = My = { M | M is a quantifier free query. }

Zaer = AN |y oe Iy}
na = { e l 2 za }
For B a limit ordinal,
g = { ¥ | ¥ =LFP(p).p monotone, g ¢ %, a<B}

Thus 2 s the set of queries expressible with o alternations of

quantification beginning with existential. - 2 s the sct of querics

wn
expressible using n applications of LFP with intermediate
applications of quantification and vegation. The fast Tine defines X

for B a limit ordinal, as a substitution of variables, v, into the lxast
tixpoint of a formula @ which is lower down in the hicrarchy, N.B.
we have slightly modified the definition in [Chita8t] which did not

allow such substitutions.

It is known that additional alternations of first order quantification
give increased cxpressibility and that transitive closure is not first

order expiessible. See [ChHa80] and [AWUI79]. Thus:

Fact: ‘The Fixpoint Hicrarchy is strict up to Z, that is, the

following containments are all strict:

ZC € 5 C c 2z,

Chandra and Harel ask whether the hicrarchy continues past 2
and we will show in Theorem 2 that it does not. They also
considered the computational complexity of answering queries. Let
QPI'IME be the sct of queries computable in polynomial time in the

size of the database:
QPIIME = { ¢ | Graph(p) € P }

where Graph(p) = {<B,c> | B = ¢(c) }. We have already scen in
Proposition 1 that £ is contained in QPTIME. 1t follows that FP
C QPIIME. Chandra and Harcl show that equality does not hold.
Theorem[ChHa80b]:

The proof has to do with the fact that queries in FP don’t

FP # QPTIME

necessarily have the ability to count. Thus for example the query
concerning family databases, "lIs there an even number of females?”,
is not cxpressible in the Fixpoint Hicrarchy.

'The inability of our querics to count can be climinated by adding
to the language an ordering of the domain. Such an ordering, e.g.
by bit rcpresentation, is always available in real databases. Let
Q(<)PTIME be the sct of queries computable in polynomial time on
ordered databases. That is we only consider databases which have a
total order, £, on the domain. Let FP(<) be the queries in FP,
where < must be interpretated as a total ordering of the domain.
We show in the next section that Q(<)PTIME = FP(K), and in fact

only one application of LFP is nceded.

Sectien 3: Main Results

Theorem 11 Q(SIPIIME = 2 (<)

proof sketch: That QU<PTIME contains xw(g) is clcar. We must
show the converse. let § = {(]}J,c]> ... } be a sct of pairs of
ordered databases BB belonging to a certain relational scheme and r-
ples, ¢, from B, Let M be a Turing machine that accepts S in time
n*. We must show that there is a query afx;..x)) € 2, which
expresses S oie.

N = { B> | B= afc) } .

Each candidate for S is a pair, <B,c>, where B has an n clement
domain, 1D, with a total ordering, <, on its clements. Thus we can
think of 1) as the set of integers from 0 to n-1. We can use k-tuples
of variables to denote numbers between 0 and n¥-1. We will use one
application of LFP to write the query Cc]l(xI...xl_,p]...pk,tl...tk,a) to
express the statement that in M's computation the contents of cell
number py...py at ime ..ty is a. More preciscly, we will show that
there is a first order sentence IJJ(S)[xl...xr,pl...pk,tl...tk.a] such that
Ccll = LIFP(), and that B satisfies Cell(e,p,t.a) if and only if the
instantancous description of M’s computation on input <B,c> contains
symbol a in cell p at time t.

149

Once we have Cell we can let a(x) = Ccl](x.C,n"-l.qf). Here a

says that M is in its accept state, g, after n¥-1 steps. Thus, as
desired,

B = a(c) « {Be> € S .

There are two steps to writing ¢ whose least fixpoint is Cell.
First we must write the sentence MO(c,p,a) meaning that at time 0,
cell p is a, i.e. that the initial input tapc contains <B,c>. Suppose
that B = <{0..n-1},R,..R>. Then the input will consist of an nl
bit table for R, followed by an n™2 bit table for R,. and so on,
followed by some binary representation for ¢, ..c. It is easy to sce
that using < and relation symbols R, ... R, we can write the first
order sentence M, saying that the input is correct.

Consider the foliowing monotone first order expression ¥:

WS)xp.tal (t=0A Mxp)) vV

[

EIa_laOal((a_laoal)—»a AS(xp-lt-ia))

A S(x,p.t-l,no) A S(x.p+ l,t'l,ﬂl))
Here "<a_laoal>—>a" means that the triple <a~1“0“1> leads to the
symbol a in onc move of M. Thus cach application of ¢ gives us
onc more row of M's computation, so LFP() = Cell. To write
afx) = Ccll(x.O‘n“-l,qr) would scem to rcquire some quantification
after the least fixpoint eperator is used. In fact we can add an extra
variable, z, to ¢ so that it does two things; case 1 (z#x,): compute
Cell: case 2 (z=x}): check if Cc]l(x,(),nk-l,qf) holds. Thus:

Y(S)zxptal= (mﬁ X /\\L-(S)[x,p,l‘a]) V(z: % A
(32" uva’) [z';ﬂxl/\u =0A v=n-1
Aa'=q A S(z',x,u...u.v...v,a')])

let SO = LFP(¥), and let a(xl...xr) = SO(xl,xl...xr,xl...xl). Then
a is equivalent to Cc]l(xl...xr,O,nk-l,qf) as desired. 1

If we do not have an ordering then it is not possible in general to
simulate a computation. However we can show that the hicrarchy
still collapses at the first fixpoint level:

FP = 2

Theorem 2: o

We first give the proof for an example:

Claim: —Ancestor € 2, .

proof: Recall the formula @, such that LFP(p,) = Ancestor:

PARYxY] = (x=y) V InPar(xz) A R@Y))

Qur problem is to monotonically add information about ancestors
to somge larger relation S so that after finitely many steps we will be
able to tell that we are done, and for which values Ancestor(x.y) docs
not hold. Definc rank(x.y) = min k : (pA(k)(Q)[x.y]. That is,
rank(x,y) is the minimum number of applications of ¢, needed to
discover that Ancestor(x,y) holds. Clearly rank(x,y) =
distance(x,y)+1. Even though our language doés not have access to
numbers we can use LI-P to make statements about rank. We will
write first order expressions @, @,. @3, with lcast fixpoints GE, GT,

GS, respectively, meaning the following:

GE(x,y,u,v) = (rank(uv)<o0 A rank(xy)> rank(u,v))
GT(x.y,u,v) = (rank{u,v)< o0 A rank(x,y) > rank{u,v))
GS(x,y,u,v) = (rank(u,y) € 00 A rank{x.y) > rank{u,v)--1)

Once we have these three predicates we can express —tAncestor
withcut using negation, Iirst we can write Diam(a,b) expressing the
property that distance(a,b) is the maximum possible.

Biam(a,h) = GHabab) A (Vuv)[(j]i(a.b,u,v)
V (GT(u,v,ab) A GS(u,v,ab))]

Diam(a,b) says that rank(a,b) is finite and that no pair u.v satisiics
rank(u,v)=rank(a,b)+1.
those pairs with rank strictly greater than that of a diamcter:

Now the pairs of infinite rank arc just

=Ancestor(x,y) = Jab(Diam(a,b) AGT(x.y,a,b))

Here arc the formulas, @. @, and @3, used to define GI%, GT.
and GS:

o (R xyuy] = (u=v) V
["l(x =y A @ Vx')((l’.’u‘(u,u') A
(=1 V Partxax) VR, oy |
p,R)xyuv) = (u=vAxzy) V

[~x= yVPareanA @u' vy (Parqu)
A [Px=x"V Par(xx) V Ry y,u'v)])]

PyRlxyuy] = (u=v A x#zyA-Par(x,y))V

[=(x=yVPartxy)V 3ePar(a) APar(zy)) A
(3u'x')((Par(u,u') A [(x :x'VPar(x,x’)VR}(x’,y,u',v)])]

It is casy to verify that GE=LFP(gp)). GT=LFP(p,), and
GS:LFP(tp}). We will be done once we show how to combine Py
¢, @3 into onc simuitancous LFP:

O(S)z.25.23,u.v,%.Y] ((zlvtz2 A) A q;l(S)[u,v,x,y])

M

v (@22, A y=2) A o Suvixy)
\% ((zlzz2 A y#zy) A %(S){u,v,x.y])
\% ((7.1=z2 A =233 A (3ab)[Diam’(a,b)

A S(a,b,b,x,y,a,b)])

® uses the three variables, 7,.7,.2;, to break the definition into
four cases. We are assuming that the domain is of size at least two

and that the diameter is nonzere. Let Diam'(a.b) be Diam(a.h) with
S(a,b,au,v,5y), S(ab.buyvxy) S(aabuyxy) substituted for G,
GT, and GS, respectively. Thus Diam'(a,b) will hold only when the
fixpoint has been reached and a and b are of maximal distance. {n
this casc S(a,b,bx.y,ab) is cquivalent to GT(xy.ab). Thus letting

150

Sy=LFP(D). we have

—“Ancestor(x,y) = So(x.x,x.x,x.x‘y) .
This proves the claim. 1

We now sketeh the general proof of Theorem 2. et R, =
LEP(g) be an arbitrary least fixpoint of arity 1. As above we define
the rank(x) to be the minimum k such that p*Y(@)x] holds. Then

as in the above example we can define the relations, G, GT, and

GS, as simultancous fixpoints where

GE(x,u) = (rank{u)< o0 A rank(x) > rank(u))
GT(x,u) = (rank(u)< 00 A rank(x) > rank(u))
GS(x,u) = (rank(u) <00 A rank(x) > rank(u)+1)

We can compute Ry along with its ncgation in a single fixpoint
expression of arity 2r +3. further steps of quantification and even
other fixpoints can then be cmbedded in the last case of the
definition of @, as above. Using the next two lemmas we sketch the
construction of Py, P, and @y whose least fixpoints arc GE, GT,
and GS. respectively.

I.emma 2.1: Suppose that R is an r-ary relation symbol and that
@(R)fx,...x] is monotonic in R. Then ¢ may be expressed in an
cquivalent form:

(p(R)[Xl.‘.Xr] = Q. Ml)..‘(Ql 7, . MP(3x,.x, . M, PR(x.x)

where M,..M_, arc quantificr free and contain no occurrences of
R. Here, (Vz. M)P means (Vz)}(M—P), and
(32 . M)P means (Iz)(MAP).

cxample: Let
PpRixpx) = (xy=x, V Par(x,,x,)) V 37,[R(x1,7.) /\R(z.xz)]
We can express @ in the above form as
ppRxpx,] = (V2. MDE2)(Vu v . My)(3x;xy - MR{x,x,)

where My = Tlxy =%,V Par(xx,)]

My = Husxy AvEg Ve A v,

M. = f=u Axy=y]

3

1 hope that the reader will convince hersell” or himself that we
have indeed expressad gy, in the correet form. "The proof of temma
2.1 would be by induction on the complexity of ¢. Note our usc of
an abbreviation trick -- the universal quantificition of u and v,
above, reduced the number of occurrences of R, Sce Lemma Ad in

[lmm82] for a simifar result proved in some detail.

Temma 2.1 shows how to write any nmonotonic expression, ¢(R),
in a very simple form. For any such ¢, the following lemmu shows
how to write @y, @5 @3 whaose fixpoiais arc GE, GS. and GT,
respectively. ‘The proof of Theorem 2 then follows exactly as in the
above cxample for —Ancester.

Lemma 2.2: Supose @(R)[x] = QB()[R(x)] isin the form of

I.emma 2.1, where

QB(x) = Q7 -M)) ... (Qt’l' M)@3x. M1+1)

QB(u) = QB(uz'/x2) i.c. QB(x) with u;
substituted for x,, i=1...r, and 7)' substituted for 7 =1t

Let

Lot QB be QB with afl V's replace by 3's and vice versa. Put

PRl = @@l V R)[xa]V
[op@®] e
g)xul = (@@ A Tp@)x) V Ryfxu] V
[opwanm]a,xa)
piRylxul = (@@ e@)NA D) vV
Ryfxal v [QBwdBe]r,xaD
then:
@: LFP(p) = GE
(b): LFP(p,) = GT
©: LIy = GS
proof of a: By induction on k we show that
o @)k o (rank(u)<k A rank(x)>rank(u)) *)

This is clear if k=1.
following assertion:

Assume that (*) holds for k and consider the

(rank(u®) < k+1 A rank(x%)>rank(®)) M
This holds iff cither of the following conditions is true:

(rank@”) <k A rank(x®)>rank(u")) ()

(rank(u®) < k-+1 A rank(x") > k) (3)

By induction cquation (2) is ecquivalent to fpl‘k)(ﬁ)[xo,u(’].
Equation (3) is cquivalent to:

(P(k+ 1)(6)[u0] A .—-,(p(k)(g)[xol

Which in turn is cquivalent to:

[QB(uO)]("’”) (false) A [Qn(x">]“<> (true) @)

Now, since the variables in QB(uo) and QB(xO) do not intersect,

we may transforim cquation (4) to:

QBB [Qn(u)]“‘) (false) A [Qll(x)](k'”(lruc))
Or, in other symbols:
QBB rank()<k A rank(x)> k-1))

We have shown that cquations (3) and (5) are equivalent., A
consequence of (5) is:

QBB rank(u)<k A rank(x)> rank(w) ©)

Which, by the inductive assumption, is cquivalent to:

QBB ¢, (@)ix.ul)

151

Thus, the disjunction of (2) and (3) implies:

Y@ V QBB 9,X(@){xu1))
and so @,**(@)[xu% holds. In a like fashion we can reverse the
steps from (7) to (1), thus proving our claim, (*). It follows that
LFP(@))= GE. The proofs of (b) and (c) arc similar. This
completes the proof of lemma 2.2 and of the proof sketch of
Theorem 2, - 1

Section 4: Conclusions and Directions for Future Work.

For
@(R)x,..x,] monotone, the least fixpoint of @ is just ¢ iterated n¥

Another view of least fixpoint is as an itcration operator.

times, ie. LFP(p) = qa(“k). We propose a new query hierarchy
which limits this itcration. Define IQ[f(n)] to be the set of queries
expressible by iterating a first order query f(n) times to obtain a
fixpoint, i.c.

QIm)] =
‘This definition makes sense for non-monotone @ in which casc the
iteration could proceed for more than n* steps and the fixpoint

[RyM | Ry :,P(f(n))(g) = gT)+ Dy }

computed need not be the minimal one.

As an cxample, let

Pyl = (x=y VPartuy) V @0[R(x2) ARG)
It is casy to see that Ancestor = LIP(p) = ¢(% (@) Thus
Ancestor is in IQ[log n]. The following theorem states some results
about IQ and 1Q(L). but many questions, such as, "Is there a strict
hicrarchy for 1Q(<)?" remain unknown.

Theorem 3:

(@): 1Q[1] = First Order Queries € QSPACE[log n]

(b): 1Q[log n] 2 Transitive Closures
©): 1] = FP = QPTIME
@: 1) = PSPACE

Another issue raised by Chindra and Harel, among others, is that
languages with an ordering such as FP(L) treat differently numbered
isomorphic databases differently. That is, the answer to some queries
will depend on the ordering: It would be nice to have a language
rich enough to simulate Turing machines and yet without this
difficulty. One suggestion is to add variables, i j ..., whose range
for a databasc of size n will be the integers 1. .. n. We would also
add the natural ordering, <, on these number variables plus

"counting quantifiers™: (3 i x’s)P(x), meaning, "There exist i distinct

x's such that P(x)." These counting quantifiers would rcmove the
most obvious counterexamples to the cquality of IQ(nk) and
QPTIME. They are also no stronger than adding <. More
precisely:

For f{in)>log(n),
IQ(count){fin)] C

Proposition:
1))}

We have shown that all querics using first order quantification
and a least fixpuint operator may be expresssed with a single
oceurrence of lcast fixpoint applied to a f{irst order expression.
Furthermore, in the presence of a total ordering, £, the querics so
expressible are exactly the PTIME computable querics. Finally. a
further study of the number of itcrations needed to compute
fixpoints is desirable. The following open problems merit

invesligation:

1. Find classes of query languages whose complexity is clear from
the syntax, as FP(L)=PTIME, but for feasible complexity classes
from the database point of view, cg. TIME[n] and

SPACE[log(n)].

2. Design Query languages using itcrated queries. Study

expressibility, complexity and optimization.

3. Prove Hicrarchy theorems for:
{a) 1Q[fn)]
(b) 1Q(count)[fn)]
(¢) 1QLfn)]

4, Prove or disprove:

1Q(countn*] = 1Q(L)[n*]

5. David Harel and Haim Gaiffiman have both obtained some results
concerning fixpoint hierarchics when the arity of the fixpoints are
bounded, [Har81]. Studying the arity of fixpoints is also related
to measuring the number of distinct variables used in first order

It would be

interesting and fruitful to study the “expressibility resource” arity

expressions, a problem considered in (Imm82].

of fixpoints in conjunction with others resources such as number
of fixpoints or number of iterations.

152

Acknowlcdgments

I would like to thank David Harel, John Mitchel, Adi Shamir, and
Venkataraman for their helpful ideas concerning this paper. This
work was parially supported by NSF grant number MCS 8105754.

Bibliography

[AHU74]: AhoA., HoperoftJ,, Ullman J., The Design and

Analysis of Computer Algorithms, Addison-Wesley,
1974.

AhoA., Ullman. J.D., "Universality of Data Retrieval
Languages,” b Symp. on Principles of Programming
Languages, 1979, pp. 110-117.

Chandra,A., "Programming Primitives for Database
Languages.” gth Symp. on Principles of Programiming
{.anguages, 1981, pp. 50-62.

Chandm,/\., Harel,12.."Computable Queries for
Relational Databases,” JCSS, Vol. 21, No. 2, October,
1980, 156-178.

Chandra,A., Harel D)., "Structure and Complexity of
Relational Queries,” 21% Symp. on Foundations of
Computer Scicnce, 1980, pp: 337-347.

Chandra,A. Harel.12.,"Horn Clause and the IFixpoint
Quecry Hicrarchy,” to appear.

[ARUIT9] :

[Cha81]:

{ChHa80a]:

[Chl{a80b} :

[Chila82):

[Cod72}: Codd E.F., "Relational Completencss of Database
Sublanguages,” in Database Systems, R.Rustin, ed.,

Prentice-Hall, 1972, pp. 65-98.

Enderton,H., A Mathematical Introduction to Logic,
Academic Press, 1972, -

Harel, David, personal communication.

[End72]:

[Har81]:

{Imm80j : Immerman,N., "Upper and Lower Bounds for First

Order Expressibility," 215 Symp. on Foundations of
Computer Science, 1980, pp. 74-82.

Immerman,N., "Number of Quantifiers is Better than
Number of Tape Cells,” JCSS, Vol. 22, No. 3, June,
1981, pp. 334-406.

Immerman,N., "Upper and Lower Bounds for First
Order Expressibility,” to appear in JCSS, 1982.

Ullman,J.D., Introduction to Database Systems,
Computer Science Press, 1980.

[Imm81}:

[Imm82] :

[Ung0] :

[var82]: Vardi,M.,"Complexity of Relational Query I.anguages,”

this volume.

