Descriptive Complexity: Survey and Recent Progress

Neil Immerman
College of Information and Computer Sciences
UMass Amherst
people.cs.umass.edu/~immerman/
Descriptive Complexity
- Descriptive Complexity
- Dichotomy
- Descriptive Complexity
- Dichotomy
- Dynamic Complexity
Descriptive Complexity

Dichotomy

Dynamic Complexity

SAT Solvers
Descriptive Complexity

Dichotomy

Dynamic Complexity

SAT Solvers

Computer Software: Crisis and Opportunity
Descriptive Complexity

Dichotomy

Dynamic Complexity

SAT Solvers

Computer Software: Crisis and Opportunity

Personal perspective
\[P = \bigcup_{k=1}^{\infty} \text{DTIME}[n^k] \]

P is a good mathematical wrapper for “truly feasible”.

Descriptive Complexity MSR Redmond, 8/26/15
Descriptive Complexity

MSR Redmond, 8/26/15

NTIME[t(n)]: a mathematical fiction

input w

$|w| = n$

$b_1 \ b_2 \ b_3 \ \cdots \ \ b_{t(n)-1}$
\[\text{NP} = \bigcup_{k=1}^{\infty} \text{NTIME}[n^k] \]

Many optimization problems we want to solve are NP complete.
Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems. How hard is it to check if input has property S? How rich a language do we need to express property S? There is a constructive isomorphism between these two approaches.
Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.
Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

How hard is it to check if input has property S?
Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

How hard is it to check if input has property S?

How rich a language do we need to express property S?
Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

How hard is it to check if input has property S?

How rich a language do we need to express property S?

There is a constructive isomorphism between these two approaches.
Interpret Input as Finite Logical Structure

Graph

\[G = (\{v_1, \ldots, v_n\}, E, s, t) \]

\[\begin{array}{c}
 s \\
 \downarrow \\
 \alpha \\
 \downarrow \\
 t
\end{array} \]

Binary

\[A_w = (\{p_1, \ldots, p_8\}, S^{A_w} = \{p_2, p_5, p_7, p_8\}) \]

String

\[w = 01001011 \]

Relational Database

\[D = (U, R_1^D, \ldots, R_k^D) \]

Vocabularies:

\[\tau_g = (E^2, s, t), \quad \tau_s = (S^1), \quad \tau_d = (R_1^{a1}, \ldots, R_k^{ak}) \]
First-Order Logic

input symbols: from τ
variables: x, y, z, \ldots
boolean connectives: \land, \lor, \neg
quantifiers: \forall, \exists
numeric symbols: $=, \leq, +, \times, \text{min}, \text{max}$

$\alpha \equiv \forall x \exists y (E(x,y)) \in \mathcal{L}(\tau_g)$

$\beta \equiv \exists x \forall y (x \leq y \land S(x)) \in \mathcal{L}(\tau_s)$

$\beta \equiv S(\text{min}) \in \mathcal{L}(\tau_s)$
Fagin's Theorem:

NP = SO

\[\Phi_{3\text{-color}} \equiv \exists R^1 G^1 B^1 \forall x y ((R(x) \lor G(x) \lor B(x)) \land (E(x, y) \rightarrow (\neg (R(x) \land R(y)) \land \neg (G(x) \land G(y))) \land \neg (B(x) \land B(y)))) \]
Fagin’s Theorem: \(\text{NP} = \text{SO} \exists \)

\[
\Phi_{3-\text{color}} \equiv \exists R^1 \ G^1 \ B^1 \ \forall x \ y ((R(x) \lor G(x) \lor B(x)) \land ((E(x, y) \rightarrow (\neg (R(x) \land R(y))) \land \neg (G(x) \land G(y))) \land \neg (B(x) \land B(y))))
\]
Addition is First-Order

\[Q_+ : \text{STRUC}[\tau_{AB}] \rightarrow \text{STRUC}[\tau_s] \]

\[
\begin{array}{cccccc}
A & a_1 & a_2 & \ldots & a_{n-1} & a_n \\
B & + & b_1 & b_2 & \ldots & b_{n-1} & b_n \\
S & & & s_1 & s_2 & \ldots & s_{n-1} & s_n \\
\end{array}
\]
Addition is First-Order

\[Q_+ : \text{STRUC}[\tau_{AB}] \rightarrow \text{STRUC}[\tau_s] \]

\[
\begin{array}{cccccc}
A & a_1 & a_2 & \ldots & a_{n-1} & a_n \\
B & + & b_1 & b_2 & \ldots & b_{n-1} & b_n \\
S & \hline & s_1 & s_2 & \ldots & s_{n-1} & s_n \\
\end{array}
\]

\[
C(i) \equiv (\exists j > i) \left((A(j) \land B(j)) \land \right. \\
\left. (\forall k. j > k > i)(A(k) \lor B(k)) \right)
\]
Addition is First-Order

\[Q_+ : \text{STRUC}[\tau_{AB}] \rightarrow \text{STRUC}[\tau_s] \]

\[
\begin{array}{cccccccc}
A & a_1 & a_2 & \ldots & a_{n-1} & a_n \\
B & + & b_1 & b_2 & \ldots & b_{n-1} & b_n \\
S & & s_1 & s_2 & \ldots & s_{n-1} & s_n \\
\end{array}
\]

\[
C(i) \equiv (\exists j > i) \left(A(j) \land B(j) \land \left(\forall k. j > k > i \right) (A(k) \lor B(k)) \right)
\]

\[
Q_+(i) \equiv A(i) \oplus B(i) \oplus C(i)
\]
Parallel Machines:

\[\text{CRAM}[t(n)] = \text{CRCW-PRAM-TIME}[t(n)] - \text{HARD}[n^{O(1)}] \]
CRAM\[t(n)\] = CRCW-PRAM-TIME\[t(n)\]-HARD\[n^{O(1)}\]
Assume array \(A[x] : x = 1, \ldots, r\) in memory.
CRAM[t(n)] = CRCW-PRAM-TIME[t(n)]-HARD[n^{O(1)}]

Assume array A[x]: x = 1, ..., r in memory.

∀x(A(x)) ≡ write(1); proc p_i : if (A[i] = 0) then write(0)
\[
\text{FO} = \text{CRAM}[1] = \text{AC}^0 = \text{Logarithmic-Time Hierarchy}
\]
CRAM\([t(n)]\) = concurrent parallel random access machine; polynomial hardware, parallel time \(O(t(n))\)

IND\([t(n)]\) = first-order, depth \(t(n)\) inductive definitions

FO\([t(n)]\) = \(t(n)\) repetitions of a block of restricted quantifiers:

\[QB = [(Q_1 x_1. M_1) \cdots (Q_k x_k. M_k)]; \quad M_i \text{ quantifier-free} \]

\[\varphi_n = [QB][QB] \cdots [QB] M_0 \]

\(t(n) \)
Thm: For all constructible, polynomially bounded $t(n)$,

\[\text{CRAM}[t(n)] = \text{IND}[t(n)] = \text{FO}[t(n)] \]

Thm: For all $t(n)$, even beyond polynomial,

\[\text{CRAM}[t(n)] = \text{FO}[t(n)] \]
For $t(n)$ poly bdd,

$$\text{CRAM}[t(n)] = \text{IND}[t(n)] = \text{FO}[t(n)]$$
Theorem [Ben Rossman] Any first-order formula with any numeric relations ($\leq, +, \times, \ldots$) that means “I have a clique of size k” must have at least $k/4$ variables.

- Creative new proof idea using Håstad’s Switching Lemma gives the essentially optimal bound.
- First lower bound of its kind for number of variables with ordering.
- This lower bound is for a fixed formula, if it were for a sequence of polynomially-sized formulas, it would show that $\text{CLIQUE} \not\in P$ and thus $P \neq NP$.
Theorem [Martin Grohe] Fixed-Point Logic with Counting captures Polynomial Time on all classes of graphs with excluded minors.

Grohe proves that for every class of graphs with excluded minors, there is a constant k such that two graphs of the class are isomorphic iff they agree on all k-variable formulas in fixed-point logic with counting.

Thus every class of graphs with excluded minors admits the same general polynomial time canonization algorithm: we’re isomorphic iff we agree on all formulas in C_k and in particular, you are isomorphic to me iff your C_k canonical description is equal to mine.

Descriptive Complexity

Arithmetic Hierarchy
- \(\text{FO}(N) \)
- Complete under \(\text{Halt} \)
- \(\text{co-r.e.} \)

Recursion Hierarchy
- \(\text{Recursive} \)
- \(\text{Primitive Recursive} \)

Hierarchy of Complexity Classes

PTIME Hierarchy
- \(\text{NP} \) complete
- \(\text{NP} \cap \text{co-NP} \)
- \(\text{P} \) complete
- \(\text{P} \)
- \(\text{NC} \)
- \(\text{AC}^1 \)
- \(\text{sAC}^1 \)

EXPTIME
- \(\text{SO}(LFP) \)
- \(\text{SO}[2^{n^{O(1)}}] \)

PSPACE
- \(\text{QSAT} \)
- \(\text{PSPACE complete} \)

LOGTIME Hierarchy
- \(\text{LOGTIME Hierarchy} \)
- \(\text{AC}^{0} \)

Hierarchy of Languages
- \(\text{FO} \)_{horn} \(n^{O(1)} \)
- \(\text{FO} \)_{log} \((\log n)^{O(1)} \)
- \(\text{FO} \)_{count} \(\Theta(1) \)
- \(\text{FO} \)_{regular} \(\text{ThC}^{0} \)
- \(\text{FO} \)_{count} \(\text{AC}^{0} \)
“Natural” Computational Problems Tend to be Complete for Important Complexity Classes
“Natural” Computational Problems Tend to be Complete for Important Complexity Classes

Isomorphism Theorem: only one such problem in each class:
small handful of naturally occurring decision problems!
“Natural” Computational Problems Tend to be Complete for Important Complexity Classes

Isomorphism Theorem: only one such problem in each class: small handful of naturally occurring decision problems!

Not true for “unnatural problems”: Ladner’s Delayed Diagonalization
“Natural” Computational Problems Tend to be Complete for Important Complexity Classes

Isomorphism Theorem: only one such problem in each class: small handful of naturally occurring decision problems!

Not true for “unnatural problems”: Ladner’s Delayed Diagonalization

Schaefer; Feder-Vardi: CSP Dichotomy Conjecture
“Natural” Computational Problems Tend to be Complete for Important Complexity Classes

Isomorphism Theorem: only one such problem in each class: small handful of naturally occurring decision problems!

Not true for “unnatural problems”: Ladner’s Delayed Diagonalization

Schaefer; Feder-Vardi: CSP Dichotomy Conjecture

Tremendous progress using Universal Algebra. (Solved for domains of size 2 and 3, and for undirected graphs.)

See: “Constraint Satisfaction Problem and Universal Algebra” by Libor Barto in SigLog Newsletter.
Dynamic Complexity

Static

1. Read entire input
2. Compute boolean query $Q(\text{input})$
3. Classic Complexity Classes are static: FO, NC, P, NP, …

Dynamic

1. Long series of Inserts, Deletes, Changes, and Queries
2. On query, very quickly compute $Q(\text{current database})$
3. Dynamic Complexity Classes: Dyn-FO, Dyn-NC
4. What additional information should we maintain? — auxiliary data structure
Static

1. Read entire input
2. Compute boolean query $Q(\text{input})$
3. Classic Complexity Classes are static: FO, NC, P, NP, ...
4. What is the fastest way upon reading the entire input, to compute the query?
Dynamic Complexity

Static
1. Read entire input
2. Compute boolean query $Q(\text{input})$
3. Classic Complexity Classes are static: FO, NC, P, NP, …
4. What is the fastest way **upon reading the entire input**, to compute the query?

Dynamic
1. Long series of Inserts, Deletes, Changes, and, Queries
2. On **query**, very quickly compute $Q(\text{current database})$
3. Dynamic Complexity Classes: Dyn-FO, Dyn-NC
Static
1. Read entire input
2. Compute boolean query $Q(\text{input})$
3. Classic Complexity Classes are static: FO, NC, P, NP, …
4. What is the fastest way upon reading the entire input, to compute the query?

Dynamic
1. Long series of Inserts, Deletes, Changes, and, Queries
2. On query, very quickly compute $Q(\text{current database})$
3. Dynamic Complexity Classes: Dyn-FO, Dyn-NC
4. What additional information should we maintain? — auxiliary data structure
Dynamic (Incremental) Applications

- Databases
- LaTeXing a file
- Performing a calculation
- Processing a visual scene
- Understanding a natural language
- Verifying a circuit
- Verifying and compiling a program
- Surviving in the wild
Parity

<table>
<thead>
<tr>
<th>Current Database: S</th>
<th>Request</th>
<th>Auxiliary Data: b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000000</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parity

<table>
<thead>
<tr>
<th>Current Database: (S)</th>
<th>Request</th>
<th>Auxiliary Data: (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000000</td>
<td>ins(3,S)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[S' (x) \equiv S(x) \lor x = a \]
\[S' (x) \equiv S(x) \land x \neq a \]

\[b' \equiv (b \land S(a)) \lor b' \equiv (b \land \neg S(a)) \lor (\neg b \land \neg S(a)) \]
Parity

<table>
<thead>
<tr>
<th>Current Database: S</th>
<th>Request</th>
<th>Auxiliary Data: b</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>00100000</td>
<td>ins(3,S)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parity

<table>
<thead>
<tr>
<th>Current Database: S</th>
<th>Request</th>
<th>Auxiliary Data: b</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>00100000</td>
<td>$\text{ins}(3,S)$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$\text{ins}(7,S)$</td>
<td></td>
</tr>
</tbody>
</table>
Parity

<table>
<thead>
<tr>
<th>Current Database: S</th>
<th>Request</th>
<th>Auxiliary Data: b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000000</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0010000</td>
<td>ins(3,S)</td>
<td>1</td>
</tr>
<tr>
<td>0010001</td>
<td>ins(7,S)</td>
<td>0</td>
</tr>
</tbody>
</table>
Parity

<table>
<thead>
<tr>
<th>Current Database: S</th>
<th>Request</th>
<th>Auxiliary Data: b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000000</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0010000</td>
<td>$\text{ins}(3,S)$</td>
<td>1</td>
</tr>
<tr>
<td>0010001</td>
<td>$\text{ins}(7,S)$</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$\text{del}(3,S)$</td>
<td></td>
</tr>
</tbody>
</table>
Parity

<table>
<thead>
<tr>
<th>Current Database: S</th>
<th>Request</th>
<th>Auxiliary Data: b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000000</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0010000</td>
<td>ins(3,S)</td>
<td>1</td>
</tr>
<tr>
<td>0010001</td>
<td>ins(7,S)</td>
<td>0</td>
</tr>
<tr>
<td>0000001</td>
<td>del(3,S)</td>
<td>1</td>
</tr>
</tbody>
</table>
Parity

<table>
<thead>
<tr>
<th>Current Database: S</th>
<th>Request</th>
<th>Auxiliary Data: b</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>00100000</td>
<td>ins(3,S)</td>
<td>1</td>
</tr>
<tr>
<td>00100001</td>
<td>ins(7,S)</td>
<td>0</td>
</tr>
<tr>
<td>00000001</td>
<td>del(3,S)</td>
<td>1</td>
</tr>
</tbody>
</table>

ins(a,S)

- $S'(x) \equiv S(x) \lor x = a$
- $b' \equiv (b \land S(a)) \lor (\neg b \land \neg S(a))$

del(a,S)

- $S'(x) \equiv S(x) \land x \neq a$
- $b' \equiv (b \land \neg S(a)) \lor (\neg b \land S(a))$
Parity

- Does binary string w have an odd number of 1’s?
- **Static:** $\text{TIME}[n]$, $\text{FO}[\Omega(\log n / \log \log n)]$
- **Dynamic:** $\text{Dyn-TIME}[1]$, Dyn-FO
Dynamic Examples

Parity
- Does binary string w have an odd number of 1’s?
- **Static:** $\text{TIME}[n]$, $\text{FO}[\Omega(\log n / \log \log n)]$
- **Dynamic:** $\text{Dyn-TIME}[1]$, Dyn-FO

REACH$_u$
- Is t reachable from s in undirected graph G?
- **Static:** not in FO, requires $\text{FO}[\Omega(\log n / \log \log n)]$
- **Dynamic:** in Dyn-FO [Patnaik, I]
Dynamic Examples

Parity
- Does binary string w have an odd number of 1's?
- **Static:** $\text{TIME}[n], \text{FO}[\Omega(\log n/ \log \log n)]$
- **Dynamic:** $\text{Dyn-TIME}[1], \text{Dyn-FO}$

REACH$_u$
- Is t reachable from s in undirected graph G?
- **Static:** not in FO, requires $\text{FO}[\Omega(\log n/ \log \log n)]$
- **Dynamic:** in $\text{Dyn-FO} \quad [\text{Patnaik, I}]$
Dynamic Examples

Parity

- Does binary string w have an odd number of 1’s?
- **Static:** $\text{TIME}[n]$, $\text{FO}[\Omega(\log n / \log \log n)]$
- **Dynamic:** $\text{Dyn-TIME}[1]$, Dyn-FO

REACH_u

- Is t reachable from s in undirected graph G?
- **Static:** not in FO, requires $\text{FO}[\Omega(\log n / \log \log n)]$
- **Dynamic:** in Dyn-FO [Patnaik, l]

Minimum Spanning Trees, k-edge connectivity, ...
Fact: [Dong & Su] \(\text{REACH} \text{(acyclic)} \in \text{DynFO} \)

ins\((a, b, E) : P'(x, y) \equiv P(x, y) \lor (P(x, a) \land P(b, y)) \)**

del\((a, b, E) : \)

\[
P'(x, y) \equiv P(x, y) \land \left[\neg(P(x, a) \land P(b, y)) \right) \lor (\exists uv)(P(x, u) \land E(u, v) \land P(v, y) \\
\land P(u, a) \land \neg P(v, a) \land (a \neq u \lor b \neq v)) \right]
\]
REACHABILITY Problems

\[
\text{REACH} = \left\{ G \mid \text{G directed, } s \xrightarrow{G}^* t \right\} \quad \text{NL}
\]

\[
\text{REACH}_d = \left\{ G \mid \text{G directed, outdegree } \leq 1 \ s \xrightarrow{G}^* t \right\} \quad \text{L}
\]

\[
\text{REACH}_u = \left\{ G \mid \text{G undirected, } s \xrightarrow{G}^* t \right\} \quad \text{L}
\]

\[
\text{REACH}_a = \left\{ G \mid \text{G alternating, } s \xrightarrow{G}^* t \right\} \quad \text{P}
\]
Facts about dynamic REACHABILITY Problems:

Dyn-REACH(acyclic) \in Dyn-FO

Dyn-REACH\(_d\) \in Dyn-QF

Dyn-REACH\(_u\) \in Dyn-FO

Dyn-REACH \in Dyn-FO(COUNT)

Dyn-PAD(REACH\(_a\)) \in Dyn-FO

[DS] [H] [PI]
Exciting New Result

Reachability is in DynFO

by Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas Schwentick and Thomas Zeume

They show that Matrix Rank is in DynFO and REACH reduces to Matrix Rank.
Thm. 1 [Hesse] Reachability of functional DAG is in DynQF.

proof: Maintain E, E^*, D (outdegree = 1).

Insert $E(i,j)$: (ignore if adding edge violates outdegree or acyclicity)

$$E'(x, y) \equiv E(x, y) \lor (x = i \land y = j)$$
$$D'(x) \equiv D(x) \lor x = i$$
$$E^*(x, y) \equiv E^*(x, y) \lor (E^*(x, i) \land E^*(j, y))$$
Thm. 1 [Hesse] Reachability of functional DAG is in DynQF.

proof: Maintain E, E^*, D (outdegree = 1).

Insert $E(i, j)$: (ignore if adding edge violates outdegree or acyclicity)

\[
E'(x, y) \equiv E(x, y) \lor (x = i \land y = j)
\]
\[
D'(x) \equiv D(x) \lor x = i
\]
\[
E^{*'}(x, y) \equiv E^*(x, y) \lor (E^*(x, i) \land E^*(j, y))
\]

Delete $E(i, j)$:

\[
E'(x, y) \equiv E(x, y) \land (x \neq i \lor y \neq j)
\]
\[
D'(x) \equiv D(x) \land (x \neq i \lor \neg E(i, j))
\]
\[
E^{*'}(x, y) \equiv E^*(x, y) \land \neg(E^*(x, i) \land E(i, j) \land E^*(j, y))
\]
Reasoning About reachability – can we get to b from a by following a sequence of pointers – is crucial for proving that programs meet their specifications.
Dynamic Reasoning

Reasoning About reachability – can we get to \(b \) from \(a \) by following a sequence of pointers – is **crucial for proving that programs meet their specifications.**
However reasoning about reachability in general is \textbf{undecidable}.

\textbf{Ideas:}

- Can express tilings and thus runs of Turing Machines.
- Even worse, can express \texttt{finite path} and thus \texttt{finite} and thus \texttt{standard natural numbers}. Thus \texttt{FO(TC)} is as hard as the Arithmetic Hierarchy [Avron].
For the time being, let's restrict ourselves to acyclic fields which thus also generate a linear ordering of all points reachable from a given point.

\[
\begin{align*}
\text{acyclic} & \equiv \forall xy (n^*(x, y) \land n^*(y, x) \rightarrow x = y) \\
\text{transitive} & \equiv \forall xyz (n^*(x, y) \land n^*(y, z) \rightarrow n^*(x, z)) \\
\text{linear} & \equiv \forall xyz (n^*(x, y) \land n^*(x, z) \rightarrow n^*(y, z) \lor n^*(z, y))
\end{align*}
\]
Effectively-Propositional Reasoning about Reachability in Linked Data Structures

- Automatically transform a program manipulating linked lists to an $\forall \exists$ correctness condition.
- Using Hesse’s dynQF algorithm for REACH_d, is that these $\forall \exists$ formulas are closed under weakest precondition.
- Using acyclic, transitive and linear axioms, the negation of the correctness condition is equi-satisfiable with a propositional formula.
- Use a SAT solver to automatically prove correctness or find counter-example runs, typically in under 3 seconds per program.
Thm. 2 [Hesse] Reachability of functional graphs is in DynQF.

proof idea: If adding an edge, e, would create a cycle, then we maintain relation P – the path relation without the edge completing the cycle – as well as E^*, E and D.

Surprisingly this can all be maintained via quantifier-free formulas, without remembering which edges we are leaving out in computing P. □
Thm. 2 [Hesse] Reachability of functional graphs is in DynQF.

proof idea: If adding an edge, e, would create a cycle, then we maintain relation P – the path relation without the edge completing the cycle – as well as E^*, E and D.

Surprisingly this can all be maintained via quantifier-free formulas, without remembering which edges we are leaving out in computing P.

Using Thm. 2, the above methodology has been extended to cyclic deterministic graphs.

SAT Solvers

- SAT was the first NP Complete problem, thus **hard**.
SAT Solvers

- SAT was the first NP Complete problem, thus **hard**.
- Through amazing increases of computer speed and memory, plus terrific engineering and algorithmic ideas – clause learning, and good heuristics, SAT solvers are typically incredibly fast – seconds on formulas with a million variables.
SAT was the first NP Complete problem, thus **hard**.

Through amazing increases of computer speed and memory, plus terrific engineering and algorithmic ideas – clause learning, and good heuristics, SAT solvers are typically incredibly fast – seconds on formulas with a million variables.

They provably aren’t good on all instances, but they do extremely well in practice.
SAT Solvers

- SAT was the first NP Complete problem, thus hard.
- Through amazing increases of computer speed and memory, plus terrific engineering and algorithmic ideas – clause learning, and good heuristics, SAT solvers are typically incredibly fast – seconds on formulas with a million variables.
- They provably aren’t good on all instances, but they do extremely well in practice.
- Thus we have a general purpose problem solver.
SAT was the first NP Complete problem, thus **hard**.

Through amazing increases of computer speed and memory, plus terrific engineering and algorithmic ideas – clause learning, and good heuristics, SAT solvers are typically incredibly fast – seconds on formulas with a million variables.

They probably aren’t good on all instances, but they do extremely well in practice.

Thus we have a general purpose problem solver.

Very useful for checking the correctness of programs, automatically finding counter-example runs, and for synthesizing good code from specifications.
Software Crisis

- Software is everywhere, controlling more and more of our lives.
Software is everywhere, controlling more and more of our lives.

Software is buggy, insecure, brittle, hard to change.
Software Crisis

- Software is everywhere, controlling more and more of our lives.
- Software is buggy, insecure, brittle, hard to change.
- Logic and its application to automatic model checking and synthesis are – in my opinion – our best hope.
Software Crisis

- Software is everywhere, controlling more and more of our lives.
- Software is buggy, insecure, brittle, hard to change.
- Logic and its application to automatic model checking and synthesis are – in my opinion – our best hope.
- Thank you!
Arithmetic Hierarchy

\(FO(N) \) r.e. complete
\(\text{Halt} \)
co-r.e.

\(FO(\forall(N)) \)

Recursive

\(r.e. \) \(\text{FO} \) \(\exists(N) \)
co-r.e.

\(\text{Halt} \)

Primitive Recursive

\(\text{EXPTIME} \)

\(\text{SO}(\text{LFP}) \)

\(\text{SO}[2^{n^{O(1)}}] \)

\(\text{PSPACE} \)

\(\text{QSAT} \)

\(\text{PSPACE complete} \)

\(\text{FO}[2^{n^{O(1)}}] \)

\(\text{FO}(PFP) \)

\(\text{SO}(\text{TC}) \)

\(\text{SO}[^{n^{O(1)}}] \)

\(\text{PTIME Hierarchy} \)

\(\text{SO} \)

\(\text{NP complete} \)

\(\text{SAT} \)

\(\text{co-NP complete} \)

\(\text{NP} \cap \text{co-NP} \)

\(\text{NP} \)

\(\text{SO}(\forall) \)

\(\text{SO}(\exists) \)

\(\text{P complete} \)

\(\text{P} \)

\(\text{FO}[^{n^{O(1)}}] \)

\(\text{FO}(\text{LFP}) \)

\(\text{SO}(\text{Horn}) \)

\(\text{FO}[(\log n)^{O(1)}] \)

\(\text{“truly feasible”} \)

\(\text{NC} \)

\(\text{FO}[\log n] \)

\(\text{AC}^1 \)

\(\text{FO}(\text{CFL}) \)

\(\text{sAC}^1 \)

\(\text{FO}(\text{TC}) \)

\(\text{SO}(\text{Krom}) \)

\(2\text{SAT} \)

\(\text{NL comp.} \)

\(\text{NL} \)

\(\text{FO}(\text{DTC}) \)

\(2\text{COLOR} \)

\(\text{L comp.} \)

\(\text{L} \)

\(\text{FO}(\text{REGULAR}) \)

\(\text{FO}(\text{COUNT}) \)

\(\text{ThC}^0 \)

\(\text{NC}^1 \)

\(\text{AC}^0 \)

\(\text{FO} \)

\(\text{LOGTIME Hierarchy} \)