
*LENGTH OF PREDICATE CALCULUS FORMULAS AS A NEW COMPLEXITY MEASURE

Neil Immerman

Department of Computer Science
Cornell University
Ithaca, N.Y. 1~853

We introduce a new complexity measure,
QR[f(n)], which clocks the size or' formulas from
predicate calculus needed to express a given pro­
perty. Techniques from logic are used to prove
sharp lower bounds in the measure. These results
demonstrate space requirements for computations
and may provide techniques for seperating Time
and Space complexity classes because we show
that:

NSPACE[f(n)] S QR[(f(n»2/10g (n)] S DSPACE[f(n)2].

Introduction and Summary:

For the purpose of analyzing the time and

space requirements of computations, we introduce

a new complexity measure. Rather than asking how

many steps or how much tape is needed to accept a

certain set of graphs, we examine the size of a

formula in predicate calculus needed to describe

the graph property in question.

The resul t is Quantifier Rank (QR) a

bonafide complexity measure which is not based on

a machine model. This provides new techniques

and insights. In particular there are well esta­

blished methods in logic to decide what can and

cannot be said in various languages. These tech­

niques enable us to prove sharp lower bounds hav­

ing nothing to do with complete sets or diagonal­

ization.

It turns out that QR agrees closely with

space complexity, and yet it does not distinguish
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between deterministic and nondeterministic space.

Thus we have a model whose lower bounds translate

directly into lower bounds for space, and yet is

sufficiently different to allow new methods and

ideas to be brought to bear on the time versus

space problem.

This paper grew out of work by Fagin (see

[Fag7~]). He proved the following:

THEOREM (Fagin): A set, S, of structures is in

NP if and only if there exists a formula, F, with

the following properties:

1. F = (3P1)···(3Pk)H(P1,···,Pk) , where P1, ••• ,Pk
are predicates and H is a first order formula.

2. Any structure, G, is in S iff G satisfies F.

Thus a property is in NP just if it is

expressible by a second order existential for­

mula. (3-colorability of graphs is a good exam­

ple of such a property.)

It is difficult to show lower bounds for the

expressiblity of second order formulas. Instead

we examine first order formulas which, we found,

mimic computations much more closely. Considering

graph problems, for example, the length of the

shortest formula which says, "G is connected,"

grows as the logarithm of the size of G. It is

not a coincidence that this is also the space

needed by a Turing machine to test if G is con­

nected.

To study this growth of formulas we intro­

duce the complexity measure QR[T,f(n)] which will
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be defined in Sec tion 1. Informally, a set, S,

of structures of type T is in QR[ T, f( n))] if

membership in S for those structures of size n is

expressible by a formula of "size" fen). By size

we mean quantifier rank, the depth of nesting of

quantifiers, (defined precisely in Section 0).

In the final section we make some concluding

remarks concerning QR and its relationship to the

time versus space problem. We feel that quantif­

ier rank and the associated Ehrenfeucht games are

an interesting new tool for studying space com­

plexity.

As suggested above QR is closely related to

language we would have shown that P is not con-

tained in ~ SPACE[(log n)k] •

treatment of these games appears in [Ehr61] and

[Fra54] •

In Section 3 we present a more sophisticated

game argument. We show that in a reduced

language quantifier rank (log n)k is insufficient

to describe a set recognizable in polynomial

relations,certainand,

Review of some notions from logic.SECTION .Q..:

u u u UA structure, S=<U,c
1

, ••• ,ck ,P1' •.. 'Pn>, con-

sists of a universe, U, certain constants,
U U

cd' •. · ,c_. from U,

P1 ' • • • ,1: 1 ~ CJ~l U.

As an example let G be a directed graph with

two specified points sand d. Thus, G

<V,EG,sG,dG> is a structure of type T = <E,s,d>,
g

where V is the set of vertices of G, and EG is

G's edge relation.

A similarity ~, T=<c 1, ••• ,ck ,P
1

' ••• 'Pn>'

is 2. sequence of constant symbols and relation

symbols.

If T is any type then L(T), the language of

T, is the set of all formulas built up from the

symbols of Tusing &, or, -', ->, =, variables

x,y,z, ••• ; and the quantifiers (3x) and (x).

A formula, F, in L(T) is given meaning by a

structure, S, of type T as follows: The symbols

from T are interpreted by the constants and rela­

tions in S. The quantifiers in F range over the

elements of the universe of S.

For example, let A = (x)(x=d or (3Y)E(x,y)).

A is in L(T ). Furthermore, G satisfies A iffg
each vertex of G except dG has an edge coming out

of it. Henceforth we will omit the superscript G

for the sake of readability.

The quantifier rank of formula F, (qr[F]),

is the depth of nesting of quani tifiers in F.

Inductively,

The original

The intuitive similarity is that the

If our proof went through for the full

Thus we have a technique for showing lower

bounds. For example we prove that while, for a

graph of size n, quantifier rank log(n) suffices

to express the property, "There is a path from

point s to point d ~" quantifier rank loge n) -2 is

insufficient!

time.

formulas of quantifier rank n.

In Section 2 we consider a two person game

with which we prove lower bounds for the quantif­

ier measure. An Ehrenfeucht game is played on a

pair of structures G,H of the same type. Player

I chooses points to show that G and H are dif­

ferent, while Player II matches these points,

trying to keep the structures looking the same.

A theorem due to Fraisse and Ehrenfeucht says

that Player II has a winning strategy for the n

move game if and only if G and H agree on all

quantifier rank of a formula, F, is the maximum

number of variables which F can simul taneously

consider. In Section we prove that

QR[f(n)2/ log n] contains NSPACE[f(n)] and is con­

tained in DSPACE[ f( n) 2], thus making the rela­

tionship precise.

space.

k=1,2, •••
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qr[(x)B] = qr[(3x )B]

qr[B&C] = qr[B or C]

qr[B]+1

max(qr[B],qr[C]).
that there is a path of length at most 2i from a

to b.

A= (x)[«3y) P(x,y» & «z)(w)Q(x,z) or L(z,w»] ,

qr[A] = 3.

For example, fel' Po(a,b)

Pk +
1
(a,b)

(a=b) or E(a,b)

(3x )(Pk (a,x) & Pk(x,b»

F
n

The number of elements in the universe of S

is abbreviated lSI. For graphs IGl is the number

of vertices of G.

Putting Fn=Plog(n)(s,d), we see that

expresses the GAP problem for graphs of size n.

Furthermore, Fn has quantifier rank log(n) and is

generable in SPACE[log(n)]. #

SECTION~: The quantifier measure.

[Sav70]), we can add universal quantifiers and

reduce the length of Fn to O(log(n»:

~10( a, b)

t\:+1 (a, b)

We are now ready to make our principal

definiton. We say that a set, C, of structures

of type T is in QR[ T, h( n)] if there exists a

sequence of formulas {F i li=1,2, .•• } from L(T)

such that:

(i): For all structures, G, of type T, if IGI = n,

then G is in C if and only if G satisfies Fn •

Note:

iers.

The formula F has 2
n existential quantif­

n
Using a familiar trick, (see [FiRa74] or

Po(a,b)

(3z)(x)(y)[(x=a & y=z)or(x=z & y=b)]

-> Mk(x,y)

(see [Bor77]).

As an example, let GAP be the set of

notion of a problem's circui t depth inwhich he

considers uniform sequences of boolean circui ts

Thus C is in QR[T,h(n)] if there are formu­

las of quantifier rank h( n) which express the

membership property of C for structures of size

A similar Sue relation is discussed in

universe.

after x in the numbering of the elements of the

To allow them to simulate Turing machines it

suffices to give the formulas access to the

numbering of the vertices which the machines

already have. Thus for each type T, we consider

the type TS of T together wi th the successor

relation, Suc. Suc(x,y) means that y comes just

[Sav73]. Savitch shows that his pebble automata

cannot accept GAP without Suc. However, Theorem

1 suggests that our formulas do not need Sue to

express "natural" graph problems.

We will write, e.g., SPACE[T,f(n)] to denote

the set of structures of type T accepted in

SPACE[ f( n) ] • Al though the complete problem GAP

is in QR[ T ,log( n)], not all graph problems in
g

NSPACE[Tg,log(n)] are also in QR[Tg,O(log(n)]. In

Section 2 a counterexample is provided.

QR[T ,log(n)].gGAP is in

qr[Fn] ~ hen)

The map f:n->F n is "easy to generate", i.e.

computable by a DSPACE[h(n)] Turing machine.
. hen)

Thus Fn lS of length <c •

Our definition is analagous to Borodin's

Theorem 1,:

n.

directed graphs, G, wi th two distinguished

points, sand d, such that there is a path in G

from s to d. GAP is a set of structures of type

T. Membership in GAP is known to be complete
g

for NSPACE[log(n)]. (See [Sav73].)

(ii):

(iii) :

proof: We must assert that there is a path of

length at most n from s to d.

induction the formulas Pi(a,b).

We define by

Pi ( a, b ) says

Note that any sequence of O's and 1's may be

thought of as the adjacency matrix of a graph,

with a certain number of ommitted trailing O's so
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that it is of size 2n • Thus we may identify
SECTION .2.: Ehrenfeucht Games.

In this section we will employ Ehrenfeucht

games to obtain lower bounds for the quantifier

Given two structures, G and H, of the same

finite type, we define the n move game on G and H

as follows:

Ehrenfeuct. (See [Fra54] or [Ehr61] for discus­

sion and proof of Theorem 30) Two persons play

the game on a pair of structures. Player I tries

to demonstrate a difference between the two

structures, while Player II tries to keep them

looking the same. An example appear below, but

first we give the definition and state the funda­

mental fact about these games.

SPACE[f(n)] with SPACE[T ,fen)]. In keeping with
g S

this we will write QR[f(n)] to mean QR[T ,fen)],
g

the collection of properties describable in quan-

tifier rank fen) in the language of numbered

graphs. The following theorem shows that QR is

closely related to space.

Theorem.2..: Let f( n) be any function such that

fen) L log(n), and let T be any type. Then:

(a): Each problem in NSPACE[T,f(n)] is contained
2

also in QR[TS cefen)) ] for some constant c.
, log(n)

measure. These games are due to Fraisse and

(b): Fo~ any function g(n), QR[T,g(n)]

is contained in DSPACE[g(n)log(n)].

Thus:

NSPACE[ f( n)] ~
2

U QR[kCfCn)) ] c DSPACE[f(n)2] •
log(n)

Player I chooses an element of G or Hand

Player II chooses a corresponding element from

the other one. This is repeated n times. At

move i, gi and hi' elements of G and H respec­

tively, are chosen.

k=1

~oof: We sketch the proof of (a). The idea is

that each element of the universe has a number

from to n, and so may be treated as log(n)

bits. Thus a Turing machine instantaneous

description ( id) may be coded in O(f(n)/log(n»)

varibles. (A similar technique appears in

[st077] .) It is not hard to prove by induction

that log(n) quantifier rank suffices to say,

"Digit i of element x is 0." Thus in quantifier

rank log(n) we can say "ID, follows from ID2 in

one step." The length of a computation may be

cf(n) so we need O[f(n)] id's to state that such

a path exists.

(b): Given G of size n we can generate Fn
wi th SPACE[g( n)]. Check the truth of a formula

of rank g( n) in DSPACE[g( n) loge n)] as follows:

Cycle through each branch of the formula with all

possible values of the quantified variables.

Each variable requires loge n) bi ts and g( n) of

them must be remembered at once. #
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We say that Player II wins if the map f

which takes the constants from G to the constants

from H, and maps gi to hi' is an isomorphism.

(Tha t is f preserves all of the symbols of T.

For example, if T=Tg , E(s,g1) holds in G just if

E(s,h
1

) holds in H.)

We say that two structures of type Tare n­

equivalent if they satisfy all the sames formulas

in L( T) of quantifier rank n. The fundamental

fact about Ehrenfeucht games is:

Theorem l(Fraisse,Ehrenfeucht): Player II has a

winning strategy for the n move game on A,B, iff

A is n-equivalent to B.

As an example, consider the graphs G and H

of Figure 1. G has the property that each of its

vertices has an edge leading to it, but this is

not true of vertex a in H. Thus G and H disagree

on the sentence, S = (x)(3y)(E(y,x». By Theorem

3, Player I has a winning strategy for the game



of length 2. Indeed, on the first move Player I

chooses a. II must answer with a point from G,

say d. Now I can pick f from G. II will lose

because there is no point in H with an edge to a.

FIGURE .2.:

s .+.+.+..+.~. d

L .-+-.*-.-+-.~.~. R

FIGURE 1.:

G H s ..-)-.+.~.-}- .. -)-. R

L .~.+.~.~.-)-. d

1. d a

2. f

(log(n)-2)-isWe will now show that A
m

equivalent to B
m

• From this it follows that no

formula of quantifier rank loge n) -2 can express

the property, "There is a path from x to d."
G H

d .~.e • a

V tb
f tc

The next theorem uses Ehrenfeucht games to

show that Theorem 1 cannot be improved except for

the additive constant!

Theorem!: GAP is not in QR[Tg ,log(n)-2J.

By Theorem 3 it suffices to show that Player

II wins the loge m) move game on A ,B • Indeed,m ill

the following is a winning strategy for II:

If Player I plays the i th vertex in some row

of A (or B), II will always answer with the i th

vertex of one of the rows in B (or A). The ini­

tial constraint is that the endpoints s,d,L,R are

answered by the similarly labelled endpoints.

With k moves to go, if Player I chooses vertex x

within 2
k stepts of an endpoint (or previously

chosen vertex, a i ), then II must answer wi th a

vertex on the same row as the corresponding end­

point (or bi ).

struct the graphs Am' Bm as follows: Each graph

consists of two lines of m+2 vertices as in Fig-

ure 2. In both graphs s is the top left vertex;

but, d is the top right vertex in Am and the bot­

tom right vertex in Bm• Thus Am is in GAP, but Bm
is not.

proof: Fix n>4 and let m=[ (n-4)/2] .. We con-
A proof by induction will show that if II

follows the above strategy for log(m) moves, then

a conflict (i.e. two points on different rows,

both within 2
k

steps) will never arise. Thus

Player II wins the log(n)-2 move game. #

Theorem 4 goes through for T5 as well. The
g

proof is similar, but the graphs require three

rows each so that d is not the last vertex in Bm•

It is interesting to note that in the above

case our measure does not distinguish between

deterministic and nondeterministic space. The
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lower bound of log(n)-2 s shown for graphs with SECTION ~: P-TIME and the QR measure.

DSPACE[log(n)].

Proposi tion 5.-: E3, the set of graphs wi th one

As promised we now show that L(Tg ), the

language of graphs wi thout Sue, is insufficient

cl t rr~o2;t one edge leaving any ver'tex .. The gap

problem lor' such graphs, (called GAP'1 and dis-

cussed in [HIl'178 J and [Jon75J) , is in

reachability. (See Figure 3 where b is reachable

from a, but not from c.) Now define AGAP to be

the set of alternating graphs inwhich d is reach­

able from s.

Let an al ternating K!:ill2.h be a directed acy­

clic graph \-./hose vertices are marked "&" or "or" ..

Suppose that A and B are vertices of alternating

graph G, and A has edges to x
1

' ••• 'xn . We say

that B is reachable from A iff: (1) A=B; or, (2)

A is marked "&" and B is rea.chable from all the

Xi'S; or, (3) A is marked "or" and B is reachable

from some xi. Note that if all vertices are

marked "or" then this is the usual notion of

is in

Our coun-

third as many edges as vertices,

DSPACE[log n], but is not in QR[T n/3J.g,

for describing all graph problems.

terexample consists of a disconnected graph.

(The same example could be buil t wi th connected

graphs of unbounded degree.)

proof: Clearly E3 is in DSPACE[log(n)]. Fix ill and

let n=3m. Define the graphs Cn and Dn as fol­

lows:

Vertices(C n)= {x 1 '·"· ,xm;Y1'··· 'Ym;z1'··· ,zm}

Edges(C n) {(xi,yi)l i=1,2, ••• ,m}

FIGURE 3.: An Alternating Graph

vertices(Dn)= {b 1 , .... • ,bm_1 ;c 1 '· ,cm_1 ;d 1,·· .. ,dm+21

Edge s ( Dn) { ( b i ' c i): i =1 ,2 , , m-1 } Proposi tion Q.: AGAP is complete for polynomial

time.

Thus C
n

is in E3, but Dn is not. An Ehren­

feucht gwne shows, however, that Cn is n/3­

equivalent to D
n

• Player II's strategy is to

match any bi,ci,d i , with a xj,yj,Zj' respec­

tively. Consistency must be preserved, so if x2
is matched with b

4 , then Y2 must be matched with

c
4

• Thus Player II wins, so E3 is not in

QR [T ,n/ 3] • if
g

proof: To see if G is in AGAP, we start at d, and

proceeding backwards mark all the points from

which d is reachable.

A detailed proof of completeness is omitted;

the idea is tha t AGAP is complete in a natural

way for alternating log space, which is known to

be equivalent to P-TIME. CSee [ChSt76] or

[Koz76J.) If

The proposi tion above concerns itself wj. th

the difference between L( T ) and L( T
S

) • In theg g
next section we will produce a more natural graph

problem in P-TIME, which is not in
kQR[ T ,log( n) ]. The graphs there are connected

g
and of bounded degree. We feel that the latter

example concerns itself with time versus space.

We must now add the predicate A(x) meaning

that vertex x is marked "&". Let Tag=<E,A,s,ct>,

the type of alternating graphs. Our next theorem

shows that in L(T 'the polynomial time propertyag'
AGAP is not expressible with quantifier rank

(log n)k. If this went through for L(TS ) then we
ag
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would have shown that P is not contaiced in

SPACE[(log n)k J•

proof: Fix m so large that [2(log m)J2k < m. We

produce graphs Gm and Hm with the following pro­

perties: 654

Switch X

.
3

.
1\

a. • b

tand

or

AGAP is not in QR[ T , (log n) k J foragTheorem 1.:

any k.

proof: The idea is that when X is placed in our

graphs each pair, 1,2, 3,4,5,6, will consist of

one point which can reach d and one which cannot.

Think of points which can reach d as "true," and

those which cannot as "false." Then, in symbolic

notation:

(i): G and H both have fewer than m2(log m)
m m k

vertices. Thus [log lGml] < ID.

(ii): Gm is m-equivalent to Hm•

(iii): Gm is in AGAP, but Hm is not.

When (i) ,(ii), and (iii) are met we will

have shown that in L( T ) quantifier rank
k ag

(log n) does not suffice to express the Al ter-

nating Graph Accessibility Problem.
2

a or b

c or d

(3 & 5) or (4 & 6)

(3 & 6) or (4 & 5)

The first step is to introduce the building

block out of which G and H will be constructed:m m The proof of the lemma is an easy computation. #

Lemma~: Let X be the al ternating graph pic­

tured in Figure 4. Then X has automorphisms f,g,

and h, with the following properties:
vJe will say tha t a pair u, v, is "off" if u

is true and v is false. If u is false and v is

true then the pair is "on." Thus, X is a switch

whose top pair is on just if exactly one of its

bottom pairs is on.

d

::

A

(i) : f switches 3 & 4 and 1 & 2,

leaving 5 & 6 fixed.

(ii) : g switches 1 & 2 and 5 & 6,

leaving 3 & 4 fixed.

(iii) : h switches 3 & 4 and 5 & 6,

leaving 1 & 2 fixed.

Row 2 3 2m
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Figure 5 shows 22~+1_1 copies of the switch

X, arranGed in a binary tree. Let Pill be the

graph pictured in Figure 5, wi th s=A. Let Qr;l be

the sar.ie graph, but with s=E. Thus Pm is in AGAP

while Q
c

is not. However,

Lemma 1Q: Suppose that each vertex in row r of

Tn is labelled on or off. Then any 2k
-1 points

on or below row r+k may be labelled in any self­

consistent fashion and there will still be a

labelling of the rest of the graph which gen­

erates row r.

proof: By induction on k. If k=1 then no matter

which point is chosen we are free to label its

sibling as we please inorder to give the desired

label to its parent.

Inductively suppose that 2k
-1 points are

labelled on or below row r+k. Let L be the set

of left offspring in row r+1, R the set of right

offspring. Clearly at most one of these sets,

say L, has more than 2k- 1 -1 of its descendants

labelled. Label all of the vertices in L in any

Lemma.lQ.: Pm is ru-equivalent to Qm·

proof: vJe will sho\rl that Player II wins the If}

length game on Pm and Qm. One way to express the

difference between Pm and Q
m

is to say that they

are the same except that the top pair in Q is
m

switched. Another Wcy of thinking of it is that

in Q
m

one of the bottom pairs, for example y,z,

is switched. That is in Pm y is connected to d,

but in Q
m

z is connected to D. X has the pro­

perty that switching one pair on the bottom will

result in the top pair being switched.
consistent fashion. Now by induction we may

The idea behind Player II's winning strategy

is that the difference between P and Q could be
m m

removed by switching any of the 22m pairs on the

bottom row. With only ill moves, Player I cannot

eliminate all of these possiblities.

To simplify the proof let us first consider

a different game. Let T
2m

be the binary tree of

height 2m. This is a schematic version of P and
m

Q
m

where each point represents the switch, X, and

each line represents a pair of lines.

We play a modified Ehrenfeucht game on T
2m

,

call it the on-off game. On each move of this

new game, Player I picks a point and Player II

must answer "on" or "off". Player II must also

obey the rules that the top vertex, if chosen, is

on, and any chosen vertex on the bottom is off.

(Intuitively "off" corresponds to matching the

top left vertex of the chosen switch in P to the
m

same vertex in Qm; "on" means matching it to the

top right vertex.) We say that Player II wins if

for any triple of chosen points, L,M,N, such that

M and N are the two offspring of L, L is on iff

exactly one of M and N is on. This rule captures

the behavior of the switch X.

344

label the points in R as we choose. Thus we may

label row r as desired. #

It follows that Player II wins the 2m-move

on-off game on T
2m

• Her strategy is to answer

"off" whenever possible. The lemma shows that

she can never be forced to declare the nth row on

in an n-move game.

We can now play the original m-move Ehren­

feucht game as follows (see Figure 5): When

Player I chooses a point, for example c in Pm'

II moves according to the strategy for the on-off

game. If the point corresponding to c t s swi tch

is declared "off", then II answers c, if "on",

then e, the opposi te point in the pair. If a

point inside a switch is chosen then II may simu­

late the moves of the on-off game for the

swi tch' s two descendants, and move accordingly.

This proves Lemma 7b. #

The final step of the proof is to introduce

the graph D
l

to replace the binary tree in
og m 1 ()

the above construction. D
log

m has m og m ver-

tices but still has the property that no point in

block k can be forced on" before the kth move. We

define Dk below, algebraically, but please refer

to Figures 6 and 7 which show D2 and the first



FIGURE l: Three Blocks of D
3

HOVJ

o = 0*2 + 0

1 = 0*2 + 1

2 = 1*2 + 0

3 = 1*2 + 1

4 = 2*2 + 0

5 = 2*2 + 1

6 = 3*2 + 0

7 = 3*2 + 1
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three blocks of D , respectively.
3

VERTICES(D
k

)rX1 , .•. ,Xk ,r> :r=b*k+p, P<k,b<2k,O~Xi~b+1 for' 1~i~

& O~xi~b for p<i~k J

Thus the vertices are k dimensional vectors

the 2k move on-off game on D. Let G and 11 be
k Fl m

the graphs arising fron Dl ( ) by replacingog 2m
vertices by the switch X, just as P 2nd Q arose

m m
from T2m. As before we let s be the top left

point of Gm and the top right point of H
m

. Thus

C
rG

is in AGAP, Hm is not in AGAP, and GIJ1 is m­

equivalent to H
m

• This proves Theorem 7. #

Theorem 7 does not go through if we add

"Sue". In the log(n) rrove game on numbered graphs

if Player I chooses vertex i in A, then II must

respond wi th vertex i in B. Thus t\>/o numbered

graphs of size n are (log( n)+1 )-equivalent only

and each rov! stretches the range of one of these if they are identical. This is as expected

of freedom, allowing us to prove:

dimensions by one. These graphs have k degrees because a pair of graphs G,H is indistinguishable

to all log space Turing machines only if G=H.

any configuration in row r is generated by a con­

figuration in row r+1 and by its complement.

proof: By induction on k. If k=1 then we must

show that anyone point may be chosen in row r+1

Lemma~: Suppose that row r of Dk is entirely

labelled. Then any 2
k -1 points on or below row

r+k may be labelled in any self-consistent

fashion and there will still be a labelling of

the rest of the graph which generates row r.

discovered to our surprise that with Suc we can

wri te a formula of length O( log m) which says

that G is in AGAP. This is done as follows: In
m

a numbered graph a pair of vertices is endowed

with an orientation. Thus a numbered copy of

switch X is either right (orientation preserved)

or wrong (orientation of the top pair is

switched). Thus given a numbered graph which is

ei ther Gm or Hm we can tell which by adding up

the number of wrong switches and seeing if it is

odd or even.

after proving Theorem 7Sometime

This is true becausewi thou t affec ti ng row r.

Suppose we have our lerr~a for k-1 and con­

sider any labelling of row r in Dk • For conveni­

ence assume that row r is the bottom row of the

jth block. Thus the chosen 2k -1 points are on

the bottom row of the j+1
st

block or below. Note

that the subgraph of Dk with fixed first coordi­

nate i is a copy of D
f
-

1
• Furthermore for at most

one i
O

are there 2k- chosen vertices with first

coordinate i
O

. Label the i~h column of the j+1
st

block in any consistent fashion. Now by induc­

tion since less than 2k- 1 -1 vertices in any

other column are chosen, we can set the rest of

row r+1 :loS WtI pl~'A.se. Thus as in the case of D1
we have cootro'. of j of the j+1 points in each

group. 1'lU~ ",./e may generate row r as desired. II

To alleviate this problem we can replace the

switch X in the above construction with a switch

with n points. Thus to rember its orientation

requires n bits rather than one. As above we can

build graphs Gm' and Hm' which are m-equivalent

without successor. We conjecture that even with

Suc they are indistinguishable.

SECTION~: Conclusions.

We have shown that quantifier rank is

another measure of space complexity. Thus Ehren­

feucht games seem a likely tool for demonstrating

lower bounds for space.

From Lemma 7d it follows that Player II wins
Furthermore the idea of quantifier rank

unifies such notions as alternation and parallel-
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ism. 1;Je say: in the note after Theorem that

the device of a1 tE.:.rnating quantifiers i~: int8r­

changeable \.,ji th usinc an "and" or "or" to v,,-iden c:

fornula wi thout changing its depth. The la t ter

device is intui tively identical to forkinr, into

tHO processor's as in the Parallel EAr:' s of Sav­

itch and Stimson [SaSt79].

Fin2.l1y, \-le expec t furtber research in at

least the following directions:

1. \lIe have seen tha.t adding "Sue" 21lov18 fornu­

las to count 2 bunch of identical points, and to

keep track of the parity of binary switches.

However, Theor'en: 1 suggests that "Sue" is not

needed to express natural graph probleQs.

Characterize those graph problems in NSPACE[ log

n] which are also in QR[TG,O(log n)].
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