ONE-WAY LOG-TAPE REDUCTIONS

by

J. Hartmanis*
N. Immerman+
S. Mahaney*

TR78-347

Department of Computer Science
Cornell University
Ithaca, New York 14853

*This research has been supported in part by National Science

Foundation grants MCS 75-09433 and MCS 78-00418.
+This research has been supported by a National Science Foundation

Fellowship.

ONE-WAY LOG-TAPE REDUCTIONS

by
J. Hartmanis*
N. Immerman+
S. Mahaney*

‘ Cornell University
Ithaca, New York

Abstract

One-way log-tape (1-L) reductions are mappings defined by log-
tape Turing machines whose read head on the input can only move
to the right. The 1l-L reductions provide a more refined tool

for studying the feasible complexity classes than the P-time

[2,7] or log-tape [4] reductions. Although the 1-L computations
are provably weaker than the feasible classes L, NL, P and NP,

the known complete sets for those classes are complete under 1l-L
reductions. However, using known techniques of counting arguments
and recursion theory we show that certain log-tape reductions
cannot be 1-L and we construct sets that are complete under log-

tape reductions but not under 1l-L reductions.

1. Introduction.

In this paper we study reductions that are provably weaker
than the feasible complexity classes; i.e. these reductions
cannot recognize all the sets in the families L, NL, P or NP.

The P-time reductions [2,7] that have been used to study the
classes P and NP can recognize sets in P. Thus the reductions
do not aid in separating the two classes. The log-tape reduc-
tions [(4,5,6], while useful to study smaller feasible classes
such as P and NL, do not help in separating classes since it
is not known if P # L.

We:define here one-way log-tape (1-L) reductions by machines
that are weaker than log-tape in their power to recognize sets.
These reductions are restricted to readiﬁg their input once from
left to right. They retain very little information about the
input on their log work tape. Nevertheless the 1-L reductions
are powerful enough to give complete sets for L, NL, P, NP etc.
similar to those found under P-time or log-tape reductions. We
show here that an understanding of the 1l-L reductions would
determine the relations among L, NL, P, NP etc. For example, we
show that L # NL if and only if there do not exist certain easily
. definable 1-L reductions between two classes of graphs.

This approach reduces the study of relations among the feasible
classes to the study of mappings by computationally very weak
one-way automata where known techniques such as counting arguments
or crossing sequence arguments could be used. 1In this paper we
prove a variety of results about 1-L reductions and indicate how
to c¢xploit the weakness of the rceductions to study the feagible

complexity classes.

We note first that log-tape is necessary for reductions.
Proposition 1.1 If
L(n)
lim ——eeeee-- =0,
n=-> 00 log(n)
then there are no complete sets for P, NP, PTAPE etc. under

L(n)-tape bounded reductions,

Proof. The output of L(n)-tape bounded reductions cannot be
polynomially greater than their input size. Thus if there were
a complete set in P under L(n) tape bounded reductions, then we
could show all sets in P to be in
Time (nk)

for some fixed k. The proof is similar for other classes.#

The usual definition of log-tape reduction has a two-way
read-only input of length n, a log(n) bounded work tape, and
a one-wa} write-only output tape. We define 1l-L reductions

similarly but restrict the input tape to be read once.

Definition 1.2. A) A one-way log-tape reduction (or 1l-L
reduction) is a mapping defined by a Turing Machine that on
input of length n
1) starts with a log(r.) work tape laid off, on which it
may read, write, and move both ways.
2) reads the input tape once from left to right, and
3) writes the output from left-to-right on a write-only tape.
In the usual way [6] we can define for 1-L reductions:
B) X is reducible to Y (write X <(1-L) Y), and

C) hard and complete sets for a class of sets.

Proposition 1.3. Let R, S, and T be languages over some alphabet.
Then

1) 1f R <(1-L) s and § < (1-L) T, then R <(1l-L) T; and

2) if R is in 1-L reducible to S and S is in L, NL, P, NP

or PTAPE, then R is in the same class.

The definition of 1-L reductions deserves some comments.
First the 1-L reductions can depend on input formats in ways
that log-tape reductions will not (see the discussion in [6]).
This increases the burden of specifying the formats for the
inputs and outputs of 1-L reductions. We have shown, however,
that this poses no difficulty. Specifically,iwe have checked
the complete sets and reductions of

1) Karp [7]) and Aho, Hopcroft and Ullman (1) for NP,

2) Jones and Laaser [5] for P, and

3) Jones, Lien and Laaser [6] for NL
and have found that the complete sets in those sources are all
complete under 1-L reductions. Many of the reductions require
modification as Theorem 4.1 shows.

As a second point, 1l-L computations are provably weaker
than log-tape. As recognizers of sets, 1l-L computations cannot
recognize

{whw:w is a word over {0,111}

Thus the 1-L computations are weaker than L and any larger classes.

Our goal in studying 1-L reductions is to find a sharp tool
that might be used to separate feasible complexity classes. It
is not our intent to promote l-L reductions for establishing
the equivalence of problems, as this is done easily with P-time

and log-tape reductions.

The remainder of this paper treats three subjects. 1In
Section 2 we characterize the class L by complete sets and dis-
cuss the relétion of 1-L reductions to showing L # NL. Section
3 shows a possible paradigm for separating complexity classes.

In Section 4 we give several theorems that prove the non-existence

of 1-L reductions where stronger reductions are known to exist.

2. The Class L.

In this section we consider the class L consisting of sets
accepted in deterministic log-tape. Clearly log-tape reductions
are too powerful to give a useful characterization of L by com-
Plete sets. Jones [4] studied the class L and gave complete
sets using log-rudimentary reductions. Herver, these reductions
do not correspond to any natural machine model and are difficult
to use. We can easily characterize the class L using 1l-L reduc-

tions.

Theorem 2.1. The following two sets are complete for L under
1-L reductions. |
1) {Mi # x # |x|k IMi accepts x with a log(|x|) work tape
that uses at most 2X symbols. }
2) GAPl = { <s, s. G>|G is a directed graph in which every
node has outdegree at most 1 and node g is reachable from

node s by a directed path. }

Proof. 1) is straightforward. We prove 2) in detail to illustrate
a 1-L reduction and for use in the proof of Theorem 2.2. Assume
G is formatted as a list of pairs (vl, v2) denoting an edge from

vl to v2. To recognize members of GAPl with deterministic log-tape,

we define an automaton that follows the path reachable from s.
This can be done with two pointers and a counter each requiring
log(n) bits.. The path from s terminates either in a final node
or a loop (see Fig. 1). Clearly the two pointers can follow the
path and the counter can shut off the machine in case of looping.

To reduce an arbitrary set in L to GAPl we proceed similar
to [4,9] in which it was shown that the GAP problem for graphs
of outdegree greater than one was complete for NL. Let Mi be a
TM that operates in deterministic log-tape. The instantaneous
descriptions (ID's) of Mi can be given by

a) the state of Mi,

b) the position on the work tape,

c) the symbols on the work tape, and

d) the position on the input tape.
On an input x of length n we can encode these in log(n) tape.
The reduction generates the graph of all pairs (ID1l, ID2) where
ID1}-ID2, with the exception that all ID's with accepting states
are smashed into a single instantaneous description, IDs, from
which no other ID follows. The 1-L reduction keeps the input
position recorded on a track of the work tape. At each input
position the work tape is used to generate all possible values
of a, b and c. For each IDj so generated, the reducer determines
the next ID, IDk, that Mi would have and prints (IDj, IDK) on
the output tape. The start node, IDs, corresponds to the startirg
configuration of Mi. Then there is a path from IDs to IDg if
and only if there is a sequence IDs | ...} IDg if and only if
Mi accepts x. Finally the outdegree of the graph is at most one

since Mi is deterministic.#

The 1-L reductions easily give a partial solution to a
problem posed by Jones, Lien and Laaser [6]. They showed that

UGAP = { <s, 5,G> | G is an undirected graph with a

path from node s to node g}
and several equivalent problems are in NL but they could neither
show them to be in L or hard for NL. By Theorem 4.4 it is pos-
sible that a set in NL not be hard for L. This is not the case

for UGAP since:

Theorem 2.2. UGAP is hard for L.

Proof. We use the above reduction of a set in L to GAPl but
regard the edges as undirected to obtain a reduction to UGAP.
If there is an undirected path from s to g, then the path will
have been "directed"” in the original reduction. If not, let vj
be the first node along the path whose next edge is backwards
(see Fig. 2). Let Qk be the next node along the path whose next
edge is forwards. Such a node exists since g(in the reduction)
has no outedges. Then vk has outdegree 2, contradicting the
construction of the 1-L reduction.#

Finally, we recall that

GAP = { <s, s, G> | G is a directed graph and node g

is reachable from node s}
is complete for NL [6,9]. It is interesting to note the struc-

tural sijilarities of the problems GAPl, UGAP and GAP. We have

Theorem 2.3. L = NL if and only if GAP <(1-L) GAPl.

Thus, showing that there are no l-L reductions of GAP to
GAPl would show that L # NL. It should be observed that if a
1-L reduction of GAP to GAPl exists, then there is a 1-L reduc-
tion which, after processing each input symbol, erases the work-
tape except for a trach which keeps the count of how many input
symbols have been rcad. These transducers cannot even determine
the. maximal outdegree of input graphs. Intuitively, it seems
impossible that such an emasculated transducer could reduce GAP
to GAPl.

We believe that the above result and comments show the
importance of 1-L reductions and that they give a new approach
to the attempted separation of the classes L, NL, P and NP.

We discuss these classes further in Section 3.

3. A Paradigm.

One of the primary problems of computational complexity

is the relation of P and NP. Although it is known that

L <NL ¢ P c NP,
none of the containments are known to be proper. We believe
that manipulating the power of reductions might provide a key
to answering these quecstions.

Using P-time reductions to compare the classes P and NP
suffered from the defect that the class P was not characterized
by complete sets. The consideration of log-tape reductions
allowed characterizing P and NL by complete sets {4,5,6]), as
well as preserving the known complete sets for NP, PTAPE etc.

We are considering the possibility of another defectﬁ
that the reductions cannot be distinguished from the recognizing

machines. Since it is possible that L=NP, the log-tape reductions

do not provide a "lever" to show separation of the feasible
classes. The 1l-L reductions are an attempt to provide such a
lever.

In Section 4 we will give examples of sets in feasible
classes that are complete for log-tape (P-time) reductions,
but not for 1-L (log-tape) reductions.

The next result uses two different types of reductions

to formulate a paradigm for separation of families of languages.

Theorem 3.i. Let A be complete for NP under P-time reductions
and let B be complete for P under 1l-L reductions. Then P = NP
if and only if A is 1-L reducible to B.

The theorem has obvious generalizations to classes such

as L and NL.

Proof. If A is 1-L reducible to B and X is an arbitrary set in

NP, then X is reducible to P by composing the reductions:

and running the B recognizer. The other way is obvious.#
Thus, a strategy to show P # NP could use the power of
P-time reductions to find a clever NP complete set that defeats

any 1l-L reduction to a set that is 1-L complete for P.

4. Non-Existence Results for 1-L reductions.

In this section we use combinatorial arguments and recursive
function theory to prove that certain 1-L reductions do not exist.
Theorem 4.1. shows hy a combinatorial aréument that a classical ‘
reduction of CNF-SAT to CLIQUE cannot be 1-L; but that other

reductions exist that are 1-L. Theorems 4.2. and 4.3. show

-9-

1-L (log-tape) reductions are strictly weaker than log-tape
(P-time) reductions. Finally, Theorem 4.4. strengthens a result
of Ladner's [8].

We recall here the canonical reduction of CNF-SAT to CLIQUE
[1,2,7]). Let a boolean formula F be given in conjunctive normal
form:

F=Fls&sF2s& ... & Fq,
where each Fi is a disjunction of boolean letters and their
negations:

Fi = Til + Ti2 + ... + Tij.

Then F is reduced to the graph G = <V, E> where
v ={ (Fi, Tij) | Tij occurs in Fi} and
{ <(Fi, Tij), (Fk, Tkm)> | i = X and Tij # Tkm}

Then F is satisfiable if and only if G has a g-clique.

Theorem 4.1. 1) No 1-L reduction can map all CNF formulas to
a graph isomorphic to the graph defined above.

2) There is a 1-L reduction of CNF-SAT to CLIQUE.

Proof. 1) We show for an arbitrary 1-L reducer R that we can
construct formulas that will be reduced incorrectly. We will
consider formulas with an even number, q = 2n, of factors, dis-
tinct variables within each factor, and two or more terms of
each factor generate a maximal totally disconnected subgraph
which we will refer to as an S-node. We say that an S-edge
exists between two S-nodes if some potential edge is misssing;
i.e. if a term appearing in one of the node's factor appears

necgated in the other node's factor. Sce Fiqure 4.

Consider halting the reducer after it has read n factors.
At this point the configuration of R must "remember" enough
about Fl, ..., Fn to construct the canonical reduction.

Figure 5. shows a scheme for constructing non-isomorphic
bipartite graphs. The 2n dark edges will be in every graph.
Each subset of {EL,...,En-3} gives a graph non-isomorphic
to any other such graph. So with 2n nodes we get at least

2n-3
non-isomorphic bipartite graphs.

To realize a particular graph by a canonically reduced
formula, we first let Fn+j = (Vn+j). If an S-edge is to exist
between Fn+j and Fi, we let vn+j occur in Fi. Finally we pad
each factor to at least two terms with new distinct variables.
The formula so constructed will be reduced canonically to the
desired S-graph.

Fof sufficiently large n, this construction gives at least
two subformulas F1 & ... & Fn and Gl &...& Gn which yieid the
same configuration of the reducer R. Then

Fl &...& Fn & Fn+l &...& F2n
and

Gl &...& Gn & Gn+l &...& G2n
will produce the same S-graph by 2 but different S graphs under
the canonical reduction.

2) We note that Galil's reduction [3] is a 1-L reduction of NP

to CLIQUE, however we present here a modification of the above
reduction which is 1-L. Let T1l,...,Tk be a list of all the atomic
boolean letters and their negations that occur in F and assume

they are numbered consecutively from

1. Define G' = <V', E'> by putting

vt = { (Fi, Tj) | 1 <= i <=qand 1l <=3j <=k} U (v}
1 <= j <=k} U {v} ‘

where V is a new point, and putting

E'= { <(Fi, Tj), (Fk, Tm)> | 1 # k and Tj # TM}

u{ <(Fi, Tj), v> |Tj occurs in Fi L

See Fig. 3. We claim that G' has a clique of size q+l if and
only if F is satisfiable. To see that this reduction is 1l-L,
simply note that the edges connected to V are generated in a
single reading of the input. The other edges are then enumerated
using a count of the terms.# |

It is startling that all of the natural complete sets we
have encountered are still complete under 1-L reductions. This

need not have been the case.

Theorem 4.2. There exist sets in P, NP etc. that are complete
under log-tape reductions but are not complete under 1l-L reduc-

tions.

Proof. This is proved in much the same way that one shows

{wkw | w is a word over {0,1}}
is not recognizable by a 1l-L machine. Let U be any NP compleﬁe
set under log-tape reductions. But

T = {ufu |u is in U}.
Then T is not complete for NP under l-L reductions. Indeed we
show that if

s = {(x,y,z,a) |x,y,z are in {0,1}*

and {(a = 0 and x = y)

or (a=1andy = z)},

-12-

then S is not 1-L reducible to T. Assume for the sake of a
.contradiction that R is a 1-L machine which reduces S to T.
Let R have k symbols and r states. Choose n so that

PN rnk+1.

Then there are distinct words x1 and x2 of length n such that
just after reading x1 or x2, R is in the same configuration.
Suppose that in the two cases it has already printed wl and w2.
Then wl # w2; otherwise R would give the same result for

(x1, x1, 0, 0) and (x2, x1, 0, 0). Similarly, it is not the
case that wl = bwib and w2 = cwic.

Now consider what R does on (xl1, 0, 0, 1) and (x2, 0, 0, 1).
Since after reading the first ',' it will be in identical con-
figurations, R(x1l, 0, 0, 1) = wlz and R(x2, 0, 0, 1) = w2z for
some z. Also both of these are in T. So either the '#' appears

in w and wl = w2 or wl = bw#b and w2 = cwi#c. Both of these were

ruled out above. So S is not 1-L reducible to T.#

Theorem 4.3. If P # PTAPE (or equivaléhtly'there is a set 5 ¢ a*
with S in P but not in L), then there are sets in PTAPE which
are complete under P-time reductions but not under log-tape

reductions.

Proof. Let
U = {M#w#0™ | M accepts w in tape m}
be the universal PTAPE complete set. Given S c a* as above, define

f(X) = il,...,ilxl

where

ij - gb is j is in S

1 otherwise.

-13-

Note that f may be computed in P-time but not in log-tape. Put

T = {u#f(u) |u is in U}.

Then T is complete for PTAPE under P-time reductions but not
under log-tape reductions. The proof of this uses the recursion
theorem fo find a way to compute f given any reduction of U

to T. Assume for the sake of a contradiction that R is a log-
tape machine which reduces U to T.

Define the recursive function g from Turing Machines to
Turing Machines as follows. Choose r such that the function f
is in

Time (n¥).
For any machine M, g(M) is the machine in
Space (2n¥)
which on input w does the following:
Step 1. Simulate R on input
mwio2 W I1*
This can be done in the available space by keeping a counter for
R's head position in the field of 0's. When R would begin to
output f(u), g(M) checks that the first |w| digits printed by
R are correct. (This involves computing f(w) which may be done
on the available tape.)

If any of the following conditions hold, then g(M) accepts w:

a) R's output is not of the form

atptosc
with

Ic] = |asBsoX],
i.e. in the form of T.

b) R's output is in correct form, but |C|x|w]|, or

.

=4a-

c) R's output is in correct form, but
c # £(arB40X).
Otherwise, go to step 2.
Step 2. 1In this case R's output is u#f (u) where
u = A#B#Ok.
Also, |ul< |w|. So in |w| space g(M) can simulate A and check
whether u is in U. If so then g(M) rejects w; otherwise it
accepts.
By the recursion theorem there is an M with g(M) = M. Let
st = gonpwpo? V1T,
Then by assumption g(M) accepts w if and only if s(w) is in U
if and only if H(s(w)) is in T. Let H(s(w)) = u#C. By the
definition of g and the above equations, |C|>= |w| and the first
|[w| digits of C are f(w). We constructed g so that if that
were not the case, then g(M) accepts w if and only if M does not.
Thus to bompute f(w) in log-space we can simulate it on input
s(w) and output the first |w| digits after the third '#°'.
This cont;adiction shows that there is no log-tape reduc-.
tion of U to T.#
Ladner [8] has shown that if P # NP, then there are sets
in NP - P that are not complete for NP. We extend Ladner's
result under 1-L reductions. (Or assuming P # L, we could use

log-tape reductions for part a.)

Theorem 4.4. a) Assuming P # NP, then there are sets in NP-P
that are not hard for P (and thus not NP-complete). b) Assuming

L # NL, then there are sets in NL = L that are not hard for L.

—ra-
Proof. We show a); b) is similar. Let U be complete for P
under 1-L rc&uctions, let B be in NP - P and let Ri be an
enumeration of 1-L reducers. We construct a set A so that

1) A is in NP,

2) U is not 1l-L reducible to A, and

3) A is not 1-L reducible to U,
thus proving the theorem. A is constructed in stages so that
at stage i we acquire witnesses to prove that Ri neither reduces
A to U nor U to A. The machine M of Algorithm 4.5. accepts the
set A.

By application of the recursion theorem M is well defined.
Note that non-determinism is used at lines 1, 3 and 5. The
simulations at lines 2, 4 and 6 are deterministic. The simu-
lation at line 2 sets the variables i and s to be used in later

steps.

THEN DO i :=0; s :=0;
1 accept x iff x in B;
RETURN END; ’
2 with |x]| moves simulate Monw =0, 1, ... ;
{i and s are set by last completed simulation}
IF no simulation completes
THEN DO i :=0; s :=0;
3 accept x iff x in B;
RETURN END;
IF s =0
THEN DO

{set witness to show A ¢ (1-L) U by Ri}

-16-

4 with |x| moves search for w = 0,1,... so that w is in
A iff Ri(w) is not in U;
IF found
5 THEN s :=1;
accept x iff x in B;
END
ELSE DO
{set witness so that U ¢ (1-L) A by Ri}
6 with |x| moves search for w=0,1,... so that w is in
U iff Ri(w) is not in A;
IF found
THEN DO s :=0; i :=1+1; END;
reject x

END

Algorithm 4.5. The Machine M on input x.

At the i-th stage with s equal 0, a witness to "A is not
1-L reducible to U by Ri" is sought. To see that the search
eventually succeeds, assume, tb the contrary that it does not..
Then the sets A and B are equal except for an initial fragment.
Now A and hehce B would be reducible to U. This is absurd, so
the search succeeds and s is then set to 1.

With s equal 1, a witness to "U is not 1-L reducible to
A by Ri" is needed. If no witness were to be found, then A
would be finite. This implies that all sets in P are recog-
nizalbe by 1-L automata which is absurd. So the witness will

be found; then i is incremented and s is reset to 0.

-17-

Finally, A as constructed is in NP since its nondeterministic
recognition time is bounded by c|x| + time to decide if x is in B.#
Note that theorem 2.2. shows that UGAP is not such a set.

It is still possible that UGAP is in NP - L thus satisfying Ladner's

theorem.

5. Conclusions and Further Research.

We have demonstrated here that the 1-L reductions are provably
weaker than the feasible complexity classes, give essentially
the same comp{ete sets as were known under other reductions, and
permit various techniques not applicable to more powerful reduc-
tions to prove the non-existence of reductions.

Three general areas of research are ‘suggested by this
approach

1) A deeper investigation of the power of 1-L reductions
in an attempt to prove inequalities among L, NL, P, NP, PTAPE
etc. This approach is supported by the view that one-wav devices
are easier to analyze than are computations in the feasible
classes and thus known techniques may find application in their
study. We conjecture that there does not exist a 1-L reduction
of GAP to GAPl.

2) Use 1-L reductions to investigate the relations between
the classes PTAPE and EXPTIME.

3) Develop other weak reductions with which to separate

complexity classes.

REFERENCES

Aho, A.V., J.E. Hopcroft and J.D. Ullman, "The Design and
Analysis of Computer Algorithms," Addison-Wesley Publishing
Co., Reading, Mass., 1974.

Cook, S.A., "The Complexity of Theorem Proving Procedures,"
Proceedings 3rd Annual ACM Symposium on Theory of Computing,
May 1971, 151-158.

Galil, 2., "Some Direct Encodings of NOndeterministic Turing
Machines Operating in Polynomial Time into NP-Complete Prob-
lems," SIGACT NEWS No. 1, January 1974, 19-24.

Jones, N.D., "Space-Bounded Reducibility Among Combinatorial
Problems,"” J. of Computer and System Sciences, Vol. 11, (1975),
68-~85.

Jones, N.D., and W.T. Laaser, "Problems Complete for Deter-
ministic Polynomial Time," Theoretical Computer Science,
Vol. 3, (1077) 105-117.

Jones, N.D. Y.E. Lien and W.T. Laaser, "New Problems Complete
for Log Space," Mathematical Systems Theory, Vol. 10, (1976)
1-17.

Karp, R.M., "Reducibility Among Combinatorial Problems," In
Complexity of Computer Computations, edited by R.E. Miller
and J. Thatcher, .Plenum Press, New York, 1972, 85-104.

Ladnér, R.E., "Polynomial Time Reducibility," Proceedings
5th Annual ACM Symposium on Theory of Computing, April 1973,
122-129.

Savitch, W.J., "Relations Between Nondeterministic and
Deterministic Tape Complexities," J. of Computer and System
Sciences, Vol. 4, (1970), 122-129.

