
Relational Queries Computable in Polynomial Time
Extended Abstract

Nell lmmerman

Tufls University
Dept. of Mathematics
Med'lbrd, Mass. 02155

l.aboratory for Computer Science
M.H'.
Cambridge, Mass. 02139

Inimduclhm aml ~unlln:,ry

Query lauguagcs [br relational databases have received

cunsidcrablc atteution. In 1972 Codd [Cod721 showed that two

natural mathcm::tical langnages tbr queries " " () ~] e algebraic and the

odacr a version ¢~f first order predicate c~dculus -- had identical

pm,,¢rs of cxprcsb:ibility. Query languages whi,:h are as expressive as

Codd's Rclation,d Calcul,as are somctimes cal/cd comp]_e~. This

lcrm is misleading, however, hccausc many interesting queries are

not expressible in "completc" languages.

In 1979, Aho and UIIman [Ahl_l179] noted that relational calculus

does not suffice to express the transitive closure propcrty. They

suggested adding a least fixpoint operator to relational calculus in

order to crcalc a query language which can exprcss transitive closure.

In 1980. Chandra and I larel [ChllaS0b l studied the cxprcssive power

uf relational calculus with addcd primitives such as a least fixpoint

operator. They dclincd a Fixpoint Hierarchy of query classes, the

queries in each particular class being those expressible with a certain

number of applications of the least fixpoint operator, followed by a

certain number of alternations of ordinary quantification. In this

paper we show:

Thenrcm 2: The Fixpoint Hierarchy collapses at the first fixpoint

level.

That is, any query expressible with several applications of least

fixpoint can already be exprcsscd with one. We also show:

Theorem 1: Let 1. be a query language consisting of relational

calctdus plus the least fixpoint operator. Suppose that L contains a

relation symhol for a total ordering relation on the domain (e.g.

lcxicographic ordering). Then the queries expressible in 1. are

exactly the queries computable in polynomial time.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1 9 8 2 A C M 0 - 8 9 7 9 1 - 0 6 7 - 2 / 8 2 / 0 0 5 / 0 1 4 7 $ 0 0 . 7 5

Theorem 1 was discovered independantly by M. Vardi [Var82]. It

gives a simple syntactic categorization of those queries which can be

answered in polynomial time. Of course queries requiring

polynomial time in the size of the database are usually

prohibitatively expensive. We also consider weaker languages for

expressing less complex queries.

Section I: Background and Notation

This section will briefly dellne and give examples of the objects

under considcratiun. The reader is referred to lUlls0], [l!nd72], and

[AHU74] for excellent discussions of relational query languages, first

order predicate calctth~s, .rod computational complexity, respectively.

First, a rclatinnal database B = <D,R] . . . Rk> consists of a finite

domain I) = {e I . . . en}, and a finite set of relations on the domcim

R i is an afary relation on D, i.e. R i (5 D ai

As an example consider the database:

B 0 = <D 0, Ft£MA1.E, PARENT, IIUSBAND>

consisting of a domain of persons:

D O = {Abraham, Isaac, Sarah, l.eah, Rebckah, Jacob,

Rachel, Joseph, Benjamin . . . }

B 0 has a monadic relatkm, FFMA1.E, true of the female members of

the domain, i.e.

FEMALE = {Sarah, Leah, Rebckah, Rachel }

and two binary relations, PARENT(x,y) true when x is a parent of y,

and HUSBANI)(x,y) tr.,e when x is the husband of y. 71ms,

PARENT = {<Abraham,lsaac>,<Sarah,lsaac>,<lsaac,Jacob>,

<R ebekah3acob>,<JacobJoseph>,<Jacob,Benjamin>,

<l~,achel,Joseph>, <Rachel,Benjanfin> }

HUSBAND = {<Abraham,Sarah>,<Jacob,Leah>, <Jacob,Rachel>,

<Isaac,Rebekah>, . . . }

147

A relational scheme <R t . . . Rk> is just a finite list of relation

symbols. R i is an ai-ary relation symbol. For example B 0 is an

instance o f the relational scheme FAMII.Y = (FEMALE, PARENT,

HUSBANI)>, where "FEMALE" is a monadic relation symbol, and

"PARENT" and "HUSBAND" are binary relation symbols.

Generally, the difference between relations and relation symbols will

be determined by context -- to be rigorous we should give the actual

relations in B 0 the superscript "B0".

We can now define Domain Relational Calculus, a query language

based on first order predicate calculus. If S = <R 1 . . . Rk> is any

relational scheme then L(S), the relational calculus language of S, is

built up from the following:

Relation Symbols: R 1 R k , =

I.ugit:al Connectives: A , V , -1

Variables: x , y , z

Qu.nuif~els: IVx) , (3x)

Wcll formed formulas (WFF's) are constructed using the above

symbols in tile usual way. l:or example, we can express tile sibling

relation by tlle formula:

Sib(n,v)~ 3x ._ly (x a y A PARI{NT(x,u} A PARENT(x,v)

A ua:v A PARI{NT(y.u) A PARENI(y,v))

Sib is a WFF in I (FAMII.Y) with two frcc variahlcs, u and v. It

can be thought of as a query to a FAMII.Y daabase B. The answer

would be the set of pairs (el,e 2> from I) such that B satisfies

Sib(et,e2). For example, Bo's resptmse would include the pair,

<lienjamin,Joseph>, because B 0 satislies Sib(P, enjamin,Joseph) -- in

symbols, II 0 I=Sib(l~cnjamin,Joscph). Note that any instance B of

file relational schcme S "understands" any tbrmula from I.(S)

because B has a relation corresponding to each relation symbol in S.

The reader should convince himself or herself that many queries

can be expressed in relational calcuh|s. As timber examples, we

write the expressions for second cousin, ~md for second cousin once

removed (Seer):

2ndCos{u,v) ~ (3 x y 7. wJ(Sib(z,w) A PARENT(z,x) A

I'A R ENT(w,y)A PA I~l~Nl'(x,u)A PAR ENT(y,v))

Scor(w,z) ~ (3x)([PARENT(x,w) A 2ndcos(x,b)] V

[PAI~,ENT(x,z) A 2ndCos(x,w)])

%gR)[x,y] ~ (x : y V 341'ARF.NT(x,z) A !~,(z,yll)

For any FAMII,Y database, B, q~A maps each binary relation, Ri, on
tile domain of I/ to the binary relation:

¢#A(Ri) ~ { <x,y> I II ~ ~A(Rl)[x,y] }

¢PA is monotone, i.e, R iCR 2 implies q~a(l~l)~q~A(l~). Thus for any

da~lbase II, CpA has a least fixpoint, i.e. a relation R 0 such that

¢PA(R0)=R0 and R 0 is minimal with this property. It is well known
that an expression, ~(R), is monotone iff it is equivalent to an

expression cp'(R) in which R occurs only positively. Following

[AhUI791 we will use a least fixpoint operator, IJ:P, on monotone

expressions such as g'a" It is easy to see, for example, that

Anecstor = LFP(tpA)

It is interesting to consider the computational complexity of

evaluating queries that use this least fixpoint operator. The fi)llowing

proposition is due to Chandra and l larel, [Chlla80a].

Proposition l: Given a database, B=<D R 1 . . . Rk) , and a

monotone operator ~ in tile language of B, l.FP(~) exists and is

computable in time p([DI) for some polynomial p.

proof~ Let n=ll)[, the size of the domain, and let a be the arity of

¢p. Define R 0 = ¢p[na](~), i.e. R 0 is the relation resulting from

composing ¢p with itself n a times and applying it to the empty set.

Obviously Ro=LFP(cp) because each application of ¢p adds some

tuples to the at most n a tuples in the relation. No additional tuples

can be added after n a steps. Let

~(R)[Xl..,Xa] --_ (QlZl . , . Qkzk) M(xl...Xa,Zl...zk,R)
where M is quantifier free. Given R as a list of tuples we can

compute ep(R) in time na+klog(n) by cycling through all possible

values of z 1 . . . zk for each possible value of x. Iterating ~ n a times,

we can compute l.Fl'(cp) in time n 2a+k+l = p(n). I

Chandra and Hard have considered a Fixpoint Hierarchy, Ik~,

which consists of alternating applications of quantification and 1J-'~.

Inductively:

Z 0 = 17 0 = { M [M is a quantifier free query. }

Za+ 1 = {(3x)q/(x) I ~ e II a }

nla = { ~ 1 ~o e 2 a }

For ,8 a lintit ordinal,

Eft = { 4'(v) [~ =l.FP(,p),cp monotone, rp e ~a, a<,8}

Section 2: Adding a I.easL Fixpoint Operator

Relational Calcuhls corresponds exactly to the familiar notion of

first order predicate logic. This language fomls a rich class of

queries. Of course not all properties one might want to ask a

database about are first order expressible. In the Relational Calculus

for our FAMILY schcme it is impossible to express tile relation

Ancestor(x,y). In [AhU179] Aho and Ulhnan suggest adding a least

fixpoint operator to relational calculus so that transitive closures such

as Ancestor(x#) may be expressed.

For example, consider the following first order expression:

Thuh Z n is die :,el of qumie~ c>Mressible with n alterm~tions of

quailtifkalion beginning wid~ existential. Ewn is the set of queries

expressible using n applicati~ms of I.FP with huermediate

applications of quantification and negmion. The last line defines Zfl

for ,8 a limil ordinal, as a substitutitm of variables, < into the l~zast

fixpoint of a fiwmula q~ which is lu\xcr down in the hierarchy. N.B.

we have slightly modilied the definition in [ChllaBtl] which did not

allow such substitutions.

It is known that additional alternations of first order quantification

give increased cxpressibility and that transitive closure is not lirst

order expressible. See [ChllaS0] and [AhU179], Tbus:

148

Fac__.~: The Fixpoint llierarchy is strict up to Xaa' that is, the

following containments are all strict:

E 0 C Z 1 C Z 2 C , . . C Eta

Chandra and Harel ask whcthcr the hierarchy continues past Eta

and we will show in 'Fheorcm 2 that it does not 'lhcy also

considered the computational complexity of answering queries. Let

QPTIME be the set of queries computable in polymnnial time in the

size of the database:

QFFIME ~ { ~ I Graph(rp) C P }

where Graph(cp) = {<Ikc>] B I== ~(c) }. We have already seen in

Proposition 1 that Eoa is containcd in QPTIME. It follows that FP

C_ QI'TIME. Chandra and Harcl show that equality does not hold.

Theorcm[ChHaS0b]: FP ~ QFq'IME

q he proof bas to do with the fact that queries in FP don't

necessarily have the ability to count. Thus for example the query

concerning family databases, "Is there an even number of females?",

is not cxpi'cssible in the Fixpoint lticrarchy.

The inability of our queries to count can be eliminated by adding

to the language an ordering of the domain. Such an ordering, e.g.

by bit representation, is always available in real databases. Let

Q(<_)PTIIVlE be the set of queries computable in polynomial time on

ordered databases. Tlmt is we only consider databases which have a

total order, <, on the domain, l.ct FP(<) be the queries in FP,

where _< must be interpretated as a total ordering of the domain.

We shov,' in the next section that Q(<)PT1ME = FP(<), and in fact

only one application of LFP is needed.

Sectien 3: Mai, Results

Theorem 1: Q(.<)PTIM E : Ere(<)

proof skelci3: Tlmt Q(<)IrI'IMI?. contains 200(_<) is clear. We must

shmv the converse. 1.et S = {<B/,cl> . . . } be a set or pairs of

ordered databases B belonging to a certain relational scheme and r-

tuplcs, c, from B, l.et M be a Tming machine that accepts S in time

n k. We must sllow that there is a query a(xp..xr) E Eaa which

expresses S," i.e.

S = { <B,c>] BI== a(e) } .

l:2Jch candidate for S is a pair, <Ill,c>, where B has an n element

domain, 1), with a total ordering, < , on its elements. 'l13us we can

fllink of I) as the set of integers fiom 0 to n-1. We can use k-tuplcs

of variables to denote numbers between 0 and ok-1. We will use one

application of LFP to write the query Cell(Xl...XrPr..Pk,tl...tk,a) to
express the statement that in M's computation the contents of cell

number pl...pk at time tl...t t is a. More precisely, we will show that

there is a first order sentence ~b(S)[xl...Xr,Pl...Pk,tl...tk,a] such that
Cell = LFP(4,), and that B satisties Cell(e,p,t,a) if and only if the

instantaneous description of M*s computation on input <B,c> contains

symbol a in cell p at time t.

Once we have Cell we can let a(x) ~ Cell(x,C,nk-l,qr). Here a

says that M is in its accept state, q~ after nLl steps. Thus, as
desired,

B I= a(c) ~-~ <B,e> £ S .

There are two steps to writing q, whose least fixpoint is Cell.

First we must write the sentence M0(c,p,a) meaning that at time 0,

cell p is a, i.e. that the initial input tape contains <B,c>. Suppose

that B : <{0...n-1},R1...Rs>. Then the input will consist of an nal

bit table for R> followed by an n a2 bit table for R 2, and so on,

followed by some binary representation for c 1 ...c r It is easy to see

that using < and relation symbols R! ... R k we can write the first

order sentence M 0 saying that the input is correct.

Consider the following monotone first order expression %:

+(S)[x,p,t,al ~ (t = 0 A M0(x,p,a)) V

3a.laoal(<a.laOal>-,a A S(x,p-l,t-i,a.l)

A S(x,p.t-l,ao) A S(x.p+ 1,t-l,al))

Here "<a_la0al>-+a" means that the triple <a la0al> leads to tile
symbol a in one move of M. Thus each application of ~ gives us

one more row of M's computation, so l_FP(q0 = Cell. 'Fo write

a(x) = Ccll(x,0,nLl+qr) would seem to require some quantification

after the least fixpoint operator is used. In fact we can add an extra

variable, z, to q, so that it does two things: case 1 (z;exl): compate

Cell: case 2 (Z=Xl): check if Ccll(x,0,nk-l,qf) bolds. "lqms:

A

(3z' uva ') [z '~xtAu =OA v=n-1

A a ' : qf A S(z',x,u...u,v...v,a')])

l.et S O = I.FP(q,), and let a(xl...Xr) = So(xl,xl...xr,xr..Xl). Then

a is equivalent to Cell(xl...Xr0,nk-l,qf) as desired, I

If we do not have an ordering then it is not possible in general to

simulate a computation. However we can show that tile hierarchy

still collapses at the first fixpoint level:

Theorem 2: FP = ~to •

We first give the proof for an example:

Claim: ~Ancestor E Z~o "

proof: Recall the formula ~A such that 1.FP(~A) = Ancestor:

~pa(R)[x,y] --: (x : y) V 3z(Par(x,z) A R(z,y))

Our problem is to monotonically add infimnation about ancestors

to some larger relation S so that after finitely many steps we will be

able to tell that we are done, and for which values Ancestor(x,y) does

not hold. Define rank(x,y) : rain k : ~A(k~(~)[x.y]. That is,

rank(x,y) is the minimum number of applications of CpA needed to

discover that Aneestor(x,y) holds. Clearly rank(x,y) =

distance(x,y)+l. Even though our language do,bs not have access to

numbers we can use LFP to make statements about ranL We will

write first ordcr expressions ~1' ~2, q)3, with least fixpoints GE, GT,

149

GS, respectively, meaning the following:

GE(x,y,u,v) = (rank(u,v)< oo A rank(x,y) >_ rank(u,v))

OT(x,y,u,v) ~ (rank(u,v) < oo A rank(x,y)> rank(u,v))

GS(x,y,tD) ~ (rank(u,v) < O0 A rank(x,y) > ranl.{u,v)-:-l)

Once we have these three predicates we can express -~,\nccstor

withuut using negation, l:irst we can write l)iam(a,h) expressing tile

propcrty that distance(a.b) is the maximum possible.

S{}::IJ:I}(,I~), we have

~ A nccst{}r{x,y) ~ S0(x,x,x,x,x,x,y) .
This proves the claim. I

Wc now sketch the general proof of Theorem 2. l.et R 0 =
Ll:P{q~) be an arbitrary least fiXl)oint of arity r. As above we defnc

the £~3//~6~.~) to he the minimum k such that 9}(k}(.~)lx] holds. "l]ten

as in thc above cxamnplc we can define the relations, GE, GT, and

GS, as simuhancous fixpoints where

GF~x,n) ~ (rank(u) < oo A rank(x) > rank(u))

r
I)iam{a,b) =_ GE(a,b,a,b) A ~Vuv)l_Gl!(a,b,u,v)

V (GT(u,v,a,b) A GS(u.v,a.h))]

Diam(a,b) says that rank(a,b) is finite and that no pair u,v satis,qes

rank(u,v)=rank(a,b)+l. Now tile pairs of infinite rank are just

those pairs with rank strictly greater than that of a diameter:

~Anccstor(x,y) =-- 3ab(Diam(a,b) AGT(x,y,a,b))

Ilere are the fonnulas, tpl. ~2, and ~3' used to define GE, GT,

and GS:

~l(Rl)[x,y,u,vl =_ (u = v) V

[~(x = y) A (3u' Vx')((Par(u,u') A

I~{x=x ' V Par{x.x'))VRj(x',y,u',v)]}]

eP2(R2)[x,y,u,v] -= (u=v A x~y) V

J R (x = yVPar(x,y))A (3u' Vx')((Par(u,u')

A [~ { x : x' V Par(x,x') V R2(x',y,u',v)1)]

~3(R3)[x,y,u,v] --= (u=v A xeyA-",Par(x,y))V

[~ (x = y V P a r { x , y) V 3z(Par(x,z)APar(z,y)) A

(3u'x')((Par(u,u') A [~(x=x'VPar(x,x')VR3(x',y,u',v)] }]

It is easy to verify that GE=LFP(tct) , GT=LFP(qo2), and

GS=LFP(~3). We will be done once we show how to combine tpl,

~P2, tP3 into one simultaneous LFP:

O(S)[zpzz, zyu,v,x,y]

V

V

V

_= ((z l~z 2 A z2~z s) A w](S)[u,v,x,y])

A A

((Zl=Z 2 A z2~z 3) A qo3(S)iu,v,x,y])

((z l = z 2 A z2=z 3) A (3a b)[Diam'(a,b)

A S(a,b,b,x,y,a,b)])

uses the three variables, Zl,Z2,Z 3, to break the definition into
four cases. We are assuming that the domain is of size at least two

and that tile diameter is nonzero. I~et l)iam'{a,b) be l)iam(a3}) ~ith

S(a,b,a,u,v,s,y), S(a,b,b,u,v,x,y), S(a,a,bm,v,x,y) substituted for {}E,

Gq', and GS, respectively. Thus Diam'(a,b) will hold only when the

fixpoint has been reached and a and b are of maximal distance. In

this case S(a,b,b,x,y,a,b) is equivalent to GT{x,y,a,b).. Thus letting

GT(x,u) _= (rank(u) < ~ A rank(x) > rank(u))

GS(x,u) _= (rank(u) < oo A rank(x) > rank(u)+ 1)

We can compute R 0 ahmg with its negation in a single fixpoint
expression of arity 2r +3. Further steps of quantification and even

other fixpoints can then be embedded in the last case of the

definition of ~, as above. Using the next two lemmas we sketch the

construction of q'l, eP2' and ~pj whose least fixpoints are GE, GT,
and GS. respectively.

1.emma 2.1 : Suppose that R is an r-ary relation symbul and that

tp(R)[xl...Xr] is monotonic iu R. Then cp may be expressed in an
equivalent fonn:

rp(R)[Xl...Xr] ~ (Qizi . Mi)...(Q t z t . Mi)(ax1...x r . Mr+ 1)R(Xl.-.Xr)

where M1...Mt+ 1 are quantifier free and contain no occurrences of
R. Here, {Vz. M)P means (Vz)(M~P), and

(3z . M)P means (3z)(MAP).

example: Let

tPB(R)[xvx21 m (Xl=X 2 V Par(xt,x2)) V 3zlR(xpz) AR(z,x2)]

We can express ~B in the above fonn as

~B(R)[xl,x2] m (Vz . M1)(3z)(Vu v . M2)(3xlx 2 . M3)R(xpx2)

where M 1 ~_ ~ [x t = x 2 V Par(xpx2)]

,'l 2 --_-~ [(u-:x: A ~=z) V f u - : z A v=:x2)]

M, ~:. [=l:=u A x2=v]

1 hope th;lt the ~cadcr will convince herself {}r Ifimsclf that wc

have indeed expresq,:d ~PB ill the corleCt filtH1. 'l'he proof of [.olrllD.fl

2.1 would hc I)5 induction on tilt" complexity of % Note our use ,}f

an abbreviation trick -- tile universal qll~/l'ltil]c:dion uf IJ and v,

above, reduced the number of (~ccurrences of R. Sc¢ I.emma A.3 in

[hnm82] for a similar result proved in some detail.

I.emma 2.1 shows how to write any monotonic expresskm, tp(R).

in a very simple form. For any such % tile folhB~ing]emma shows

how to write ~1, 'P2, ~3 whose fixpoims are GF, GS, and GT.
respectively. The proof of Theorem 2 then follo',~s exactly as in the

above example for ~Ancester.

150

l.emma 2.7: Supose 7,(R)[x] ~ QB(x)[R(x)] is in the form of

I.emma 2.1, where

QB(x) ~ (QtZl . Mi)... (Qtzt . Mi)(3x. Mr+l)

1.et QB(u) _= QB(n,z'/x,z) i.e. QB(x) with u i
substituted fi)r x i, i= 1...r. and z/ substituted fi)r zj. j = 1...t.

Let QI"""~ be QB with all V's rcplaee by 3's and vice versa. Put

qol(Rl)[X,U] ~ ~(O)[u] V Rl[X,u]V

rP2(Rz)[X,U] ~- (~(Z)[u] A ~(~)Ix l) V 1~2Ix,u] V

(2) qo3(R3)[x,u] -~ (qo(~)lul-',~(~)[x]A~rp (~)[x]) V

R2[x,u] V [QI3(u)QI~x)](R3[x,u])

then:

(a): l.FP(cpl) = GE

(b): I.FP(~2) = GT

(c): I.FP(~3) = GS

proof of a: By induction on k we show fllat

Cpl(k)(~)[X,U] ~ (rank(u)_<k A rank(x)>rank(u)) (*)

This is clear if k= l . Assume that (*) holds for k and consider the

following assertion:

(rank(u 0) < k+ 1 A rank(x0)>rank(u 0)) (t)

This holds iff either of the following conditions is tnle:

(rank(tl O) ~ k A rank(x°)_>rank(u O)) (2)

(rank(u 0) ~ k-F] A rank(x 0) > k) (3)

By induclion equation (2) is eqnivaleut to cptfk)(~)ix0,u0].
F.quation (3) is cquivalcnt to:

Ck+ ~l(~)[uO l A ~,/k~(~)lx°l
Which in turn is equiwilent to:

[QB(u0)]lk+I) (false) A [QB~x°)] (k) (true) (4)

Now, since the variables in QB(u 9) and QB(x 0) do not intersect,

we may transform equation (4) to:

[Q. (,@ (ra,se) ^)
Or, in other symbols:

QB(u°)QB(x°)(rank(u).<k A rank(x)> k-1) (5)

We have shown that equations (3) and (5) are equivalent. A

consequence of (5) is:

QB(u°)@l(x°)(rank(n)<k A rank(x)>rank(u)) (6)

Which, by the inductive assumption, is equivalent to:

QB(u°)QB(x°)(¢pltlO(IZl)[x,u])

Thus, the disjunction of (2) and (3) implies:

~l(k)(JZi)[xO, n 0] V QB(u°)QB(x0)(Cpl(k)(O)[x,u]) (7)

and so ~oltk+])(~I)[X0,U 0] holds. In a like fashion we can reverse the
steps from (7) to (1), thus proving our claim, (*). It follows that

l.FP(qol)_= GE. The prooZs of (b) and (c) are similar. This
completes the proof of lemma 2.2 and of the proof sketch of

Theorem 2. I

Section 4: Conclusions and Directions for Future Work.

Another view of least fixpoint is as an iteration operator. For

o/(R)[Xl...xk] monotone, the least fixpoint of qo is just q0 iterated n k

times, i.e. LFP((p) ~ qo(nk). We propose a new query hierarchy

which limits this iteration. Define lQ[f(n)] to be the set of queries
expressible by iterating a first order query f(n) times to obtain a

fixpoint, i.e.

IQ[f(n)] ~ { R0(v) I R 0 ='P(ffn))(O) :: ~(ffn)+ I)(~) }

This definition makes sense for non-monotone q0 in which ease tile

iteration could proceed for more than n k steps and the fixpoi~lt

computed need not be the minimal one.

As an example, let

qol(R#[x,y] _= (x = y V Par(x,y) V (3z)[R(x,z) A R(z y)])

It is easy to see that Anccstor = IJ:P(qO.r) = q0 (l°g n)(~). Thus
Ancestor is in IQ[log n]. "llle following theorem states some results

about IQ aud IQ(<). but many questions, such as, "Is there a strict

hierarchy for IQ(<)?" remain unknown.

Theorem 3:

(a): IQ[1] = First Order Queries C_ QSPACE[log n]

(b): IQ[Iog n] D Transitive Closures

(c): IQ(<)[n k] = FP = QFFIME

(d): IQ(<) = PSPACE

Anothcr issue raised by Chhndra and Harel, among others, is that

languages with an ordering such as FP(<) treat differently numbered

isomorphic databases differently. That is, the answer to some queries

will depend on the ordering: It would be nice to have a language

rich enough to simulate Turing machines and yet without this

difficulty. One suggestion is to add variables, i j whose range

for a database of size n will be the integers 1 . . . n. We would also

add the natural ordering, <_, on these number variables plus

"counting quantifiers": (3 i x's)P(x), meaning, "There exist i distinct

151

x's such that P(x)." These counting quantifiers would remove the

most obvious counterexamples to the cquality of IQ(n 'K) and

QPT1ME. They are also no stronger than adding <. More

precisely:

Propositio!~: For ffn)>log(n),

IO(count)[f(n)] C tQ(<)[f(n)] .

We have sho:~n tha;. all quelic~ using first order quantification

and a least fixpoint operator may bc expres.~sed with a siu,~le

occurrence of least fixpoint applied to a first order cxpressi,m.

}:urthermorc. in the presence of a total ordering, <, the queries so

expressible are exactly the P'I'IMI~ computable queries. Finally, a

further study of the number of iterations needed to compute

fixpuints is desirable. The following open problems merit

investigation:

I:ind classes of query languages wlaose cnmplcxity is clear from

the syntax, as FP(<)=PTIME, but for feasible complexity classes

from the database point of view, e .g . TIME[n] and

SPACE[logk(n)l .

2. Design Query languages using iterated queries.

expressibility, complexity and optimization.

Study

3. Prove Hierarchy theorems for:

(a) 1Q[tf(n)]

(b) 1Q(count)[ffn)]

(c) IQ(<_)[ffn)]

4. Prove or disprove:

IQ(count)[nkl = IQ(<_)Inkl

Acknowledgments

I would like to thank David Harcl, John Mitchel, Adi Shamir, and

Venkataraman for their helpful ideas concerning this paper. This

work was parially supported by NSF grant number MCS 8105754.

[AIIU74] :

[AhUI79] :

[ChaSl] :

[ChHa80a]:

[Chlla80b] :

[ChHa82]:

[Cod72] :

rEnd72]:

[Har81]:

[ImmS0]:

[lmm81] :

[lmm82] :

lullS01 :

[Var82]:

Bibliography

Aho,A., Hopcrofi,J., Ulhnan,J., il'he 13e+:~}~n. _a_[~d
Analvsis~ of Ct!naputer All ,ori___fln/l___s, Addison-Wesley,
1974.

Aho,A., Ullman,J.D., "Universality ofl)ata Retrieval
l.anguagcs," 6 th Syrup. on Principles of Programming
I.anguagcs, 1979, pp. 110-117.

Chandra,A., "Programming Prinaitives for 1)atabase
l.anguagcs," 8 th Syrup. on Principles of Programming
l.anguagcs, 1981, pp. 50-62.

Chandra,A., Harcl,I).,"Computable Queries for
Relational l)atabases," .ICSS, Vul. 21, No. 2, October,
1980, 156-178.

Chandra,A., HarelJ)., "Structure and Complexity of
Relational Queric%" 21 s~ Syrup. on Foundations of
Computer Science, 1980, pp: 337-347.

Chandra,A..HarclJ).,"llorn Clause and the l:ixpoint
Query Hierarchy," to appear.

Codd.E.F., "Rclatkmal Completeness of l)atabase
Subhmguages," in l)atabase System§, R.Rustin, ed.,
Prentice-Hall, 1972, pp. 65-98.

Endcrton,H., A Mathematical Introduction to Logic,
Academic Press, 1972.

Hard, David, personal communication.

Immerman,N., "Upper and Lower Bounds for First
Order Exprcssibility," 21 st Syrup. on Foundations of
Computer Science, 1980, pp. 74-82.

hnmerrnan,N., "Number of Quantifiers is Better than
Number of Tape Cells," JCSS, Vo]. 22, No. 3, June,
1981, pp. 384-406.

Immerrnan,N., "Upper and Lower Bounds for First
Order Expressibility," to appear in JCSS, 1982.

Ullman,J.D., Introduction to Database Systems,
Computer Science Press, 1980.

Vardi,M .,"Complexity of Relational Query I.anguages,"
this volume.

5. David Hard and Haim Gaiffinan have both obtained some results

concerning fixpoint hierarchies when the arity of the fixpoints are

bounded, [HarS1]. Studying the arity of fixpoints is also related

to measuring the number of distinct variables used in frst order

expressions, a problem considered in [Imm82]. It would be

interesting and fruitful to study the "exprcssibility resource" arity

of fixpoints in conjunction with others resources such as number

of fixpoints or number of iterations.

152

