
Languages Which Capture Complexity Classes
(Preliminary Report)

Neil Immerman *

Department of Mathematics

Tufts University

Medford,Mass. 02155

and
Laboratory for Computer Science

Massachusetts Insti tute of Technology

Cambridge, Mass.. 02139

Introduction

We present in this paper a series of languages adequate

for expressing exactly those properties checkable in a series

of computational complexity classes. For example, we show

tha t a graph property is in polynomial time if and only if it is

expressible in the language of first order graph theory together

with a least fixed point operator. As another example, a group

theoretic property is in the logspace hierarchy if and only if

it is expressible in the language of first order group theory

together with a transitive closure operator.

The roots of our approach to complexity theory go back

to 1974 when Fagin showed that the NP properties are exactly

those expressible in second order existential sentences. It fol-

lows that second order logic expresses exactly those properties

which are in the polynomial time hierarchy. We show that add-

ing suitable transitive closure and least fixed point operators

to second order logic results in languages capturing polynomial

space and exponential time, respectively.

The existence of such natural languages for each im-

portant complexity class sheds a new light on complexity

"theory. These languages reaffirm the importance of the

*Research supported by NSF grant MCS81-05754.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 A C M 0-89791-099-0 /83 /004 /0347 $00.75

complexity classes as much more than machine dependent

issues. Furthermore a whole new approach is suggested.

Upper bounds (algorithms) can be produced by expressing the

property of interest in one of our languages. Lower bounds

may be demonstrated by showing that such expression is im-

possible.

For example, from the above we know that P = N P if

and only if every second order property is already expressible

using first order logic plus least fixed point. Similarly non-

deterministic logspace is different from P just if there is some

sentence using the fixed point operator which cannot be ex-

pressed with a single application of transitive closure.

In previous work [Im81], [Im82b], we showed that the

complexity cf a property is related to the number of variables

and quantifiers in a uniform sequence of sentences, ~ot, ~o2...,

where each ~a, expresses the property for structures of size n.

Our present formulation is more pleasing because it considers

single sentences (in more powerful languages).

The first order expressible properties at first seemed too

weak to correspond to any natural complexity class. However

we found that a property is expressible by a sequence of first

order sentences, ~a,, ~2.-. , where each ~a, has a bounded num-

ber of quantifiers if and only if this property is recognized by a

similar sequence of polynomial size boolean circuits of bounded

depth. It follows that the results of Furst, Saxe, and Sipser,

[FSS81], and Sipser, [Si83], translate precisely into a proof

tha t certain properties are not expressible in any first order

language.

In this paper we also introduce a reduction between prob-

lems that is new to complexity theory. First order transla-

tions, as the name implies, are fixed first order sentences which

347

translate one kind of structure into another. This is a very

natural way to get a reduction, and at the same time it is very

restrictive. It seems plausible to prove that such reductions

do not exist between certain problems. We present problems

which are complete for logspace, nondeterministic logspace,

polynomial time, etc., via first order translations.

This paper is organized as follows: Section 1 introduces the

complexity classes we will be considering. Section 2 discusses

first order logic. Sections 3 and 4 introduce the languages un-

der consideration. Section 5 considers the relationship between

first order logic and polynomial depth circuits. The present

(lack of) knowledge concerning the separation of our various

languages is discussed.

1. Complexity Classes and Complete Problems

In this section we define those complexity classess which

we will capture with languages in the following sections. We

list complete problems for some of the classes. In later sections

we will show how to express these complete problems in the

appropriate languages; and, we will also show that the prob-

lems are complete via first order translations. More informa-

tion about complexity classes may be found in [AHU74].

Consider the following well known sequence of contain-

ments:

L C_ N L C_ E . L C P C N P C_ ~ . P

Here L is deterministic logspace and NL is nondeterminis-

tic logspace. ~].L = [.J~°=,]E~L is the logspace hierarchy.

~ . P = U~°=I F~kP is the polynomial time hierarchy. Most

knowledgabie people suspect tha t all of the classes in the above

containment are distinct, but it is not known tha t they are not

all equal.

We begin our list of complete problems with the graph

accessibility problem:

GAP ----- { (G, a, b) 13 a path in G from a to b }

Theorem 1.1 [Sa73]: GAP is logspace complete for NL.

We will see later tha t GAP is complete for NL in a much

stronger sense. The GAP problem may be weakened to a deter-

ministic logspaee problem by only considering those graphs

which have at most one edge leaving any vertex:

1GAP =

{ (G,a,b) [G has outdegree 1 and 3 a path in G from a to b}

Theorem 1.2 [HIM78]: 1GAP is one-way logspace complete

for L.

A problem which lies between 1GAP and GAP in com-

plexity is

UGAP =

{ (G, a, b) l G undirected and 3 a path in G from a to b }

Let BPL (bounded probability, logspace) be the set of

problems, S, such that there exists a logspace coin-flipping

machine, M, and if w 6 S then Prob(M accepts w) > 3/4,

while if w ~ S then Prob(M accepts w) <1 /4 . It follows

from the next theorem that UGAP is in BPL. Thus UGAP is

probably easier than GAP.

Theorem 1.3 [AKLL79]: If r is a random walk of length

2[E[([V[+ 1) in an undirected connected graph G then the

probability tha t r includes all vertices in G is greater than or

equal to one half.

Lewis and Papadimitriou [LP80] define symmetrsc

machines to be nondeterministic turing machines whose next

move relation on instantaneous descriptions is symmetric.

Tha t is if a symmetric machine can move from configuration

A to configuration B then it is also allowea to move from B to

A. Let Sym-L be the class of problems accepted by symmetric

logspace machines.

Theorem 1A [LP80]: UGAP is logspace complete for

Sym-L.

John Reif [Re82] extended the notion of symmetric

machines to allow alternation. Essentially an alternating sym-

metric machine has a symmetric next move relation except

where it alternates between existential and universal states.

Let E.Sym-L = [.j~o_, E~Sym-L be the symmetric logspace

hierarchy. Reif showed that several interesting properties, in-

cluding planarity for graphs of bounded valence, are in the

symmetric logspace hierarchy. It follows that they are also in

BPL.

One may also consider harder versions of the GAP prob-

lem. Let an alternating graph G ---- (V , E , A) be a directed

348

graph whose vertices are labelled universal or existential. A _

V is the set of universal vertices. Alternating graphs have a

different notion of accessibility. Let APATH(x,y) be the small-

est relation on vertices of G such that:

(i): APATH(x,x)

(ii): If x is existential and for some child z of x APATH(z,y)

holds, then APATH(x,y).

(iii}: If x is universal, has at least one child, and all of its

children, z, satisfy APATH(z,y), then APATH(x,y).

See Figure 1.1 where APATH(a,b) holds, hut APATH(c,b)

does not. Let

AGAP : { (G, a, b) I APATHG(a, b) }

It is not hard to see that AGAP is the alternating version

of GAP, and thus is complete for ASPACE[Iog(n)]. Recalling

tha t this class is equal to P, [CKS81], we have

Theorem 1.5 [Im81]: AGAP is logspace complete for P.

o / ° ~ b.o °

. J

A V A

Figure 1.1: An alternating graph.

2 . First Order Logic

In this section we introduce the necessary notions from

logic. The reader is refered to [En72] for more background

material.

A finite structure with vocabulary v = {RI...Rk, c_l...cr) is

a tuple, S ~ - ({ 1...n }, RI...Rk, cl ...c,), consisting of a universe

U - - { 1...n } and relations R1...R~ on U corresponding to the

relation symbols R1.. .R k of r, and constants el...c, from U

corresponding to the constant symbols c 1...c, from r.

For example, if r0 = (E(-,-)) consists of a single bi-

nary relation symbol then a structure G ---- ({ 1...n }, E) with

vocabulary T0 is a graph on n vertices. Similarly if rl = (M(-))

consists of a single monadic relation symbol then a structure

S = ({ 1 . . .n} ,M) with vocabulary ~1 is a binary string of

length n.

If r is a vocabulary, let

STRUCT(r) = { G [G is a structure with vocabulary r }

We will think of a problem as a set of structures of some

vocabulary r. Of course it suffices to only consider problems

on binary strings, but it is more interesting to be able to talk

about other vocabularies, e.g. graph problems, as well.

The first order language L(r) is the set of formulas built up

from the relation symbols of ~ and the logical relation symbols:

= , < , using logical connectives: A, V, -~, variables: z, y, z, ...,

and quantifiers: V, 3. The relation symbol < refers to the usual

ordering on the universe of integers 1...n, and the quantifiers

range over this universe. We will say more in Section 3 about

the need for < .

If ~o E L(r) let MOD(~) be the set of finite models of ~o:

MOD(p) = { G 6 STRUCT(r) [C satisfies ~ }

Let FO be the set of all first order expressible problems.

FO = { S I (3v)(3~o E L(r))S = MOD(~) }

The following theorem is well known, [AU79, Im81]; but

a new proof of the strictness of the containment follows from

Corollary 5.3.

Theorem 2.1: FO is strictly contained in L.

3. First Order Logic With Closure Operators

In this section we add operators to first order logic in

order to form languages in which interesting properties of

finite structures are expressible. First we consider a transitive

closure operator (TC).

Let ~o(xz...z~, Yl...Yk) be any formula. It represents a bi-

nary relation on k-tuples. We add to our language the operator

TC where TC[~] denotes the reflexive, transitive closure of

the relation ~o. Let (FO -}- TC) be the set of properties ex-

pressible using first order logic plus the operator TC. Let

(FO -[- pos TC) be the set of properties expressible using only

positive applications of TC, i.e. not within any negation signs.

349

Theorem 3.1:

(a): GAP e (fO + TC)

(b): N L = (fO + pos TC)

(c): E.L = (FO + TC)

proof:

(a): The GAP property is easily expressed using TC:

GAP ~_ TC[E(~, y)](a, b)

(b): It is easy to see that NL contains (FO + pos TC).

If A(z,y) can be checked in NL, then so can TC[A($,y)]:

simply guess an A path. Going the other way we are given a

nondeterministic logspace turing machine, M, adcepting a set,

S, of structures of a certain vocabulary r. We must produce a

sentence ¢ in (FO + TC) such that

S = { G 6 STRUCT(~)] G satisfies %b }

We will sketch the construction of ¢. The first idea is

that an instantaneous description (ID) of M can be coded with

finitely many variables ranging from 1 to n.

Example 3.1: Suppose M accepts a graph problem, i.e. the

vocabulary, r - - (E__(., .)), consists of a single binary relation

symbol. Suppose also that M uses k • log(n) bits of work

tape for problems of size n. Input to M consists of n 2 bits

- the adjacency matrix for E. An ID for M is a 2k q- 3-tuple:

(q, rl , rz, Wl, hl.,.w~, h~). Here q codes M's state and variables

r l , r2 code the input head position. Note that the input head

is looking at a 1 or 0 according as E(r l , r2) holds or does n o t

hold in the input structure. Finally wl...w~ code the k. log(n)

bits of M's work tape. One hi is equal to 2i where the work

head is pointing to the j th bit of ws; the rest of the hi's are !.

The second idea is that using TC we can compute the j t h

bit of w~. Let ON(w,h) mean that h - - 2 i for some j and

bit j of w is on. Starting with < we can use TC to express

addition and multiplication and thus tell if a certain bit in a

variable is on:

Lemma 3.1: The follQwing predicates are expressible in

(FO + pos TC).

(a): PLUS(x, y, z) ~- "x Jc Y = z"

(b): TIMES(z , y, z) =_ "x . y = z"

(c): ON(w, h)

p r o o f of (a): Using <~ it is easy to express "1" and the

successor function, "s". We can then say that there is an edge

from (x,y) to (u,v) if u = x - - 1 and v ~- y + 1:

EDGE(x, y, u, v) -~ (sCu) = x A sCY) = v)

Using transitive closure we then get:

PLUS(x, y, z) ~ TC[EDGE](s(x), y, 1, z)

Once we can tell what the work head is looking at we

can write the predicate NEXT(IDa, IDb) meaning that IDb

follows from IDa in one move of M. (Note that we make a

crucial use here of the ordering, < , to say that the read head

moves one space to the left or right. Any input structure is

given to a turing machine in some order.) Using one more

positive application of TC we can express PATH(IDa, IDb)

meaning that there is a computation of M starting at IDa

and leading to IDb. Let ¢ = PATH(IDa, IDI) where ID~

and ID/ are M's initial and final ID's respectively. Then

¢ E (FO + pos TC) and an input structure, G, of the correct

vocabulary satisfies ¢ if and only if M accepts G. This proves

Theorem 3.1(b). Therem 3.1(c) follows by closing each side of

(b) with negation. |

The sentence ¢ ~ PATH(IDi, IDI) in the above proof

has an interesting form. It is written with several positive

applications of TC and these may easily be merged into one.

Thus for each problem C in NL there is a 2k-sty first order

formula ~, and two first order definable k-tuples IDi, ID!

such that a structure G is a member of C iff G satisfies

TC[~o](ID~, IDI). This suggests the following:

Definition: Let ~t and r2 be vocabularies where r2 - -

(R1...RT) and R~ is an a~-ary relation symbol. Let k be a

constant. An interpretation, a, of rl as r2 is a sequence of

r + 1 formulas:

U (Z l . . . x D , E , (x m . . X l ~ . . . x ~ , k) i = 1 . . . r

from L(~rl).

Thus a translates each structure G C ~TRUCT[~I] to a

structure a(G) E STRUCT[r2]. o(G) has universe the set of

k-tuples from the universe of G which satisfy U. The relations,

R1. . .R, , on this universe are given by the formulas P'I...P~,.

350

See [En72] for a discussion of interpretations between theories.

Given two problems: S C STRUCT[TI] and T C

STRUCT[r2], a first order translation of S to T is an inter-

pretation, a, of rl as r2 such tha t

G 6 S if and only if a(G) 6 T

The above discussion proves:

Corollary 3.2: GAP is complete for NL via first order

translations.

We next employ other operators not quite as strong as

TC to capture weaker complexity classes. For example, let

STC be the symmetric transitive closure operator. Thus if

~o(~, y) is a first order relation on k-tuples, then STC(~o) is the

symmetric, transitive Closure of ~o.

STC(~o) = TC[~o(z, y) V ~o(y, z)]

(b):
(c):

(d):

Sym-L

The following theorem, whose proof is similar to the proof

of Theorem 3.1, shows t h a t STC captures the power of sym-

metric log space:

Theorem 3.3:

(a): UGAP 6 (FO -]- STC)
Sym-L = (FO --~ pos STC)

~.Syrn-L = (FO + STC)

UGAP is complete via first order translations for

We can also add a deterministic version of transitive

closure which we call DTC. Given a first order relation ~(~, y)
let

~9d(2 , y) ~ ~0(~, y) /~ [(V-Z)'~(~, Z) V (Y ~- z)]

That is ~d(g,Y) is true just if ~ is the unique descendent of 5.

Now define:

DTC(p) =--- TO(~d)

Note that (FO .-{- pos DTC) is closed under negation. Thus:

Theorem 3.4:

(a): IGAP 6 (FO -5 DTC)
(b): L = (fO -5 DTC)
(c): 1GAP is complete for L via first order translations.

The last operator we add in this section is least fixed point,

LFP. Given a first order operator on relations:

~o(R)[~.] --_ Qlzl...Qkz~M(~,'2,R)

we say tha t ~o is monotone if R, _C R2 implies ~o(R1) C ~o(R2).

For a monotone ~o define:

LFP(~o) ~ rnin{Rl~o(R) = R}

It is well known that LFP(p) exists and is computable in

polynomial time in the size of the structure involved.

Example 3.2: The least fixed point operator is a way of

formalizing inductive definitions of new relations. Recall the

AGAP property discussed in Section 1. Consider the following

monotone operator:

¢(R)[x, y] ~_(z = y) V [(qz)(E(x, z) A R(z, y))

^ (~A(x) v (vz)C-E(x, z) V R(z, y)))]
It is easy to see that

LFP(¢) = APATH

A proof of the following first appeared in [Im82a].

Theorem 3.5: P : (FO + LFP)

Recalling that P ~ ASPACE[log(n)] the proof of

Theorem 3.1 may be modified slightly to show that any P-time

property may be translated into a sin$1e instance of the AGAP

property.

Corollary 3.6: AGAP is complete for P via first order

translations.

4. Second Order Logic

In second order logic we have first order logic plus the

ability to quantify over relations on the universe. The following

theorem of Fagin was our original motivation for this line of

research:

Theorem 4.1 [Fa74]: g P = (2"do existential)

Fagin's theorem says that a property is recognizable in NP

iff it is expressible by a second order existential formula. Note

tha t we no longer need " < " as a logical symbol because in

second order logic we can say, "There exists a binary relation

which is a total ordering on the universe." Closing both sides

of Theorem 4.1 under negation gives us tha t a problem is in the

polynomial time hierarchy iff it is expresible in second order

351

logic.

Corollary 4.2 [St77]: Z , P : (2'~dO)

Fagin's original result used 2k-ary relations to encode the

O[n 2k] bits of an entire NTIME[n k] computation. Thus he

-showed:

NTIME[n k] C. (2ndo existential, arity 2k) C N P

Lynch [Ly82] points out that in the presence of addition

as a new logical relation on the universe, the second order

existential sentences can guess merely the n ~ moves and piece

together the whole computation in arity k. Thus, he shows:

Theorem 4.3 [Ly82]:

NTIME[n k] C_ (2~do existential with -5, arity k)

Corollary 4.4:

(a): ~,TIME[n k] C_ (2"dO with -~-, r alterntions, arity k)

(b): E.TIME[n k] = (2'~do with -~-, arity k)

Noi, e that in the above results the relation " + " need only

be added when k is 1, otherwise it is definable.

As in the previous section we can add closure operators

to second order logic in order to express properties which

seem computationally more difficult than the polynomial time

hierarchy. If ~ (R , S) is a sentence expressing a binary su-

per relation on k-tup]es of relations R and S, then TC(~),

STC(~), DTC(~) express the transitive closure, symmetric

transitive closure, deterministic transitive closure, respec-

tively, of ~. It is not hard to show:

Theorem 4.5: PSPACE ~- (2ndO -[- TC) : (2"do "~

STC) = (2ndo -~- DTC)

proof sketch: A k-ary relation R over an n element

universe consists of n k bits. It is an easy exercise to code

an O[n k] space instantaneous description with a set of k-

ary relations, S1 . . .Xc, and to write the first order sentence

~(X1...Xc,Y1...Yc) meaning tha t ID X follows from X in

one move of some turing machine M. One aplication of the ap-

propriate transitive closure operator expresses an entire com-

putation. |

In fact we have proved the following:

Theorem 4.6: For k= l ,2 , . . .

(a): DSPACE[n k] = (2"do arity k, -~- DTC)

(b): S y m - SPACE[n k] = (2"do arity k, + pos STC)

(c): NSPACE[n k] = (2'*do arity k, -~- pos TC)

Finally we can add a least fixed point operator on

monotone second order operators. That is we add the ability

to define super relations on relations by induction.

Theorem 4.7: For k = 1,2,. .

DTIME[2 °{'~]] = (2"do arity k -I- LFP)

5 . L o w e r B o u n d s

A recent lower bound by Furst, Saxe and Sipser has inter-

esting consequences for us. The t=*ARITY problem is to deter-

mine whether the n inputs to a boolean circuit include an even

number which are on.

Theorem 5.1 [FSS81]: PARITY cannot be computed by a

sequence of polynomial size, bounded depth circuits.

Theorem 5.1 interests us greatly because of the following

relation between bounded depth polynomial size circuits and

first order sentences:

Theorem 5.2: Given a problems, S, the following are equiv-

alent:

(a): S is recognized by a sequence of bounded depth, poly-

nomial size circuits.

(b): There is a fixed constant, k, and a sequence of first

order sentences, ~1, ~2 . - . such that p , , expresses S for struc-

tures of size n; and, ~n has exactly k quantifiers. The sentence

~,, belongs to a first order language which includes the new

logical relations I1...I,~ where Ij is a monadic relation true

exactly of point j ol ~ the universe.

proof:

(b) implies (a) because k quantifiers are easy to simulate

with a k level circuit of fan in n, giving total size n ~. The

quantifier free par t can be expressed as an O[n k] disjunction

of bounded conjunctions because everything is bounded except

the n k possible ways tha t the k chosen variables may satisfy

I1. . .I,,.

352

(a) implies (b): For simplicity think of an input structure

with a single monadic relation, M, i.e. a sequence of n boolean

inputs. We Can say that the jth input is on:

(~z)X,,Cz) ^ M(x)

Suppose that some and-gate, A, has inputs G1...G,,.

Assume inductively that each G~ is expressible by a first order

sentence ~ with k - - 1 quantifiers:

Then A can be expressed by the sentence:

- (vxl)(x~(~) ^ ~) v . . - v (~(~) ^ ~.)

which may be then simplified to:

(x~(~) ^ ~(x2 . . .xk)) v . . . v (x.(~1) ^ ~.(~2...x~,))

In this way an inductive proof shows that any polynomial

size circuit of bounded depth, k, whose gate fan in is limited

to n c can be expressed in the above first order language using

k • c quantifiers. I I

The new relation symbols,/1...I,~ were added to capture

the power of the circuits which may examine any of their

inputs. These relation symbols allow the ~on's to express any

relation on the universe not involving M. For example, ~o17

can express the property "x -}- y ---- z" by saying:

(x1(~) ^ x1(y) ^ ~(z)) v . - - v (Xs(~) ^ ~s(y) ^ ~,,(z))

A first order theory is any set of first order axioms.

Equivalently we may think of it as a set of structures with

certain given relations satisfying prescribed rules. Thus:

Corollary 5.3: Parity of a new relation M is not expressible

in any first order theory.

We may also think of our elements { 1. . .n } as the power

set of the smaller universe { 1...log(n) }. Using the language

of Corollary 5.2 we can easily express, the relation "a E b"

meaning that the a th bit of the binary representation of b is

one. Now M_M_ may be thought of as a monadic relation symbol

on subsets.

Corollary 5.4: There is no second order monadic s~ntence

~o(M) using the new symbol ~ referring to an arbitrary

monadie relation on subsets, such that ~(M) says, "M is true

of an even number of subsets."

Of course PARITY can be expressed using transitive

closure or any other operator allowing a linear traversal of the

input. Thus the above corollaries also show that TC is not first

order definable, nor is TC of an expression involving a new

relation symbol second order monadic definable. Furthermore

we can think of Corollary 5.4 in terms of oracles. Since no

expresses parity for all M's we can build a single relation M

that foils all ~'s. (Each ~o will he wrong at some finite point,

so with a finite initial segment of M we can kill the first r ~o's.)

Recalling Corollary 4.4 we conclude:

Corollary 5.5: There is an oracle M such that

PARITY(M) E (DSPACEM(n)- ~,TIMEM(n))

Of Course Corollary 5.5 would be more interesting if we

could either remove the oracle from it or change the n to "any

polytmmial in n."

Conclusions

We have shown that the important complexity classes, C,

have corresponding languages, L, such that C consists of ex-

actly those properties expressible in L. Thus questions of com-

plexity can all be translatedto expressibility issues. Separating

complexity classes is equivalent to showing that certain of the

above operators are more powerful than others. Efficient algo-

rithms may be obtained simply by describing a problem in one

of our languages. We have also demonstrated a basic connec-

tion between boolean circuits and first order logic.

Open questions and work to be done include the following:

• More precise bounds on the arity of formulas needed to

express properties of a given complexity are needed.

• We have introduced first order translations as a new kind of

reduction. Many open questions arise. The relative power

of these as compared with other reductions should be deter-

mined. It seems possible to prove that first order translations

between certain problems cannot exist. Be careful however:

showing that there is no first order translation from SAT to

353

1GAP would prove that NP ~ L These very neat reduc-

tions also suggest that it may now be plausible to ask such

questions as, "What makes a particular second order exis-

tential sentence NP complete?"

• There are some open questions concerning separating classes

with oracles. For example, proving that PARITY(M) ~'

(2"do -5 M) would imply that there is an oracle separating

the polynomial time hierarchy from PSPACE.

• More knowledge is needed concerning the increase in ex-

pressibility gained by alternating applications of operatores

and negation. Let (FO -5 k • TC) be first order logic in

which k alternations of TC and negation are allowed. Thus

for example, (FO + 1 ,, TC) = (F) -5 pos TC) = NL. We

conjecture the following:

(a): (FO -5 1 • TC) c (FO "-5 2 • TC) c . . .

(b): (FO -5 1 • STC) c (FO -5 2 • STC) c . . .

From a proof of any of the proper containments in (a) or

(b) it would follow that L ~ P. Thus we would be satisfied

with the more modest hierarchy results without < as a logical

symbol:

(c): (FO w.o. < -5 1 • TC) c (FO w.o. < -5 2 • TC) ~ . . .

(d): (FO w.o.< -51•STC)C(FO w.o.< -52•STC)C. . .

• Of course everyone would like to see a proof that some

second order property is not expressible in first order plus

least fixed point. This would imply that P ~ NP.

• Finally, we hope that attractive versions of the above lan-

guages will be developed for actual use as programming

and/or database query languages.

Acknowledgements
My ideas for this paper have been clarified during many

helpful discussions with friends and colleagues over the past

year and a half. I am grateful to Adi Shamir, John Reif, Yuri

Gurevich, and Mike Sipser.

Bibliographical Note
G~cs and Lov~sz have studied "elementary reductions", a

notion similar to first order translations. They showed, [LG77],

that SAT is NP complete via elementary reductions.

Vardi, [Va82], has obtained some nice results on the com-

plexity of languages with added operators including least fixed

point and transitive closure.

References

[AHU74] A.V. Aho, J.E. ttopcroft, J.D. Ullman, The Design
and Analysis of Computer Algorithms, Addison-
Wesley, 1974.

[AU79] A.V. Aho, J.D. Ullman, "Universality of Data
Retrieval Languages," 6th Syrup. on Principles of
Programming Languages, 1979, pp. 110-117.

[AKLL79]Aleliunas, Karp, Lipton, Lovasz, Rackoff, "Random
Walks, Universal Traversal Sequences, and the
Complexity of Maze Problems," 20th IEEE FOC8
Symposium, Oct. 1979, pp. 218-223.

[CH80] A.K. Chandra, D. Harel, "Structure and Complexity
of Relational Queries," 21st IEEE FOCS Symposium,
Oct. 1980, pp. 337-347.

[CKS81] A.K. Chandra, D.C. Kozen, L.J. Stockmeyer,
"Alternation," JACM Vol. 28, No. I, Jan. 1981,
pp. 114-133.

[En72] H. Enderton, A Mathematical Introduction to Logic,
Academic Press, 1972.

[Fa74] R. Fagin, "Generalized First-Order Spectra and
Polynomial-Time Recognizable Sets," in Complexity
of Computation, (ed. R. Karp), SIAM -AMS Proe.
7, 1974, pp. 27-41.

[FSS81] M. Furst, J.B. Saxe, M. Sipser, "Parity, Circuits,
and the Polynomial-Time Hierarchy," 22nd IEEE
FOCS Symposium, Oct. 1981, pp. 260-270.

[Gr83] E. Grandjean, "The Spectra of First-Order
Sentences and Computational Complexity," to ap-
pear.

[HIM78] J. Hartmanis, N. Immerman, S. Mahaney, "One-
Way Log Tape Reductions," 19th IEEE FOCS
Symposium, 1978, pp. 65-72.

[Im81] N. Immerman, "Number of Quantifiers is Better
than Number of Tape Cells," JCSS Vol. 22, No.
3, June 1981, pp. 384-406.

[Im82a] N. Immerman, "Relational Queries Computable in
Polynomial Time," 14th ACM SIGACT Symposium,
May, 1982, pp. 147-152.

[Im82h] N. Immerman, '~Upper and Lower Bounds for First
Order Expressibility," JCSS, Vol. 25, No. 1,
August, 1982.

[LP80] H.R. Lewis, C.H. Papadimitriou, "Symmetric Space
Bounded Computation," ICALP80.

[LG77] L. Lov~sz, P. G~cs, "Some Remarks on Generalized
Spectra," Zeitsehr. f. math. Logik und Grundlagen
d. Math, Bd. 23, pp. 547-554, 1977.

[Ly82] J. Lynch, "Complexity Classes and Theories of
Finite Models," Math. Sys. Theory 15, 1982, pp.
127-144.

[Re82] J. Reif, "Symmetric Complementation," 14th ACM
S1GACT Symposium, May, 1982, pp. 201-223.

[Sa73] W. Savitch, "Maze Recognizing Automata and
Nondeterministic Tape Complexity," JCSS VoL 7,
1973, pp. 389-403.

[Si83] M. Sipser, "Borel Sets and Circuit Complexity," this
volume.

[St77] L. Stockmeyer, ' ,, The Polynomial-Time Hmrarchy,
TCS Vol. 3, 1977. pp. 1o22.

[Tu82] G. Turin, "On the Definability of Properties of
Finite Graphs," to appear.

[Va82] M. Vardi, "Complexity of Relational Query
Languages," 14th ACM SIGACT Sympsium, May
1982, pp.137-148.

354

