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Introduction 

We present in this paper a series of languages adequate 

for expressing exactly those properties checkable in a series 

of computational complexity classes. For example, we show 

tha t  a graph property is in polynomial time if and only if it is 

expressible in the language of first order graph theory together 

with a least fixed point operator. As another example, a group 

theoretic property is in the logspace hierarchy if and only if 

it is expressible in the language of first order group theory 

together with a transitive closure operator. 

The roots of our approach to complexity theory go back 

to 1974 when Fagin showed that  the NP properties are exactly 

those expressible in second order existential sentences. It  fol- 

lows that  second order logic expresses exactly those properties 

which are in the polynomial time hierarchy. We show that  add- 

ing suitable transitive closure and least fixed point operators 

to second order logic results in languages capturing polynomial 

space and exponential time, respectively. 

The existence of such natural languages for each im- 

portant complexity class sheds a new light on complexity 

"theory. These languages reaffirm the importance of the 
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complexity classes as much more than machine dependent 

issues. Furthermore a whole new approach is suggested. 

Upper bounds (algorithms) can be produced by expressing the 

property of interest in one of our languages. Lower bounds 

may be demonstrated by showing that  such expression is im- 

possible. 

For example, from the above we know that  P = N P  if 

and only if every second order property is already expressible 

using first order logic plus least fixed point. Similarly non- 

deterministic logspace is different from P just if there is some 

sentence using the fixed point operator which cannot be ex- 

pressed with a single application of transitive closure. 

In previous work [Im81], [Im82b], we showed that  the 

complexity cf a property is related to the number of variables 

and quantifiers in a uniform sequence of sentences, ~ot, ~o2..., 

where each ~a, expresses the property for structures of size n. 

Our present formulation is more pleasing because it considers 

single sentences (in more powerful languages). 

The first order expressible properties at  first seemed too 

weak to correspond to any natural complexity class. However 

we found that  a property is expressible by a sequence of first 

order sentences, ~a,, ~2.-. ,  where each ~a, has a bounded num- 

ber of quantifiers if and only if this property is recognized by a 

similar sequence of polynomial size boolean circuits of bounded 

depth. It follows that  the results of Furst, Saxe, and Sipser, 

[FSS81], and Sipser, [Si83], translate precisely into a proof 

tha t  certain properties are not expressible in any first order 

language. 

In this paper we also introduce a reduction between prob- 

lems that  is new to complexity theory. First order transla- 

tions, as the name implies, are fixed first order sentences which 
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translate one kind of structure into another. This is a very 

natural way to get a reduction, and at the same time it is very 

restrictive. It seems plausible to prove that  such reductions 

do not exist between certain problems. We present problems 

which are complete for logspace, nondeterministic logspace, 

polynomial time, etc., via first order translations. 

This paper is organized as follows: Section 1 introduces the 

complexity classes we will be considering. Section 2 discusses 

first order logic. Sections 3 and 4 introduce the languages un- 

der consideration. Section 5 considers the relationship between 

first order logic and polynomial depth circuits. The present 

(lack of) knowledge concerning the separation of our various 

languages is discussed. 

1. Complexity Classes and Complete Problems 

In this section we define those complexity classess which 

we will capture with languages in the following sections. We 

list complete problems for some of the classes. In later sections 

we will show how to express these complete problems in the 

appropriate languages; and, we will also show that  the prob- 

lems are complete via first order translations. More informa- 

tion about complexity classes may be found in [AHU74]. 

Consider the following well known sequence of contain- 

ments: 

L C_ N L  C_ E . L  C P C N P  C_ ~ . P  

Here L is deterministic logspace and NL is nondeterminis- 

tic logspace. ~].L = [.J~°=, ]E~L is the logspace hierarchy. 

~ . P  = U~°=I F~kP is the polynomial time hierarchy. Most 

knowledgabie people suspect tha t  all of the classes in the above 

containment are distinct, but it is not known tha t  they are not 

all equal. 

We begin our list of complete problems with the graph 

accessibility problem: 

GAP ----- { (G, a, b) 13 a path in G from a to b } 

Theorem 1.1 [Sa73]: GAP is logspace complete for NL. 

We will see later tha t  GAP is complete for NL in a much 

stronger sense. The GAP problem may be weakened to a deter- 

ministic logspaee problem by only considering those graphs 

which have at most one edge leaving any vertex: 

1GAP = 

{ (G,a,b) [ G has outdegree 1 and 3 a path in G from a to b} 

Theorem 1.2 [HIM78]: 1GAP is one-way logspace complete 

for  L. 

A problem which lies between 1GAP and GAP in com- 

plexity is 

UGAP = 

{ (G, a, b) l G undirected and 3 a path in G from a to b } 

Let BPL (bounded probability, logspace) be the set of 

problems, S, such that  there exists a logspace coin-flipping 

machine, M, and if w 6 S then Prob(M accepts w) > 3/4, 

while if w ~ S then Prob(M accepts w) <1 /4 .  It follows 

from the next theorem that  UGAP is in BPL. Thus UGAP is 

probably easier than GAP. 

Theorem 1.3 [AKLL79]: If r is a random walk of length 

2[E[([V[ + 1) in an undirected connected graph G then the 

probability tha t  r includes all vertices in G is greater than or 

equal to one half. 

Lewis and Papadimitriou [LP80] define symmetrsc 

machines to be nondeterministic turing machines whose next 

move relation on instantaneous descriptions is symmetric. 

Tha t  is if a symmetric machine can move from configuration 

A to configuration B then it is also allowea to move from B to 

A. Let Sym-L be the  class of problems accepted by symmetric 

logspace machines. 

Theorem 1A [LP80]: UGAP is logspace complete for 

Sym-L. 

John Reif [Re82] extended the notion of symmetric 

machines to allow alternation. Essentially an alternating sym- 

metric machine has a symmetric next move relation except 

where it alternates between existential and universal states. 

Let E.Sym-L = [.j~o_, E~Sym-L be the symmetric logspace 

hierarchy. Reif showed that  several interesting properties, in- 

cluding planarity for graphs of bounded valence, are in the 

symmetric logspace hierarchy. It follows that  they are also in 

BPL. 

One may also consider harder versions of the GAP prob- 

lem. Let an alternating graph G ---- ( V , E , A )  be a directed 
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graph whose vertices are labelled universal or existential. A _ 

V is the set of universal vertices. Alternating graphs have a 

different notion of accessibility. Let APATH(x,y) be the small- 

est relation on vertices of G such that:  

(i): APATH(x,x) 

(ii): If x is existential and for some child z of x APATH(z,y) 

holds, then APATH(x,y). 

(iii}: If x is universal, has at least one child, and all of its 

children, z, satisfy APATH(z,y), then APATH(x,y). 

See Figure 1.1 where APATH(a,b) holds, hut APATH(c,b) 

does not. Let 

AGAP : { (G, a, b) I APATHG(a, b) } 

It is not hard to see that  AGAP is the alternating version 

of GAP, and thus is complete for ASPACE[Iog(n)]. Recalling 

tha t  this class is equal to P, [CKS81], we have 

Theorem 1.5 [Im81]: AGAP is logspace complete for P. 

o / ° ~  b.o ° 

. J  

A V A 

Figure 1.1: An alternating graph. 

2 .  First Order Logic 

In this section we introduce the necessary notions from 

logic. The reader is refered to [En72] for more background 

material. 

A finite structure with vocabulary v = {RI...Rk, c_l...cr) is 

a tuple, S ~ -  ({ 1...n }, RI...Rk, cl ...c,), consisting of a universe 

U - -  { 1...n } and relations R1...R~ on U corresponding to the 

relation symbols R1.. .R k of r, and constants el...c, from U 

corresponding to the constant symbols c 1...c, from r. 

For example, if r0 = (E(-,-)) consists of a single bi- 

nary relation symbol then a structure G ---- ({ 1...n }, E) with 

vocabulary T0 is a graph on n vertices. Similarly if rl = (M(-)) 

consists of a single monadic relation symbol then a structure 

S = ({ 1 . . .n} ,M) with vocabulary ~1 is a binary string of 

length n. 

If r is a vocabulary, let 

STRUCT(r) = { G [ G is a structure with vocabulary r } 

We will think of a problem as a set of structures of some 

vocabulary r. Of course it suffices to only consider problems 

on binary strings, but  it is more interesting to be able to talk 

about  other vocabularies, e.g. graph problems, as well. 

The first order language L(r) is the set of formulas built up 

from the relation symbols of ~ and the logical relation symbols: 

= ,  < ,  using logical connectives: A, V, -~, variables: z, y, z, ..., 

and quantifiers: V, 3. The relation symbol < refers to the usual 

ordering on the universe of integers 1...n, and the quantifiers 

range over this universe. We will say more in Section 3 about 

the need for < .  

If ~o E L(r) let MOD(~) be the set of finite models of ~o: 

MOD(p) = { G 6 STRUCT(r) [ C satisfies ~ } 

Let FO be the set of all first order expressible problems. 

FO = { S I (3v)(3~o E L(r))S = MOD(~) } 

The following theorem is well known, [AU79, Im81]; but 

a new proof of the strictness of the containment follows from 

Corollary 5.3. 

Theorem 2.1: FO is strictly contained in L. 

3. First Order Logic With Closure Operators 

In this section we add operators to first order logic in 

order to form languages in which interesting properties of 

finite structures are expressible. First we consider a transitive 

closure operator (TC). 

Let ~o(xz...z~, Yl...Yk) be any formula. It represents a bi- 

nary relation on k-tuples. We add to our language the operator 

TC where TC[~] denotes the reflexive, transitive closure of 

the relation ~o. Let (FO -}- TC) be the set of properties ex- 

pressible using first order logic plus the operator TC. Let 

(FO -[- pos TC) be the set of properties expressible using only 

positive applications of TC, i.e. not within any negation signs. 
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Theorem 3.1: 

(a): GAP e ( fO + TC) 

(b): N L  = ( fO  + pos TC) 

(c): E.L = (FO + TC) 

proof: 

(a): The GAP property is easily expressed using TC: 

GAP ~_ TC[E(~, y)](a, b) 

(b): It is easy to see that NL contains (FO + pos TC). 

If A(z,y) can be checked in NL, then so can TC[A($,y)]: 

simply guess an A path. Going the other way we are given a 

nondeterministic logspace turing machine, M, adcepting a set, 

S, of structures of a certain vocabulary r. We must produce a 

sentence ¢ in (FO + TC) such that 

S = { G 6 STRUCT(~) ] G satisfies %b } 

We will sketch the construction of ¢.  The first idea is 

that  an instantaneous description (ID) of M can be coded with 

finitely many variables ranging from 1 to n. 

Example 3.1: Suppose M accepts a graph problem, i.e. the 

vocabulary, r - -  (E__(., .)), consists of a single binary relation 

symbol. Suppose also that M uses k • log(n) bits of work 

tape for problems of size n. Input to M consists of n 2 bits 

- the adjacency matrix for E. An ID for M is a 2k q- 3-tuple: 

(q, rl ,  rz, Wl, hl.,.w~, h~). Here q codes M's state and variables 

r l ,  r2 code the input head position. Note that the input head 

is looking at a 1 or 0 according as E(r l , r2)  holds or does n o t  

hold in the input structure. Finally wl...w~ code the k. log(n) 

bits of M's work tape. One hi is equal to 2i where the work 

head is pointing to the j th  bit of ws; the rest of the hi's are !. 

The second idea is that using TC we can compute the j t h  

bit of w~. Let ON(w,h) mean that h - -  2 i for some j and 

bit j of w is on. Starting with < we can use TC to express 

addition and multiplication and thus tell if a certain bit in a 

variable is on: 

Lemma 3.1: The follQwing predicates are expressible in 

(FO + pos TC). 

(a): PLUS(x, y, z) ~- "x Jc Y = z" 

(b): TIMES(z ,  y, z) =_ "x .  y = z" 

(c): ON(w, h) 

p r o o f  of  (a): Using <~ it is easy to express "1" and the 

successor function, "s". We can then say that there is an edge 

from (x,y) to (u,v) if u = x - -  1 and v ~- y +  1: 

EDGE(x, y, u, v) -~ (sCu) = x A sCY) = v) 

Using transitive closure we then get: 

PLUS(x, y, z) ~ TC[EDGE](s(x), y, 1, z) 

Once we can tell what the work head is looking at we 

can write the predicate NEXT(IDa,  IDb) meaning that  IDb 

follows from IDa in one move of M. (Note that  we make a 

crucial use here of the ordering, < ,  to say that  the read head 

moves one space to the left or right. Any input structure is 

given to a turing machine in some order.) Using one more 

positive application of TC we can express PATH(IDa, IDb) 

meaning that there is a computation of M starting at IDa 

and leading to IDb. Let ¢ = PATH(IDa, IDI) where ID~ 

and ID/ are M's initial and final ID's respectively. Then 

¢ E (FO + pos TC) and an input structure, G, of the correct 

vocabulary satisfies ¢ if and only if M accepts G. This proves 

Theorem 3.1(b). Therem 3.1(c) follows by closing each side of 

(b) with negation. | 

The sentence ¢ ~ PATH(IDi, IDI) in the above proof 

has an interesting form. It is written with several positive 

applications of TC and these may easily be merged into one. 

Thus for each problem C in NL there is a 2k-sty first order 

formula ~, and two first order definable k-tuples IDi, ID! 

such that a structure G is a member of C iff G satisfies 

TC[~o](ID~, IDI). This suggests the following: 

Definition: Let ~t and r2 be vocabularies where r2 - -  

(R1...RT) and R~ is an a~-ary relation symbol. Let k be a 

constant. An interpretation, a, of rl as r2 is a sequence of 

r + 1 formulas: 

U ( Z l . . . x D ,  E , ( x m . . X l ~ . . . x ~ , k )  i = 1 . . . r  

from L(~rl). 

Thus a translates each structure G C ~TRUCT[~I] to a 

structure a(G) E STRUCT[r2]. o(G) has universe the set of 

k-tuples from the universe of G which satisfy U. The relations, 

R1. . .R, ,  on this universe are given by the formulas P'I...P~,. 
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See [En72] for a discussion of interpretations between theories. 

Given two problems: S C STRUCT[TI] and T C 

STRUCT[r2], a first order translation of S to T is an inter- 

pretation, a, of rl as r2 such tha t  

G 6 S  if and only if a(G) 6 T  

The above discussion proves: 

Corollary 3.2: GAP is complete for NL via first order 

translations. 

We next employ other operators not quite as strong as 

TC to capture weaker complexity classes. For example, let 

STC be the symmetric transitive closure operator. Thus if 

~o(~, y) is a first order relation on k-tuples, then STC(~o) is the 

symmetric, transitive Closure of ~o. 

STC(~o) = TC[~o(z, y) V ~o(y, z)] 

(b): 
(c): 

(d): 

Sym-L 

The following theorem, whose proof is similar to the proof 

of Theorem 3.1, shows t h a t  STC captures the power of sym- 

metric log space: 

Theorem 3.3: 

(a): UGAP 6 (FO -]- STC) 
Sym-L = (FO --~ pos STC) 

~.Syrn-L = (FO + STC) 

UGAP is complete via first order translations for 

We can also add a deterministic version of transitive 

closure which we call DTC. Given a first order relation ~(~, y) 
let 

~9d(2 , y) ~ ~0(~, y) /~ [(V-Z)'~(~, Z) V (Y ~- z)] 

That  is ~d(g,Y) is true just  if ~ is the unique descendent of 5. 

Now define: 

DTC(p) =--- TO(~d) 

Note that (FO .-{- pos DTC) is closed under negation. Thus: 

Theorem 3.4: 

(a): IGAP 6 (FO -5 DTC) 
(b): L = (fO -5 DTC) 
(c): 1GAP is complete for L via first order translations. 

The last operator we add in this section is least fixed point, 

LFP. Given a first order operator on relations: 

~o(R)[~.] --_ Qlzl...Qkz~M(~,'2,R) 

we say tha t  ~o is monotone if R,  _C R2 implies ~o(R1) C ~o(R2). 

For a monotone ~o define: 

LFP(~o) ~ rnin{Rl~o(R ) = R} 

It is well known that  LFP(p) exists and is computable in 

polynomial time in the size of the structure involved. 

Example 3.2: The least fixed point operator is a way of 

formalizing inductive definitions of new relations. Recall the 

AGAP property discussed in Section 1. Consider the following 

monotone operator: 

¢(R)[x, y] ~_(z = y) V [(qz)(E(x, z) A R(z, y)) 

^ (~A(x) v (vz)C-E(x, z) V R(z, y)))] 
It is easy to see that  

LFP(¢) = APATH 

A proof of the following first appeared in [Im82a]. 

Theorem 3.5: P : (FO + LFP) 

Recalling that  P ~ ASPACE[log(n)] the proof of 

Theorem 3.1 may be modified slightly to show that  any P-time 

property may be translated into a sin$1e instance of the AGAP 

property. 

Corollary 3.6: AGAP is complete for P via first order 

translations. 

4. Second Order Logic 

In second order logic we have first order logic plus the 

ability to quantify over relations on the universe. The following 

theorem of Fagin was our original motivation for this line of 

research: 

Theorem 4.1 [Fa74]: g P  = (2"do existential) 

Fagin's theorem says that  a property is recognizable in NP 

iff it is expressible by a second order existential formula. Note 

tha t  we no longer need " < "  as a logical symbol because in 

second order logic we can say, "There exists a binary relation 

which is a total ordering on the universe." Closing both sides 

of Theorem 4.1 under negation gives us tha t  a problem is in the 

polynomial time hierarchy iff it is expresible in second order 
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logic. 

Corollary 4.2 [St77]: Z , P  : (2'~dO) 

Fagin's original result used 2k-ary relations to encode the 

O[n 2k] bits of an entire NTIME[n k] computation.  Thus he 

-showed: 

NTIME[n k] C. (2ndo existential, arity 2k) C N P  

Lynch [Ly82] points out that  in the presence of addition 

as a new logical relation on the universe, the second order 

existential sentences can guess merely the  n ~ moves and piece 

together the whole computation in arity k. Thus, he shows: 

Theorem 4.3 [Ly82]: 

NTIME[n k] C_ (2~do existential with -5, arity k) 

Corollary 4.4: 

(a): ~,TIME[n k] C_ (2"dO with -~-, r alterntions, arity k) 

(b): E.TIME[n k] = (2'~do with -~-, arity k) 

Noi, e that  in the  above results the relation " + "  need only 

be added when k is 1, otherwise it is definable. 

As in the previous section we can add closure operators 

to second order logic in order to express properties which 

seem computationally more difficult than the polynomial time 

hierarchy. If ~ ( R , S )  is a sentence expressing a binary su- 

per relation on k-tup]es of relations R and S,  then TC(~), 

STC(~), DTC(~) express the transitive closure, symmetric 

transitive closure, deterministic transitive closure, respec- 

tively, of ~.  It is not hard to show: 

Theorem 4.5: PSPACE ~- (2ndO -[- TC) : (2"do "~ 

STC) = (2ndo -~- DTC) 

proof sketch: A k-ary relation R over an n element 

universe consists of n k bits. It is an easy exercise to code 

an O[n k] space instantaneous description with a set of k- 

ary relations, S1 . . .Xc,  and to write the first order sentence 

~(X1...Xc,Y1...Yc) meaning tha t  ID X follows from X in 

one move of some turing machine M. One aplication of the ap- 

propriate transitive closure operator expresses an entire com- 

putation.  | 

In fact we have proved the following: 

Theorem 4.6: For k= l ,2 , . . .  

(a): DSPACE[n k] = (2"do arity k, -~- DTC) 

(b): S y m -  SPACE[n k] = (2"do arity k, + pos STC) 

(c): NSPACE[n k] = (2'*do arity k, -~- pos TC) 

Finally we can add a least fixed point operator on 

monotone second order operators. That  is we add the  ability 

to define super relations on relations by induction. 

Theorem 4.7: For k = 1,2,. .  

DTIME[2 °{'~]] = (2"do arity k -I- LFP) 

5 .  L o w e r  B o u n d s  

A recent lower bound by Furst, Saxe and Sipser has inter- 

esting consequences for us. The t=*ARITY problem is to deter- 

mine whether the n inputs to a boolean circuit include an even 

number which are on. 

Theorem 5.1 [FSS81]: PARITY cannot  be computed by a 

sequence of polynomial size, bounded depth circuits. 

Theorem 5.1 interests us greatly because of the following 

relation between bounded depth polynomial size circuits and 

first order sentences: 

Theorem 5.2: Given a problems, S, the following are equiv- 

alent: 

(a): S is recognized by a sequence of bounded depth,  poly- 

nomial size circuits. 

(b): There is a fixed constant,  k, and a sequence of first 

order sentences, ~1, ~2 . - .  such that  p , ,  expresses S for struc- 

tures of size n; and, ~n has exactly k quantifiers. The sentence 

~,,  belongs to a first order language which includes the  new 

logical relations I1...I,~ where Ij is a monadic relation true 

exactly of point j ol ~ the  universe. 

proof: 

(b) implies (a) because k quantifiers are easy to simulate 

with a k level circuit of fan in n, giving total size n ~. The 

quantifier free par t  can be expressed as an O[n k] disjunction 

of bounded conjunctions because everything is bounded except  

the  n k possible ways tha t  the k chosen variables may satisfy 

I1. . .I,,. 
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(a) implies (b): For simplicity think of an input structure 

with a single monadic relation, M, i.e. a sequence of n boolean 

inputs. We Can say that  the jth input is on: 

(~z)X,,Cz) ^ M(x) 

Suppose that  some and-gate, A, has inputs G1...G,,. 

Assume inductively that  each G~ is expressible by a first order 

sentence ~ with k - -  1 quantifiers: 

Then A can be expressed by the sentence: 

- (vxl)(x~(~) ^ ~ )  v . . -  v (~(~) ^ ~.) 

which may be then simplified to: 

(x~(~) ^ ~(x2 . . .xk) )  v . . .  v (x.(~1) ^ ~.(~2...x~,)) 

In this way an inductive proof shows that  any polynomial 

size circuit of bounded depth, k, whose gate fan in is limited 

to n c can be expressed in the above first order language using 

k • c quantifiers. I I  

The new relation symbols,/1...I,~ were added to capture 

the power of the circuits which may examine any of their 

inputs. These relation symbols allow the ~on's to express any 

relation on the universe not involving M. For example, ~o17 

can express the property "x -}- y ---- z" by saying: 

(x1(~) ^ x1(y) ^ ~(z))  v . - -  v (Xs(~) ^ ~s(y) ^ ~,,(z)) 

A first order theory is any set of first order axioms. 

Equivalently we may think of it as a set of structures with 

certain given relations satisfying prescribed rules. Thus: 

Corollary 5.3: Parity of a new relation M is not expressible 

in any first order theory. 

We may also think of our elements { 1. . .n } as the power 

set of the smaller universe { 1...log(n) }. Using the language 

of Corollary 5.2 we can easily express, the relation "a E b" 

meaning that the a th bit of the binary representation of b is 

one. Now M_M_ may be thought of as a monadic relation symbol 

on subsets. 

Corollary 5.4: There is no second order monadic s~ntence 

~o(M) using the new symbol ~ referring to an arbitrary 

monadie relation on subsets, such that ~(M) says, "M is true 

of an even number of subsets." 

Of course PARITY can be expressed using transitive 

closure or any other operator allowing a linear traversal of the 

input. Thus the above corollaries also show that TC is not first 

order definable, nor is TC of an expression involving a new 

relation symbol second order monadic definable. Furthermore 

we can think of Corollary 5.4 in terms of oracles. Since no 

expresses parity for all M's  we can build a single relation M 

that  foils all ~'s. (Each ~o will he wrong at some finite point, 

so with a finite initial segment of M we can kill the first r ~o's.) 

Recalling Corollary 4.4 we conclude: 

Corollary 5.5: There is an oracle M such that  

PARITY(M) E (DSPACEM(n)- ~,TIMEM(n)) 

Of Course Corollary 5.5 would be more interesting if we 

could either remove the oracle from it or change the n to "any 

polytmmial in n." 

Conclusions 

We have shown that  the important complexity classes, C, 

have corresponding languages, L, such that  C consists of ex- 

actly those properties expressible in L. Thus questions of com- 

plexity can all be translatedto expressibility issues. Separating 

complexity classes is equivalent to showing that  certain of the 

above operators are more powerful than others. Efficient algo- 

rithms may be obtained simply by describing a problem in one 

of our languages. We have also demonstrated a basic connec- 

tion between boolean circuits and first order logic. 

Open questions and work to be done include the following: 

• More precise bounds on the arity of formulas needed to 

express properties of a given complexity are needed. 

• We have introduced first order translations as a new kind of 

reduction. Many open questions arise. The relative power 

of these as compared with other reductions should be deter- 

mined. It seems possible to prove that first order translations 

between certain problems cannot exist. Be careful however: 

showing that there is no first order translation from SAT to 
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1GAP would prove that NP ~ L These very neat reduc- 

tions also suggest that it may now be plausible to ask such 

questions as, "What makes a particular second order exis- 

tential sentence NP complete?" 

• There are some open questions concerning separating classes 

with oracles. For example, proving that PARITY(M) ~' 

(2"do -5 M) would imply that there is an oracle separating 

the polynomial time hierarchy from PSPACE. 

• More knowledge is needed concerning the increase in ex- 

pressibility gained by alternating applications of operatores 

and negation. Let (FO -5 k • TC) be first order logic in 

which k alternations of TC and negation are allowed. Thus 

for example, (FO + 1 ,, TC) = (F) -5 pos TC) = NL. We 

conjecture the following: 

(a): (FO -5 1 • TC) c (FO "-5 2 • TC) c . . . 

(b): (FO -5 1 • STC) c (FO -5 2 • STC) c . . .  

From a proof of any of the proper containments in (a) or 

(b) it would follow that L ~ P. Thus we would be satisfied 

with the more modest hierarchy results without < as a logical 

symbol: 

(c): (FO w.o. < -5 1 • TC) c (FO w.o. < -5 2 • TC) ~ . . .  

(d): (FO w.o.< -51•STC)C(FO w.o.< -52•STC)C. . .  

• Of course everyone would like to see a proof that some 

second order property is not expressible in first order plus 

least fixed point. This would imply that P ~ NP. 

• Finally, we hope that attractive versions of the above lan- 

guages will be developed for actual use as programming 

and/or database query languages. 
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Bibliographical Note 
G~cs and Lov~sz have studied "elementary reductions", a 

notion similar to first order translations. They showed, [LG77], 

that  SAT is NP complete via elementary reductions. 

Vardi, [Va82], has obtained some nice results on the com- 

plexity of languages with added operators including least fixed 

point and transitive closure. 
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