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» [C71] SAT is NP complete via ptime Turing reductions.
» [K72] Many important problems are NP complete, via <.
» [J73] ...stay complete via logspace reductions, <ug.

» [HIM78] ... stay complete via one-way logspace,
reductions, <q.jg.

» [180] ...stay complete first-order reductions.

» [V82]...stay complete via projections. (Non-uniform
reductions where each bit of the output depends on at
most one bit of the input).

» [I87] ...stay complete via first-order projections, <.
» [L75] Artificial, non-complete problems can be constructed.

» Dichotomy: “Natural” problems are complete for important
compexity classes [FV99, S78, ABISV09].
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Schroder-Bernstein Thm. Let A and B be any two sets and
suppose thatf: A ! Bandg: B ! A. Then there exists
h-A & B (A< Bl A [Bl < |Al — |Al=B)

Proof: For a,c € AU B, say that ais an ancestor of c if we
can go from ato ¢ by applying a finite, non-zero, number of
applications of f and g.

h(a) def { g! (a) if ahas an odd number of ancestors

f(a) if @ has an even or infinite number of ancestors

Thus, h:A U 0

onto
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[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

Lemma: Letf: A<, Band g : B <, Awhere f and g are 1:1
length-increasing functions. Assume also that f and g have left
inverses in FP. Then A is p-isomorphic to B.

Proof: Since f, g are length-increasing, the ancestor chains
are linear in length. Thus, the isomorphism, h, can be defined
as in the SB Thm, but now it can be computed in ptime. O
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length-increasing reductions.

Lemma: All the NP complete sets in [GJ] have p-time padding
functions.

Thus, all the NP complete sets in [GJ] are p-isomorphic. O
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fop Isomorphism Thm. All NP complete sets via <, are

first-order isomorphic. Also true for NC', sAC', L, NL, P,
PSPACE, etc.

Key Lemma: Let f be a first-order projection (fop) that is 1:1
and of arity at least 2, i.e., it at least squares the size. Then the
following two predicates are first-order expressible concerning
a structure, A:

1. IE(A), meaning that f~1(A) exists.
2. #Ancestors(.A, r), meaning A has exactly r ancestors.
The rest of the proof is similar to proof from [BH77]. O
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» Morally, the BH Isomorphism Conjecture is true.

» Each nice complexity class has exactly one complete
problem.

» Dichotomy Phenomenon: “Natural” computational
problems tend to be complete via fops for one of our
favorite complexity classes.

» Great for Algorithms and Complexity Theory!
» But not true in general [L75].

» Why does this seem to occur?

» Logical and Algebraic reasons, e.g., CSP.
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fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

Prop. [ABI93] SAT is NP complete via fops. There is aset S
which is NP complete via uniform NCP reductions and FO
isomorphic to SAT, but not NP complete via projections.

Some were unhappy with the fop Iso Thm because of a
mismatch: fop more restrictive than fo.

This problem is solved in [AAR96].
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From now on, assume every complexity classes we consider, C,
is closed under uniform NC' reductions.

Isomorphism Thm. All sets complete for C under non-uniform
ACP reductions are isomorphic under non-uniform AC°
isomorphisms.

Gap Thm. All sets complete for C under non-uniform AC°
reductions are in fact complete under non-uniform NC°
reductions.

Gap Thm does not extend to uniform case. There are sets
complete for C under FO reductions but not under fops or other
uniform NC° reductions. (Recall FO = uniform AC°.)
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[AAR96] Isomorphism Thm proof ideas

Def. An NC° reduction is a super-projection if a subset, S, of
its output bits is a projection s.t. each bit of its input is mapped
to a bit of S.

Lemma: Suppose A is hard for C under P-uniform NC°
reductions. Then A is hard under P-uniform, 1:1 length
squaring super-projections.

Proof: [clever, long and complicated combinatorial surgery on
some NC? circuits. This is where the P-uniformity comes in.

Thm. All sets complete for C under P-uniform NC° reductions
are P-uniform AC? isomorphic.

Follows from Lemma in a similar way to [ABI93].
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Random Reduction Lemma For any AC° reduction computed
by a family of circuits {Cp,}, there exists an a € N such that, for
all large m of the form r?2, there is a restriction 7, which
converts Cp, into an NCP circuit, and assigns * to at least three
variables in each block of length r?a-1,

Gap Thm. All sets complete for C under non-uniform AC°
reductions are in fact complete under non-uniform NC°
reductions.

Proof: Let A be hard for C under AC? reductions. Let B € C.
Thus, Bis AC? reducible to A.

Goal: show B is NC? reducible to A.
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Let B'(1k02) & if (k J|z|): return(0)

Z = UqUs> ... Up, blocks of k bits each

0 if #4(u;) = 0(mod3)
vi €31 if 44 () = 1 (mod 3)
€ otherwise
return(1) iff vy ...vp € B
B’ is NC' reducible to B, so B’ € C.
Let {C,} be AC? circuits reducing B’ to A.
Let {C,} be AC? circuits reducing B’ to A.

Apply the restriction which converts Cy, into an NC? circuit, and
assigns * to at least three variables in each of the n blocks, vu;.

Further restrict so that there is exactly one * in each block and
setting of x; is the value of v;.

We have constructed an NC? reduction from B to A. O
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Consequences of Isomorphism and Gap Theorems

For nice complexity classes, all AC° complete sets are AC?
isomorphic.
» Morally, the BH Isomorphism Conjecture is true.

» Each nice complexity class has exactly one complete
problem.

» Dichotomy Phenomenon: “Natural” computational
problems tend to be complete via fops for one of our
favorite complexity classes.

» Great for Algorithms and Complexity Theory!

» But not true in general [L75].

» Why does this seem to occur?

» Logical and Algebraic reasons, e.g., CSP.

» Can we remove the non-uniformity?

» Yes! [Ag01] “The First-Order Isomorphism Theorem”
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Thank you, Michal and Martin!
Thank you and Congratulations, Eric and Mike!
Enjoy the brunch tomorrow!

Don’t shy away too much from hard problems, ...

..., especially after you have tenure.



