
Algebra, Logic and Complexity
in Celebration of Eric Allender and Mike Saks

Neil Immerman

College of Computer and Information Sciences
University of Massachusetts, Amherst

Amherst, MA, USA

people.cs.umass.edu/˜immerman

people.cs.umass.edu/~immerman

31 years ago, STOC and Structures in Berkeley.

Reductions

I [C71] SAT is NP complete via ptime Turing reductions.

I [K72] Many important problems are NP complete, via ≤p.
I [J73] . . . stay complete via logspace reductions, ≤log.
I [HIM78] . . . stay complete via one-way logspace,

reductions, ≤1-log.
I [I80] . . . stay complete first-order reductions.
I [V82] . . . stay complete via projections. (Non-uniform

reductions where each bit of the output depends on at
most one bit of the input).

I [I87] . . . stay complete via first-order projections, ≤fop.
I [L75] Artificial, non-complete problems can be constructed.
I Dichotomy: “Natural” problems are complete for important

compexity classes [FV99, S78, ABISV09].

Reductions

I [C71] SAT is NP complete via ptime Turing reductions.
I [K72] Many important problems are NP complete, via ≤p.

I [J73] . . . stay complete via logspace reductions, ≤log.
I [HIM78] . . . stay complete via one-way logspace,

reductions, ≤1-log.
I [I80] . . . stay complete first-order reductions.
I [V82] . . . stay complete via projections. (Non-uniform

reductions where each bit of the output depends on at
most one bit of the input).

I [I87] . . . stay complete via first-order projections, ≤fop.
I [L75] Artificial, non-complete problems can be constructed.
I Dichotomy: “Natural” problems are complete for important

compexity classes [FV99, S78, ABISV09].

Reductions

I [C71] SAT is NP complete via ptime Turing reductions.
I [K72] Many important problems are NP complete, via ≤p.
I [J73] . . . stay complete via logspace reductions, ≤log.

I [HIM78] . . . stay complete via one-way logspace,
reductions, ≤1-log.

I [I80] . . . stay complete first-order reductions.
I [V82] . . . stay complete via projections. (Non-uniform

reductions where each bit of the output depends on at
most one bit of the input).

I [I87] . . . stay complete via first-order projections, ≤fop.
I [L75] Artificial, non-complete problems can be constructed.
I Dichotomy: “Natural” problems are complete for important

compexity classes [FV99, S78, ABISV09].

Reductions

I [C71] SAT is NP complete via ptime Turing reductions.
I [K72] Many important problems are NP complete, via ≤p.
I [J73] . . . stay complete via logspace reductions, ≤log.
I [HIM78] . . . stay complete via one-way logspace,

reductions, ≤1-log.

I [I80] . . . stay complete first-order reductions.
I [V82] . . . stay complete via projections. (Non-uniform

reductions where each bit of the output depends on at
most one bit of the input).

I [I87] . . . stay complete via first-order projections, ≤fop.
I [L75] Artificial, non-complete problems can be constructed.
I Dichotomy: “Natural” problems are complete for important

compexity classes [FV99, S78, ABISV09].

Reductions

I [C71] SAT is NP complete via ptime Turing reductions.
I [K72] Many important problems are NP complete, via ≤p.
I [J73] . . . stay complete via logspace reductions, ≤log.
I [HIM78] . . . stay complete via one-way logspace,

reductions, ≤1-log.
I [I80] . . . stay complete first-order reductions.

I [V82] . . . stay complete via projections. (Non-uniform
reductions where each bit of the output depends on at
most one bit of the input).

I [I87] . . . stay complete via first-order projections, ≤fop.
I [L75] Artificial, non-complete problems can be constructed.
I Dichotomy: “Natural” problems are complete for important

compexity classes [FV99, S78, ABISV09].

Reductions

I [C71] SAT is NP complete via ptime Turing reductions.
I [K72] Many important problems are NP complete, via ≤p.
I [J73] . . . stay complete via logspace reductions, ≤log.
I [HIM78] . . . stay complete via one-way logspace,

reductions, ≤1-log.
I [I80] . . . stay complete first-order reductions.
I [V82] . . . stay complete via projections. (Non-uniform

reductions where each bit of the output depends on at
most one bit of the input).

I [I87] . . . stay complete via first-order projections, ≤fop.
I [L75] Artificial, non-complete problems can be constructed.
I Dichotomy: “Natural” problems are complete for important

compexity classes [FV99, S78, ABISV09].

Reductions

I [C71] SAT is NP complete via ptime Turing reductions.
I [K72] Many important problems are NP complete, via ≤p.
I [J73] . . . stay complete via logspace reductions, ≤log.
I [HIM78] . . . stay complete via one-way logspace,

reductions, ≤1-log.
I [I80] . . . stay complete first-order reductions.
I [V82] . . . stay complete via projections. (Non-uniform

reductions where each bit of the output depends on at
most one bit of the input).

I [I87] . . . stay complete via first-order projections, ≤fop.

I [L75] Artificial, non-complete problems can be constructed.
I Dichotomy: “Natural” problems are complete for important

compexity classes [FV99, S78, ABISV09].

Reductions

I [C71] SAT is NP complete via ptime Turing reductions.
I [K72] Many important problems are NP complete, via ≤p.
I [J73] . . . stay complete via logspace reductions, ≤log.
I [HIM78] . . . stay complete via one-way logspace,

reductions, ≤1-log.
I [I80] . . . stay complete first-order reductions.
I [V82] . . . stay complete via projections. (Non-uniform

reductions where each bit of the output depends on at
most one bit of the input).

I [I87] . . . stay complete via first-order projections, ≤fop.
I [L75] Artificial, non-complete problems can be constructed.

I Dichotomy: “Natural” problems are complete for important
compexity classes [FV99, S78, ABISV09].

Reductions

I [C71] SAT is NP complete via ptime Turing reductions.
I [K72] Many important problems are NP complete, via ≤p.
I [J73] . . . stay complete via logspace reductions, ≤log.
I [HIM78] . . . stay complete via one-way logspace,

reductions, ≤1-log.
I [I80] . . . stay complete first-order reductions.
I [V82] . . . stay complete via projections. (Non-uniform

reductions where each bit of the output depends on at
most one bit of the input).

I [I87] . . . stay complete via first-order projections, ≤fop.
I [L75] Artificial, non-complete problems can be constructed.
I Dichotomy: “Natural” problems are complete for important

compexity classes [FV99, S78, ABISV09].

Isomorphism Conjecture

I [BH77] Isomorphism Conjecture: “All NP complete sets
via ptime many-one reductions, ≤p, are polynomial-time
isomorphic.”

I [ABI93] fop Isomorphism Thm. All NP complete sets via
≤fop are first-order isomorphic. Also true for L, NL, P,
PSPACE, etc.

Isomorphism Conjecture

I [BH77] Isomorphism Conjecture: “All NP complete sets
via ptime many-one reductions, ≤p, are polynomial-time
isomorphic.”

I [ABI93] fop Isomorphism Thm. All NP complete sets via
≤fop are first-order isomorphic. Also true for L, NL, P,
PSPACE, etc.

fop Isomorphism Theorem proof sketch

[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

Schröder-Bernstein Thm. Let A and B be any two sets and
suppose that f : A 1:1→ B and g : B 1:1→ A. Then there exists
h : A 1:1→

onto
B. (|A| ≤ |B| ∧ |B| ≤ |A| → |A| = |B|)

Proof: For a, c ∈ A ∪ B, say that a is an ancestor of c if we
can go from a to c by applying a finite, non-zero, number of
applications of f and g.

h(a)
def
=

{
g−1(a) if a has an odd number of ancestors
f (a) if a has an even or infinite number of ancestors

Thus, h : A 1:1→
onto

B �

fop Isomorphism Theorem proof sketch

[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

Schröder-Bernstein Thm. Let A and B be any two sets and
suppose that f : A 1:1→ B and g : B 1:1→ A. Then there exists
h : A 1:1→

onto
B.

(|A| ≤ |B| ∧ |B| ≤ |A| → |A| = |B|)

Proof: For a, c ∈ A ∪ B, say that a is an ancestor of c if we
can go from a to c by applying a finite, non-zero, number of
applications of f and g.

h(a)
def
=

{
g−1(a) if a has an odd number of ancestors
f (a) if a has an even or infinite number of ancestors

Thus, h : A 1:1→
onto

B �

fop Isomorphism Theorem proof sketch

[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

Schröder-Bernstein Thm. Let A and B be any two sets and
suppose that f : A 1:1→ B and g : B 1:1→ A. Then there exists
h : A 1:1→

onto
B. (|A| ≤ |B| ∧ |B| ≤ |A| → |A| = |B|)

Proof: For a, c ∈ A ∪ B, say that a is an ancestor of c if we
can go from a to c by applying a finite, non-zero, number of
applications of f and g.

h(a)
def
=

{
g−1(a) if a has an odd number of ancestors
f (a) if a has an even or infinite number of ancestors

Thus, h : A 1:1→
onto

B �

fop Isomorphism Theorem proof sketch

[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

Schröder-Bernstein Thm. Let A and B be any two sets and
suppose that f : A 1:1→ B and g : B 1:1→ A. Then there exists
h : A 1:1→

onto
B. (|A| ≤ |B| ∧ |B| ≤ |A| → |A| = |B|)

Proof: For a, c ∈ A ∪ B, say that a is an ancestor of c if we
can go from a to c by applying a finite, non-zero, number of
applications of f and g.

h(a)
def
=

{
g−1(a) if a has an odd number of ancestors
f (a) if a has an even or infinite number of ancestors

Thus, h : A 1:1→
onto

B �

fop Isomorphism Theorem proof sketch

[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

Schröder-Bernstein Thm. Let A and B be any two sets and
suppose that f : A 1:1→ B and g : B 1:1→ A. Then there exists
h : A 1:1→

onto
B. (|A| ≤ |B| ∧ |B| ≤ |A| → |A| = |B|)

Proof: For a, c ∈ A ∪ B, say that a is an ancestor of c if we
can go from a to c by applying a finite, non-zero, number of
applications of f and g.

h(a)
def
=

{
g−1(a) if a has an odd number of ancestors
f (a) if a has an even or infinite number of ancestors

Thus, h : A 1:1→
onto

B �

fop Isomorphism Theorem proof sketch

[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

Schröder-Bernstein Thm. Let A and B be any two sets and
suppose that f : A 1:1→ B and g : B 1:1→ A. Then there exists
h : A 1:1→

onto
B. (|A| ≤ |B| ∧ |B| ≤ |A| → |A| = |B|)

Proof: For a, c ∈ A ∪ B, say that a is an ancestor of c if we
can go from a to c by applying a finite, non-zero, number of
applications of f and g.

h(a)
def
=

{
g−1(a) if a has an odd number of ancestors
f (a) if a has an even or infinite number of ancestors

Thus, h : A 1:1→
onto

B �

[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

Lemma: Let f : A ≤p B and g : B ≤p A where f and g are 1:1
length-increasing functions. Assume also that f and g have left
inverses in FP. Then A is p-isomorphic to B.

Proof: Since f ,g are length-increasing, the ancestor chains
are linear in length. Thus, the isomorphism, h, can be defined
as in the SB Thm, but now it can be computed in ptime. �

[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

Lemma: Let f : A ≤p B and g : B ≤p A where f and g are 1:1
length-increasing functions. Assume also that f and g have left
inverses in FP. Then A is p-isomorphic to B.

Proof: Since f ,g are length-increasing, the ancestor chains
are linear in length. Thus, the isomorphism, h, can be defined
as in the SB Thm, but now it can be computed in ptime. �

[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

Lemma: Let f : A ≤p B and g : B ≤p A where f and g are 1:1
length-increasing functions. Assume also that f and g have left
inverses in FP. Then A is p-isomorphic to B.

Proof: Since f ,g are length-increasing, the ancestor chains
are linear in length. Thus, the isomorphism, h, can be defined
as in the SB Thm, but now it can be computed in ptime. �

Def. A ⊆ Σ∗ has p-time padding functions if ∃e,d ∈ FP s.t.

1. ∀w , x ∈ Σ∗ w ∈ A ↔ e(w , x) ∈ A
2. ∀w , x ∈ Σ∗ d(e(w , x)) = x
3. ∀w , x ∈ Σ∗ |e(w , x)| ≥ |w |+ |x |.

Example: for SAT: e(w , x)
def
= (w) ∧ C1 ∧ · · · ∧ C|x |︸ ︷︷ ︸, where

Ci = (y ∨ y) if xi = 1, else (y ∨ y).

Lemma: If A,B ∈ NPC and have p-time padding functions, then
they are inter-reducible via p-time invertible 1:1
length-increasing reductions.

Lemma: All the NP complete sets in [GJ] have p-time padding
functions.

Thus, all the NP complete sets in [GJ] are p-isomorphic. �

Def. A ⊆ Σ∗ has p-time padding functions if ∃e,d ∈ FP s.t.

1. ∀w , x ∈ Σ∗ w ∈ A ↔ e(w , x) ∈ A
2. ∀w , x ∈ Σ∗ d(e(w , x)) = x
3. ∀w , x ∈ Σ∗ |e(w , x)| ≥ |w |+ |x |.

Example: for SAT: e(w , x)
def
= (w) ∧ C1 ∧ · · · ∧ C|x |︸ ︷︷ ︸, where

Ci = (y ∨ y) if xi = 1, else (y ∨ y).

Lemma: If A,B ∈ NPC and have p-time padding functions, then
they are inter-reducible via p-time invertible 1:1
length-increasing reductions.

Lemma: All the NP complete sets in [GJ] have p-time padding
functions.

Thus, all the NP complete sets in [GJ] are p-isomorphic. �

Def. A ⊆ Σ∗ has p-time padding functions if ∃e,d ∈ FP s.t.

1. ∀w , x ∈ Σ∗ w ∈ A ↔ e(w , x) ∈ A
2. ∀w , x ∈ Σ∗ d(e(w , x)) = x
3. ∀w , x ∈ Σ∗ |e(w , x)| ≥ |w |+ |x |.

Example: for SAT: e(w , x)
def
= (w) ∧ C1 ∧ · · · ∧ C|x |︸ ︷︷ ︸, where

Ci = (y ∨ y) if xi = 1, else (y ∨ y).

Lemma: If A,B ∈ NPC and have p-time padding functions, then
they are inter-reducible via p-time invertible 1:1
length-increasing reductions.

Lemma: All the NP complete sets in [GJ] have p-time padding
functions.

Thus, all the NP complete sets in [GJ] are p-isomorphic. �

Def. A ⊆ Σ∗ has p-time padding functions if ∃e,d ∈ FP s.t.

1. ∀w , x ∈ Σ∗ w ∈ A ↔ e(w , x) ∈ A
2. ∀w , x ∈ Σ∗ d(e(w , x)) = x
3. ∀w , x ∈ Σ∗ |e(w , x)| ≥ |w |+ |x |.

Example: for SAT: e(w , x)
def
= (w) ∧ C1 ∧ · · · ∧ C|x |︸ ︷︷ ︸, where

Ci = (y ∨ y) if xi = 1, else (y ∨ y).

Lemma: If A,B ∈ NPC and have p-time padding functions, then
they are inter-reducible via p-time invertible 1:1
length-increasing reductions.

Lemma: All the NP complete sets in [GJ] have p-time padding
functions.

Thus, all the NP complete sets in [GJ] are p-isomorphic. �

Def. A ⊆ Σ∗ has p-time padding functions if ∃e,d ∈ FP s.t.

1. ∀w , x ∈ Σ∗ w ∈ A ↔ e(w , x) ∈ A
2. ∀w , x ∈ Σ∗ d(e(w , x)) = x
3. ∀w , x ∈ Σ∗ |e(w , x)| ≥ |w |+ |x |.

Example: for SAT: e(w , x)
def
= (w) ∧ C1 ∧ · · · ∧ C|x |︸ ︷︷ ︸, where

Ci = (y ∨ y) if xi = 1, else (y ∨ y).

Lemma: If A,B ∈ NPC and have p-time padding functions, then
they are inter-reducible via p-time invertible 1:1
length-increasing reductions.

Lemma: All the NP complete sets in [GJ] have p-time padding
functions.

Thus, all the NP complete sets in [GJ] are p-isomorphic. �

fop Isomorphism Theorem proof sketch

fop Isomorphism Thm. All NP complete sets via ≤fop are
first-order isomorphic. Also true for NC1, sAC1, L, NL, P,
PSPACE, etc.

Key Lemma: Let f be a first-order projection (fop) that is 1:1
and of arity at least 2, i.e., it at least squares the size. Then the
following two predicates are first-order expressible concerning
a structure, A:

1. IE(A), meaning that f−1(A) exists.
2. #Ancestors(A, r), meaning A has exactly r ancestors.

The rest of the proof is similar to proof from [BH77]. �

fop Isomorphism Theorem proof sketch

fop Isomorphism Thm. All NP complete sets via ≤fop are
first-order isomorphic. Also true for NC1, sAC1, L, NL, P,
PSPACE, etc.

Key Lemma: Let f be a first-order projection (fop) that is 1:1
and of arity at least 2, i.e., it at least squares the size. Then the
following two predicates are first-order expressible concerning
a structure, A:

1. IE(A), meaning that f−1(A) exists.
2. #Ancestors(A, r), meaning A has exactly r ancestors.

The rest of the proof is similar to proof from [BH77]. �

fop Isomorphism Theorem proof sketch

fop Isomorphism Thm. All NP complete sets via ≤fop are
first-order isomorphic. Also true for NC1, sAC1, L, NL, P,
PSPACE, etc.

Key Lemma: Let f be a first-order projection (fop) that is 1:1
and of arity at least 2, i.e., it at least squares the size. Then the
following two predicates are first-order expressible concerning
a structure, A:

1. IE(A), meaning that f−1(A) exists.
2. #Ancestors(A, r), meaning A has exactly r ancestors.

The rest of the proof is similar to proof from [BH77]. �

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

I Morally, the BH Isomorphism Conjecture is true.
I Each nice complexity class has exactly one complete

problem.
I Dichotomy Phenomenon: “Natural” computational

problems tend to be complete via fops for one of our
favorite complexity classes.

I Great for Algorithms and Complexity Theory!
I But not true in general [L75].
I Why does this seem to occur?
I Logical and Algebraic reasons, e.g., CSP.

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

I Morally, the BH Isomorphism Conjecture is true.

I Each nice complexity class has exactly one complete
problem.

I Dichotomy Phenomenon: “Natural” computational
problems tend to be complete via fops for one of our
favorite complexity classes.

I Great for Algorithms and Complexity Theory!
I But not true in general [L75].
I Why does this seem to occur?
I Logical and Algebraic reasons, e.g., CSP.

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

I Morally, the BH Isomorphism Conjecture is true.
I Each nice complexity class has exactly one complete

problem.

I Dichotomy Phenomenon: “Natural” computational
problems tend to be complete via fops for one of our
favorite complexity classes.

I Great for Algorithms and Complexity Theory!
I But not true in general [L75].
I Why does this seem to occur?
I Logical and Algebraic reasons, e.g., CSP.

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

I Morally, the BH Isomorphism Conjecture is true.
I Each nice complexity class has exactly one complete

problem.
I Dichotomy Phenomenon: “Natural” computational

problems tend to be complete via fops for one of our
favorite complexity classes.

I Great for Algorithms and Complexity Theory!
I But not true in general [L75].
I Why does this seem to occur?
I Logical and Algebraic reasons, e.g., CSP.

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

I Morally, the BH Isomorphism Conjecture is true.
I Each nice complexity class has exactly one complete

problem.
I Dichotomy Phenomenon: “Natural” computational

problems tend to be complete via fops for one of our
favorite complexity classes.

I Great for Algorithms and Complexity Theory!

I But not true in general [L75].
I Why does this seem to occur?
I Logical and Algebraic reasons, e.g., CSP.

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

I Morally, the BH Isomorphism Conjecture is true.
I Each nice complexity class has exactly one complete

problem.
I Dichotomy Phenomenon: “Natural” computational

problems tend to be complete via fops for one of our
favorite complexity classes.

I Great for Algorithms and Complexity Theory!
I But not true in general [L75].

I Why does this seem to occur?
I Logical and Algebraic reasons, e.g., CSP.

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

I Morally, the BH Isomorphism Conjecture is true.
I Each nice complexity class has exactly one complete

problem.
I Dichotomy Phenomenon: “Natural” computational

problems tend to be complete via fops for one of our
favorite complexity classes.

I Great for Algorithms and Complexity Theory!
I But not true in general [L75].
I Why does this seem to occur?

I Logical and Algebraic reasons, e.g., CSP.

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

I Morally, the BH Isomorphism Conjecture is true.
I Each nice complexity class has exactly one complete

problem.
I Dichotomy Phenomenon: “Natural” computational

problems tend to be complete via fops for one of our
favorite complexity classes.

I Great for Algorithms and Complexity Theory!
I But not true in general [L75].
I Why does this seem to occur?
I Logical and Algebraic reasons, e.g., CSP.

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

Prop. [ABI93] SAT is NP complete via fops. There is a set S
which is NP complete via uniform NC0 reductions and FO
isomorphic to SAT, but not NP complete via projections.

Some were unhappy with the fop Iso Thm because of a
mismatch: fop more restrictive than fo.

This problem is solved in [AAR96].

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

Prop. [ABI93] SAT is NP complete via fops. There is a set S
which is NP complete via uniform NC0 reductions and FO
isomorphic to SAT, but not NP complete via projections.

Some were unhappy with the fop Iso Thm because of a
mismatch: fop more restrictive than fo.

This problem is solved in [AAR96].

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

Prop. [ABI93] SAT is NP complete via fops. There is a set S
which is NP complete via uniform NC0 reductions and FO
isomorphic to SAT, but not NP complete via projections.

Some were unhappy with the fop Iso Thm because of a
mismatch: fop more restrictive than fo.

This problem is solved in [AAR96].

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

Prop. [ABI93] SAT is NP complete via fops. There is a set S
which is NP complete via uniform NC0 reductions and FO
isomorphic to SAT, but not NP complete via projections.

Some were unhappy with the fop Iso Thm because of a
mismatch: fop more restrictive than fo.

This problem is solved in [AAR96].

[AAR96]

From now on, assume every complexity classes we consider, C,
is closed under uniform NC1 reductions.

Isomorphism Thm. All sets complete for C under non-uniform
AC0 reductions are isomorphic under non-uniform AC0

isomorphisms.

Gap Thm. All sets complete for C under non-uniform AC0

reductions are in fact complete under non-uniform NC0

reductions.

Gap Thm does not extend to uniform case. There are sets
complete for C under FO reductions but not under fops or other
uniform NC0 reductions. (Recall FO = uniform AC0.)

[AAR96]

From now on, assume every complexity classes we consider, C,
is closed under uniform NC1 reductions.

Isomorphism Thm. All sets complete for C under non-uniform
AC0 reductions are isomorphic under non-uniform AC0

isomorphisms.

Gap Thm. All sets complete for C under non-uniform AC0

reductions are in fact complete under non-uniform NC0

reductions.

Gap Thm does not extend to uniform case. There are sets
complete for C under FO reductions but not under fops or other
uniform NC0 reductions. (Recall FO = uniform AC0.)

[AAR96]

From now on, assume every complexity classes we consider, C,
is closed under uniform NC1 reductions.

Isomorphism Thm. All sets complete for C under non-uniform
AC0 reductions are isomorphic under non-uniform AC0

isomorphisms.

Gap Thm. All sets complete for C under non-uniform AC0

reductions are in fact complete under non-uniform NC0

reductions.

Gap Thm does not extend to uniform case. There are sets
complete for C under FO reductions but not under fops or other
uniform NC0 reductions. (Recall FO = uniform AC0.)

[AAR96]

From now on, assume every complexity classes we consider, C,
is closed under uniform NC1 reductions.

Isomorphism Thm. All sets complete for C under non-uniform
AC0 reductions are isomorphic under non-uniform AC0

isomorphisms.

Gap Thm. All sets complete for C under non-uniform AC0

reductions are in fact complete under non-uniform NC0

reductions.

Gap Thm does not extend to uniform case. There are sets
complete for C under FO reductions but not under fops or other
uniform NC0 reductions. (Recall FO = uniform AC0.)

[AAR96] Isomorphism Thm proof ideas

Def. An NC0 reduction is a super-projection if a subset, S, of
its output bits is a projection s.t. each bit of its input is mapped
to a bit of S.

Lemma: Suppose A is hard for C under P-uniform NC0

reductions. Then A is hard under P-uniform, 1:1 length
squaring super-projections.

Proof: [clever, long and complicated combinatorial surgery on
some NC0 circuits. This is where the P-uniformity comes in.

Thm. All sets complete for C under P-uniform NC0 reductions
are P-uniform AC0 isomorphic.

Follows from Lemma in a similar way to [ABI93].

[AAR96] Isomorphism Thm proof ideas

Def. An NC0 reduction is a super-projection if a subset, S, of
its output bits is a projection s.t. each bit of its input is mapped
to a bit of S.

Lemma: Suppose A is hard for C under P-uniform NC0

reductions. Then A is hard under P-uniform, 1:1 length
squaring super-projections.

Proof: [clever, long and complicated combinatorial surgery on
some NC0 circuits. This is where the P-uniformity comes in.

Thm. All sets complete for C under P-uniform NC0 reductions
are P-uniform AC0 isomorphic.

Follows from Lemma in a similar way to [ABI93].

[AAR96] Isomorphism Thm proof ideas

Def. An NC0 reduction is a super-projection if a subset, S, of
its output bits is a projection s.t. each bit of its input is mapped
to a bit of S.

Lemma: Suppose A is hard for C under P-uniform NC0

reductions. Then A is hard under P-uniform, 1:1 length
squaring super-projections.

Proof: [clever, long and complicated combinatorial surgery on
some NC0 circuits. This is where the P-uniformity comes in.

Thm. All sets complete for C under P-uniform NC0 reductions
are P-uniform AC0 isomorphic.

Follows from Lemma in a similar way to [ABI93].

[AAR96] Isomorphism Thm proof ideas

Def. An NC0 reduction is a super-projection if a subset, S, of
its output bits is a projection s.t. each bit of its input is mapped
to a bit of S.

Lemma: Suppose A is hard for C under P-uniform NC0

reductions. Then A is hard under P-uniform, 1:1 length
squaring super-projections.

Proof: [clever, long and complicated combinatorial surgery on
some NC0 circuits. This is where the P-uniformity comes in.

Thm. All sets complete for C under P-uniform NC0 reductions
are P-uniform AC0 isomorphic.

Follows from Lemma in a similar way to [ABI93].

[AAR96] Isomorphism Thm proof ideas

Def. An NC0 reduction is a super-projection if a subset, S, of
its output bits is a projection s.t. each bit of its input is mapped
to a bit of S.

Lemma: Suppose A is hard for C under P-uniform NC0

reductions. Then A is hard under P-uniform, 1:1 length
squaring super-projections.

Proof: [clever, long and complicated combinatorial surgery on
some NC0 circuits. This is where the P-uniformity comes in.

Thm. All sets complete for C under P-uniform NC0 reductions
are P-uniform AC0 isomorphic.

Follows from Lemma in a similar way to [ABI93].

[AAR96] Gap Thm proof ideas

Random Reduction Lemma For any AC0 reduction computed
by a family of circuits {Cm}, there exists an a ∈ N such that, for
all large m of the form r2a, there is a restriction τm which
converts Cm into an NC0 circuit, and assigns * to at least three
variables in each block of length r2a−1.

Gap Thm. All sets complete for C under non-uniform AC0

reductions are in fact complete under non-uniform NC0

reductions.

Proof: Let A be hard for C under AC0 reductions. Let B ∈ C.
Thus, B is AC0 reducible to A.

Goal: show B is NC0 reducible to A.

[AAR96] Gap Thm proof ideas

Random Reduction Lemma For any AC0 reduction computed
by a family of circuits {Cm}, there exists an a ∈ N such that, for
all large m of the form r2a, there is a restriction τm which
converts Cm into an NC0 circuit, and assigns * to at least three
variables in each block of length r2a−1.

Gap Thm. All sets complete for C under non-uniform AC0

reductions are in fact complete under non-uniform NC0

reductions.

Proof: Let A be hard for C under AC0 reductions. Let B ∈ C.
Thus, B is AC0 reducible to A.

Goal: show B is NC0 reducible to A.

[AAR96] Gap Thm proof ideas

Random Reduction Lemma For any AC0 reduction computed
by a family of circuits {Cm}, there exists an a ∈ N such that, for
all large m of the form r2a, there is a restriction τm which
converts Cm into an NC0 circuit, and assigns * to at least three
variables in each block of length r2a−1.

Gap Thm. All sets complete for C under non-uniform AC0

reductions are in fact complete under non-uniform NC0

reductions.

Proof: Let A be hard for C under AC0 reductions. Let B ∈ C.
Thus, B is AC0 reducible to A.

Goal: show B is NC0 reducible to A.

Given: A is hard for C under AC0 reductions; B ∈ C,

Show: B is NC0 reducible to A.

Let B′(1k0z)
def
= if (k 6 | |z|): return(0)

z = u1u2 . . . up, blocks of k bits each

vi
def
=

0 if #1(ui) ≡ 0 (mod 3)

1 if #1(ui) ≡ 1 (mod 3)

ε otherwise

return(1) iff v1 . . . vp ∈ B

B′ is NC1 reducible to B, so B′ ∈ C.

Let {Cn} be AC0 circuits reducing B′ to A.

Given: A is hard for C under AC0 reductions; B ∈ C,

Show: B is NC0 reducible to A.

Let B′(1k0z)
def
= if (k 6 | |z|): return(0)

z = u1u2 . . . up, blocks of k bits each

vi
def
=

0 if #1(ui) ≡ 0 (mod 3)

1 if #1(ui) ≡ 1 (mod 3)

ε otherwise

return(1) iff v1 . . . vp ∈ B

B′ is NC1 reducible to B, so B′ ∈ C.

Let {Cn} be AC0 circuits reducing B′ to A.

Given: A is hard for C under AC0 reductions; B ∈ C,

Show: B is NC0 reducible to A.

Let B′(1k0z)
def
= if (k 6 | |z|): return(0)

z = u1u2 . . . up, blocks of k bits each

vi
def
=

0 if #1(ui) ≡ 0 (mod 3)

1 if #1(ui) ≡ 1 (mod 3)

ε otherwise

return(1) iff v1 . . . vp ∈ B

B′ is NC1 reducible to B, so B′ ∈ C.

Let {Cn} be AC0 circuits reducing B′ to A.

Let B′(1k0z)
def
= if (k 6 | |z|): return(0)

z = u1u2 . . . up, blocks of k bits each

vi
def
=

0 if #1(ui) ≡ 0 (mod 3)

1 if #1(ui) ≡ 1 (mod 3)

ε otherwise

return(1) iff v1 . . . vp ∈ B

B′ is NC1 reducible to B, so B′ ∈ C.

Let {Cn} be AC0 circuits reducing B′ to A.

Let {Cn} be AC0 circuits reducing B′ to A.

Apply the restriction which converts Cm into an NC0 circuit, and
assigns * to at least three variables in each of the n blocks, ui .

Further restrict so that there is exactly one * in each block and
setting of ∗i is the value of vi .

We have constructed an NC0 reduction from B to A. �

Let B′(1k0z)
def
= if (k 6 | |z|): return(0)

z = u1u2 . . . up, blocks of k bits each

vi
def
=

0 if #1(ui) ≡ 0 (mod 3)

1 if #1(ui) ≡ 1 (mod 3)

ε otherwise

return(1) iff v1 . . . vp ∈ B

B′ is NC1 reducible to B, so B′ ∈ C.

Let {Cn} be AC0 circuits reducing B′ to A.

Let {Cn} be AC0 circuits reducing B′ to A.

Apply the restriction which converts Cm into an NC0 circuit, and
assigns * to at least three variables in each of the n blocks, ui .

Further restrict so that there is exactly one * in each block and
setting of ∗i is the value of vi .

We have constructed an NC0 reduction from B to A. �

Let B′(1k0z)
def
= if (k 6 | |z|): return(0)

z = u1u2 . . . up, blocks of k bits each

vi
def
=

0 if #1(ui) ≡ 0 (mod 3)

1 if #1(ui) ≡ 1 (mod 3)

ε otherwise

return(1) iff v1 . . . vp ∈ B

B′ is NC1 reducible to B, so B′ ∈ C.

Let {Cn} be AC0 circuits reducing B′ to A.

Let {Cn} be AC0 circuits reducing B′ to A.

Apply the restriction which converts Cm into an NC0 circuit, and
assigns * to at least three variables in each of the n blocks, ui .

Further restrict so that there is exactly one * in each block and
setting of ∗i is the value of vi .

We have constructed an NC0 reduction from B to A. �

Let B′(1k0z)
def
= if (k 6 | |z|): return(0)

z = u1u2 . . . up, blocks of k bits each

vi
def
=

0 if #1(ui) ≡ 0 (mod 3)

1 if #1(ui) ≡ 1 (mod 3)

ε otherwise

return(1) iff v1 . . . vp ∈ B

B′ is NC1 reducible to B, so B′ ∈ C.

Let {Cn} be AC0 circuits reducing B′ to A.

Let {Cn} be AC0 circuits reducing B′ to A.

Apply the restriction which converts Cm into an NC0 circuit, and
assigns * to at least three variables in each of the n blocks, ui .

Further restrict so that there is exactly one * in each block and
setting of ∗i is the value of vi .

We have constructed an NC0 reduction from B to A. �

Let B′(1k0z)
def
= if (k 6 | |z|): return(0)

z = u1u2 . . . up, blocks of k bits each

vi
def
=

0 if #1(ui) ≡ 0 (mod 3)

1 if #1(ui) ≡ 1 (mod 3)

ε otherwise

return(1) iff v1 . . . vp ∈ B

B′ is NC1 reducible to B, so B′ ∈ C.

Let {Cn} be AC0 circuits reducing B′ to A.

Let {Cn} be AC0 circuits reducing B′ to A.

Apply the restriction which converts Cm into an NC0 circuit, and
assigns * to at least three variables in each of the n blocks, ui .

Further restrict so that there is exactly one * in each block and
setting of ∗i is the value of vi .

We have constructed an NC0 reduction from B to A. �

Let B′(1k0z)
def
= if (k 6 | |z|): return(0)

z = u1u2 . . . up, blocks of k bits each

vi
def
=

0 if #1(ui) ≡ 0 (mod 3)

1 if #1(ui) ≡ 1 (mod 3)

ε otherwise

return(1) iff v1 . . . vp ∈ B

B′ is NC1 reducible to B, so B′ ∈ C.

Let {Cn} be AC0 circuits reducing B′ to A.

Let {Cn} be AC0 circuits reducing B′ to A.

Apply the restriction which converts Cm into an NC0 circuit, and
assigns * to at least three variables in each of the n blocks, ui .

Further restrict so that there is exactly one * in each block and
setting of ∗i is the value of vi .

We have constructed an NC0 reduction from B to A. �

Consequences of Isomorphism and Gap Theorems

For nice complexity classes, all AC0 complete sets are AC0

isomorphic.

I Morally, the BH Isomorphism Conjecture is true.
I Each nice complexity class has exactly one complete

problem.
I Dichotomy Phenomenon: “Natural” computational

problems tend to be complete via fops for one of our
favorite complexity classes.

I Great for Algorithms and Complexity Theory!
I But not true in general [L75].
I Why does this seem to occur?
I Logical and Algebraic reasons, e.g., CSP.
I Can we remove the non-uniformity?
I Yes! [Ag01] “The First-Order Isomorphism Theorem”

Consequences of Isomorphism and Gap Theorems

For nice complexity classes, all AC0 complete sets are AC0

isomorphic.

I Morally, the BH Isomorphism Conjecture is true.

I Each nice complexity class has exactly one complete
problem.

I Dichotomy Phenomenon: “Natural” computational
problems tend to be complete via fops for one of our
favorite complexity classes.

I Great for Algorithms and Complexity Theory!
I But not true in general [L75].
I Why does this seem to occur?
I Logical and Algebraic reasons, e.g., CSP.
I Can we remove the non-uniformity?
I Yes! [Ag01] “The First-Order Isomorphism Theorem”

Consequences of Isomorphism and Gap Theorems

For nice complexity classes, all AC0 complete sets are AC0

isomorphic.

I Morally, the BH Isomorphism Conjecture is true.
I Each nice complexity class has exactly one complete

problem.

I Dichotomy Phenomenon: “Natural” computational
problems tend to be complete via fops for one of our
favorite complexity classes.

I Great for Algorithms and Complexity Theory!
I But not true in general [L75].
I Why does this seem to occur?
I Logical and Algebraic reasons, e.g., CSP.
I Can we remove the non-uniformity?
I Yes! [Ag01] “The First-Order Isomorphism Theorem”

Consequences of Isomorphism and Gap Theorems

For nice complexity classes, all AC0 complete sets are AC0

isomorphic.

I Morally, the BH Isomorphism Conjecture is true.
I Each nice complexity class has exactly one complete

problem.
I Dichotomy Phenomenon: “Natural” computational

problems tend to be complete via fops for one of our
favorite complexity classes.

I Great for Algorithms and Complexity Theory!
I But not true in general [L75].
I Why does this seem to occur?
I Logical and Algebraic reasons, e.g., CSP.
I Can we remove the non-uniformity?
I Yes! [Ag01] “The First-Order Isomorphism Theorem”

Consequences of Isomorphism and Gap Theorems

For nice complexity classes, all AC0 complete sets are AC0

isomorphic.

I Morally, the BH Isomorphism Conjecture is true.
I Each nice complexity class has exactly one complete

problem.
I Dichotomy Phenomenon: “Natural” computational

problems tend to be complete via fops for one of our
favorite complexity classes.

I Great for Algorithms and Complexity Theory!

I But not true in general [L75].
I Why does this seem to occur?
I Logical and Algebraic reasons, e.g., CSP.
I Can we remove the non-uniformity?
I Yes! [Ag01] “The First-Order Isomorphism Theorem”

Consequences of Isomorphism and Gap Theorems

For nice complexity classes, all AC0 complete sets are AC0

isomorphic.

I Morally, the BH Isomorphism Conjecture is true.
I Each nice complexity class has exactly one complete

problem.
I Dichotomy Phenomenon: “Natural” computational

problems tend to be complete via fops for one of our
favorite complexity classes.

I Great for Algorithms and Complexity Theory!
I But not true in general [L75].

I Why does this seem to occur?
I Logical and Algebraic reasons, e.g., CSP.
I Can we remove the non-uniformity?
I Yes! [Ag01] “The First-Order Isomorphism Theorem”

Consequences of Isomorphism and Gap Theorems

For nice complexity classes, all AC0 complete sets are AC0

isomorphic.

I Morally, the BH Isomorphism Conjecture is true.
I Each nice complexity class has exactly one complete

problem.
I Dichotomy Phenomenon: “Natural” computational

problems tend to be complete via fops for one of our
favorite complexity classes.

I Great for Algorithms and Complexity Theory!
I But not true in general [L75].
I Why does this seem to occur?

I Logical and Algebraic reasons, e.g., CSP.
I Can we remove the non-uniformity?
I Yes! [Ag01] “The First-Order Isomorphism Theorem”

Consequences of Isomorphism and Gap Theorems

For nice complexity classes, all AC0 complete sets are AC0

isomorphic.

I Morally, the BH Isomorphism Conjecture is true.
I Each nice complexity class has exactly one complete

problem.
I Dichotomy Phenomenon: “Natural” computational

problems tend to be complete via fops for one of our
favorite complexity classes.

I Great for Algorithms and Complexity Theory!
I But not true in general [L75].
I Why does this seem to occur?
I Logical and Algebraic reasons, e.g., CSP.

I Can we remove the non-uniformity?
I Yes! [Ag01] “The First-Order Isomorphism Theorem”

Consequences of Isomorphism and Gap Theorems

For nice complexity classes, all AC0 complete sets are AC0

isomorphic.

I Morally, the BH Isomorphism Conjecture is true.
I Each nice complexity class has exactly one complete

problem.
I Dichotomy Phenomenon: “Natural” computational

problems tend to be complete via fops for one of our
favorite complexity classes.

I Great for Algorithms and Complexity Theory!
I But not true in general [L75].
I Why does this seem to occur?
I Logical and Algebraic reasons, e.g., CSP.
I Can we remove the non-uniformity?

I Yes! [Ag01] “The First-Order Isomorphism Theorem”

Consequences of Isomorphism and Gap Theorems

For nice complexity classes, all AC0 complete sets are AC0

isomorphic.

I Morally, the BH Isomorphism Conjecture is true.
I Each nice complexity class has exactly one complete

problem.
I Dichotomy Phenomenon: “Natural” computational

problems tend to be complete via fops for one of our
favorite complexity classes.

I Great for Algorithms and Complexity Theory!
I But not true in general [L75].
I Why does this seem to occur?
I Logical and Algebraic reasons, e.g., CSP.
I Can we remove the non-uniformity?
I Yes! [Ag01] “The First-Order Isomorphism Theorem”

Thank you, Michal and Martin!

Thank you and Congratulations, Eric and Mike!

Enjoy the brunch tomorrow!

Don’t shy away too much from hard problems, . . .

. . . , especially after you have tenure.

Thank you, Michal and Martin!

Thank you and Congratulations, Eric and Mike!

Enjoy the brunch tomorrow!

Don’t shy away too much from hard problems, . . .

. . . , especially after you have tenure.

Thank you, Michal and Martin!

Thank you and Congratulations, Eric and Mike!

Enjoy the brunch tomorrow!

Don’t shy away too much from hard problems, . . .

. . . , especially after you have tenure.

Thank you, Michal and Martin!

Thank you and Congratulations, Eric and Mike!

Enjoy the brunch tomorrow!

Don’t shy away too much from hard problems, . . .

. . . , especially after you have tenure.

Thank you, Michal and Martin!

Thank you and Congratulations, Eric and Mike!

Enjoy the brunch tomorrow!

Don’t shy away too much from hard problems, . . .

. . . , especially after you have tenure.

