
Efficiently Reasoning about Programs

Neil Immerman

College of Computer and Information Sciences
University of Massachusetts, Amherst

Amherst, MA, USA

people.cs.umass.edu/˜immerman

people.cs.umass.edu/~immerman

Thm. [Turing
1936] Halt

undecidable.

Arithmetic Hierarchy FO(N) r.e. complete
Halt

co-r.e. complete
Halt

FO∃(N)
r.e.

FO∀(N)
co-r.e.

Recursive

Primitive Recursive

SO[2n
O(1)

] EXPTIME

QSAT PSPACE complete
FO[2n

O(1)

] SO[nO(1)] PSPACE

PTIME Hierarchy SO NP complete
SAT

co-NP complete
SAT

SO∃ NPSO∀co-NP
NP ∩ co-NP

P complete
Horn-
SAT P

FO[nO(1)]

FO(LFP)

FO[logO(1) n] NC“truly

feasible”FO[log n] AC1

sAC1FO(CFL)

NL2SAT NL comp.FO(TC)

2COLOR L comp. LFO(DTC)

NC1FO(REGULAR)

ThC0FO(COUNT)

AC0FO LOGTIME Hierarchy

Thm. [Turing
1936] Halt

undecidable.

Arithmetic Hierarchy FO(N) r.e. complete
Halt

co-r.e. complete
Halt

FO∃(N)
r.e.

FO∀(N)
co-r.e.

Recursive

Primitive Recursive

SO[2n
O(1)

] EXPTIME

QSAT PSPACE complete
FO[2n

O(1)

] SO[nO(1)] PSPACE

PTIME Hierarchy SO NP complete
SAT

co-NP complete
SAT

SO∃ NPSO∀co-NP
NP ∩ co-NP

P complete
Horn-
SAT P

FO[nO(1)]

FO(LFP)

FO[logO(1) n] NC“truly

feasible”FO[log n] AC1

sAC1FO(CFL)

NL2SAT NL comp.FO(TC)

2COLOR L comp. LFO(DTC)

NC1FO(REGULAR)

ThC0FO(COUNT)

AC0FO LOGTIME Hierarchy

I Halt is r.e. complete

I ∃w ∈ Σ∗ (α(w)) ⇔ Mα ∈ Halt
I Any arbitrary search problem can be translated to Halt.
I Cannot check correctness of arbitrary input program.

I Long-Term Societal Goal:
I Automatic help to produce programs that are
I certified to safely and faithfully
I do what they should do
I and not do what they should not do.

I Halt is r.e. complete
I ∃w ∈ Σ∗ (α(w)) ⇔ Mα ∈ Halt

I Any arbitrary search problem can be translated to Halt.
I Cannot check correctness of arbitrary input program.

I Long-Term Societal Goal:
I Automatic help to produce programs that are
I certified to safely and faithfully
I do what they should do
I and not do what they should not do.

I Halt is r.e. complete
I ∃w ∈ Σ∗ (α(w)) ⇔ Mα ∈ Halt
I Any arbitrary search problem can be translated to Halt.

I Cannot check correctness of arbitrary input program.

I Long-Term Societal Goal:
I Automatic help to produce programs that are
I certified to safely and faithfully
I do what they should do
I and not do what they should not do.

I Halt is r.e. complete
I ∃w ∈ Σ∗ (α(w)) ⇔ Mα ∈ Halt
I Any arbitrary search problem can be translated to Halt.
I Cannot check correctness of arbitrary input program.

I Long-Term Societal Goal:
I Automatic help to produce programs that are
I certified to safely and faithfully
I do what they should do
I and not do what they should not do.

I Halt is r.e. complete
I ∃w ∈ Σ∗ (α(w)) ⇔ Mα ∈ Halt
I Any arbitrary search problem can be translated to Halt.
I Cannot check correctness of arbitrary input program.

I Long-Term Societal Goal:

I Automatic help to produce programs that are
I certified to safely and faithfully
I do what they should do
I and not do what they should not do.

I Halt is r.e. complete
I ∃w ∈ Σ∗ (α(w)) ⇔ Mα ∈ Halt
I Any arbitrary search problem can be translated to Halt.
I Cannot check correctness of arbitrary input program.

I Long-Term Societal Goal:
I Automatic help to produce programs that are

I certified to safely and faithfully
I do what they should do
I and not do what they should not do.

I Halt is r.e. complete
I ∃w ∈ Σ∗ (α(w)) ⇔ Mα ∈ Halt
I Any arbitrary search problem can be translated to Halt.
I Cannot check correctness of arbitrary input program.

I Long-Term Societal Goal:
I Automatic help to produce programs that are
I certified to safely and faithfully

I do what they should do
I and not do what they should not do.

I Halt is r.e. complete
I ∃w ∈ Σ∗ (α(w)) ⇔ Mα ∈ Halt
I Any arbitrary search problem can be translated to Halt.
I Cannot check correctness of arbitrary input program.

I Long-Term Societal Goal:
I Automatic help to produce programs that are
I certified to safely and faithfully
I do what they should do

I and not do what they should not do.

I Halt is r.e. complete
I ∃w ∈ Σ∗ (α(w)) ⇔ Mα ∈ Halt
I Any arbitrary search problem can be translated to Halt.
I Cannot check correctness of arbitrary input program.

I Long-Term Societal Goal:
I Automatic help to produce programs that are
I certified to safely and faithfully
I do what they should do
I and not do what they should not do.

Thm. [Turing
1936] Halt

undecidable.

Thm. [Cook 1971]
SAT is NP
complete.

Arithmetic Hierarchy FO(N) r.e. complete
Halt

co-r.e. complete
Halt

FO∃(N)
r.e.

FO∀(N)
co-r.e.

Recursive

Primitive Recursive

SO[2n
O(1)

] EXPTIME

QSAT PSPACE complete
FO[2n

O(1)

] SO[nO(1)] PSPACE

PTIME Hierarchy SO NP complete
SAT

co-NP complete
SAT

SO∃ NPSO∀co-NP
NP ∩ co-NP

P complete
Horn-
SAT P

FO[nO(1)]

FO(LFP)

FO[logO(1) n] NC“truly

feasible”FO[log n] AC1

sAC1FO(CFL)

NL2SAT NL comp.FO(TC)

2COLOR L comp. LFO(DTC)

NC1FO(REGULAR)

ThC0FO(COUNT)

AC0FO LOGTIME Hierarchy

Thm. [Turing
1936] Halt

undecidable.

Thm. [Cook 1971]
SAT is NP
complete.

Arithmetic Hierarchy FO(N) r.e. complete
Halt

co-r.e. complete
Halt

FO∃(N)
r.e.

FO∀(N)
co-r.e.

Recursive

Primitive Recursive

SO[2n
O(1)

] EXPTIME

QSAT PSPACE complete
FO[2n

O(1)

] SO[nO(1)] PSPACE

PTIME Hierarchy SO NP complete
SAT

co-NP complete
SAT

SO∃ NPSO∀co-NP
NP ∩ co-NP

P complete
Horn-
SAT P

FO[nO(1)]

FO(LFP)

FO[logO(1) n] NC“truly

feasible”FO[log n] AC1

sAC1FO(CFL)

NL2SAT NL comp.FO(TC)

2COLOR L comp. LFO(DTC)

NC1FO(REGULAR)

ThC0FO(COUNT)

AC0FO LOGTIME Hierarchy

I SAT is NP complete.

I ∃w ∈ ΣnO(1)
(α(w)) ⇔ ϕα ∈ SAT

I Arbitrary exponential search problem is translated to SAT.
I SAT is not feasible in the worst case.
I Every reasonable search problem can be encoded as an

instance of SAT.

I Great progress in design of SAT Solvers.
I Fast, general-purpose problem solvers.

I SAT is NP complete.
I ∃w ∈ ΣnO(1)

(α(w)) ⇔ ϕα ∈ SAT

I Arbitrary exponential search problem is translated to SAT.
I SAT is not feasible in the worst case.
I Every reasonable search problem can be encoded as an

instance of SAT.

I Great progress in design of SAT Solvers.
I Fast, general-purpose problem solvers.

I SAT is NP complete.
I ∃w ∈ ΣnO(1)

(α(w)) ⇔ ϕα ∈ SAT
I Arbitrary exponential search problem is translated to SAT.

I SAT is not feasible in the worst case.
I Every reasonable search problem can be encoded as an

instance of SAT.

I Great progress in design of SAT Solvers.
I Fast, general-purpose problem solvers.

I SAT is NP complete.
I ∃w ∈ ΣnO(1)

(α(w)) ⇔ ϕα ∈ SAT
I Arbitrary exponential search problem is translated to SAT.
I SAT is not feasible in the worst case.

I Every reasonable search problem can be encoded as an
instance of SAT.

I Great progress in design of SAT Solvers.
I Fast, general-purpose problem solvers.

I SAT is NP complete.
I ∃w ∈ ΣnO(1)

(α(w)) ⇔ ϕα ∈ SAT
I Arbitrary exponential search problem is translated to SAT.
I SAT is not feasible in the worst case.
I Every reasonable search problem can be encoded as an

instance of SAT.

I Great progress in design of SAT Solvers.
I Fast, general-purpose problem solvers.

I SAT is NP complete.
I ∃w ∈ ΣnO(1)

(α(w)) ⇔ ϕα ∈ SAT
I Arbitrary exponential search problem is translated to SAT.
I SAT is not feasible in the worst case.
I Every reasonable search problem can be encoded as an

instance of SAT.

I Great progress in design of SAT Solvers.

I Fast, general-purpose problem solvers.

I SAT is NP complete.
I ∃w ∈ ΣnO(1)

(α(w)) ⇔ ϕα ∈ SAT
I Arbitrary exponential search problem is translated to SAT.
I SAT is not feasible in the worst case.
I Every reasonable search problem can be encoded as an

instance of SAT.

I Great progress in design of SAT Solvers.
I Fast, general-purpose problem solvers.

Verification by Reduction to SAT

I When and why does this work?
I How general and powerful can we make it?

Verification by Reduction to SAT

I When and why does this work?

I How general and powerful can we make it?

Verification by Reduction to SAT

I When and why does this work?
I How general and powerful can we make it?

Background: Dynamic Complexity

Static
1. Read entire input
2. Compute boolean query Q(input)
3. Classic Complexity Classes are static: FO, NC, P, NP, . . .

4. What is the fastest way upon reading the entire input, to
compute the query?

Dynamic
1. Long series of Inserts, Deletes, Changes, and, Queries
2. On query, very quickly compute Q(current database)
3. Dynamic Complexity Classes: Dyn-FO, Dyn-NC

4. What additional information should we maintain? —
auxiliary data structure

Background: Dynamic Complexity

Static
1. Read entire input
2. Compute boolean query Q(input)
3. Classic Complexity Classes are static: FO, NC, P, NP, . . .
4. What is the fastest way upon reading the entire input, to

compute the query?

Dynamic
1. Long series of Inserts, Deletes, Changes, and, Queries
2. On query, very quickly compute Q(current database)
3. Dynamic Complexity Classes: Dyn-FO, Dyn-NC

4. What additional information should we maintain? —
auxiliary data structure

Background: Dynamic Complexity

Static
1. Read entire input
2. Compute boolean query Q(input)
3. Classic Complexity Classes are static: FO, NC, P, NP, . . .
4. What is the fastest way upon reading the entire input, to

compute the query?

Dynamic
1. Long series of Inserts, Deletes, Changes, and, Queries
2. On query, very quickly compute Q(current database)
3. Dynamic Complexity Classes: Dyn-FO, Dyn-NC

4. What additional information should we maintain? —
auxiliary data structure

Background: Dynamic Complexity

Static
1. Read entire input
2. Compute boolean query Q(input)
3. Classic Complexity Classes are static: FO, NC, P, NP, . . .
4. What is the fastest way upon reading the entire input, to

compute the query?

Dynamic
1. Long series of Inserts, Deletes, Changes, and, Queries
2. On query, very quickly compute Q(current database)
3. Dynamic Complexity Classes: Dyn-FO, Dyn-NC
4. What additional information should we maintain? —

auxiliary data structure

Dynamic (Incremental) Applications

I Databases
I LaTexing a file
I Performing a calculation
I Processing a visual scene
I Understanding a natural language
I Verifying a circuit
I Verifying and compiling a program

I Surviving in the wild

Dynamic (Incremental) Applications

I Databases
I LaTexing a file
I Performing a calculation
I Processing a visual scene
I Understanding a natural language
I Verifying a circuit
I Verifying and compiling a program
I Surviving in the wild

Parity

∈ Dyn-FO

Current Database: S Request Auxiliary Data: b
0000000 0

0010000 ins(3,S) 1
0010001 ins(7,S) 0
0000001 del(3,S) 1

ins(a,S) del(a,S)

S′(x) ≡ S(x) ∨ x = a S′(x) ≡ S(x) ∧ x 6= a

b′ ≡ (b ∧ S(a)) ∨ b′ ≡ (b ∧ ¬S(a)) ∨
(¬b ∧ ¬S(a)) (¬b ∧ S(a))

Parity

∈ Dyn-FO

Current Database: S Request Auxiliary Data: b
0000000 0

0010000

ins(3,S)

1
0010001 ins(7,S) 0
0000001 del(3,S) 1

ins(a,S) del(a,S)

S′(x) ≡ S(x) ∨ x = a S′(x) ≡ S(x) ∧ x 6= a

b′ ≡ (b ∧ S(a)) ∨ b′ ≡ (b ∧ ¬S(a)) ∨
(¬b ∧ ¬S(a)) (¬b ∧ S(a))

Parity

∈ Dyn-FO

Current Database: S Request Auxiliary Data: b
0000000 0
0010000 ins(3,S) 1

0010001 ins(7,S) 0
0000001 del(3,S) 1

ins(a,S) del(a,S)

S′(x) ≡ S(x) ∨ x = a S′(x) ≡ S(x) ∧ x 6= a

b′ ≡ (b ∧ S(a)) ∨ b′ ≡ (b ∧ ¬S(a)) ∨
(¬b ∧ ¬S(a)) (¬b ∧ S(a))

Parity

∈ Dyn-FO

Current Database: S Request Auxiliary Data: b
0000000 0
0010000 ins(3,S) 1

0010001

ins(7,S)

0
0000001 del(3,S) 1

ins(a,S) del(a,S)

S′(x) ≡ S(x) ∨ x = a S′(x) ≡ S(x) ∧ x 6= a

b′ ≡ (b ∧ S(a)) ∨ b′ ≡ (b ∧ ¬S(a)) ∨
(¬b ∧ ¬S(a)) (¬b ∧ S(a))

Parity

∈ Dyn-FO

Current Database: S Request Auxiliary Data: b
0000000 0
0010000 ins(3,S) 1
0010001 ins(7,S) 0

0000001 del(3,S) 1

ins(a,S) del(a,S)

S′(x) ≡ S(x) ∨ x = a S′(x) ≡ S(x) ∧ x 6= a

b′ ≡ (b ∧ S(a)) ∨ b′ ≡ (b ∧ ¬S(a)) ∨
(¬b ∧ ¬S(a)) (¬b ∧ S(a))

Parity

∈ Dyn-FO

Current Database: S Request Auxiliary Data: b
0000000 0
0010000 ins(3,S) 1
0010001 ins(7,S) 0

0000001

del(3,S)

1

ins(a,S) del(a,S)

S′(x) ≡ S(x) ∨ x = a S′(x) ≡ S(x) ∧ x 6= a

b′ ≡ (b ∧ S(a)) ∨ b′ ≡ (b ∧ ¬S(a)) ∨
(¬b ∧ ¬S(a)) (¬b ∧ S(a))

Parity

∈ Dyn-FO

Current Database: S Request Auxiliary Data: b
0000000 0
0010000 ins(3,S) 1
0010001 ins(7,S) 0
0000001 del(3,S) 1

ins(a,S) del(a,S)

S′(x) ≡ S(x) ∨ x = a S′(x) ≡ S(x) ∧ x 6= a

b′ ≡ (b ∧ S(a)) ∨ b′ ≡ (b ∧ ¬S(a)) ∨
(¬b ∧ ¬S(a)) (¬b ∧ S(a))

Parity ∈ Dyn-FO

Current Database: S Request Auxiliary Data: b
0000000 0
0010000 ins(3,S) 1
0010001 ins(7,S) 0
0000001 del(3,S) 1

ins(a,S) del(a,S)

S′(x) ≡ S(x) ∨ x = a S′(x) ≡ S(x) ∧ x 6= a

b′ ≡ (b ∧ S(a)) ∨ b′ ≡ (b ∧ ¬S(a)) ∨
(¬b ∧ ¬S(a)) (¬b ∧ S(a))

Dynamic Examples

Parity
I Does binary string w have an odd number of 1’s?
I Static: TIME[n], FO[Ω(log n/ log log n)]
I Dynamic: Dyn-TIME[1], Dyn-FO

REACHu

I Is t reachable from s in undirected graph G?
I Static: not in FO, requires FO[Ω(log n/ log log n)]
I Dynamic: in Dyn-FO [Patnaik, I]

connectivity,
minimum spanning trees, in Dyn-FO
k -edge connectivity, . . .

Dynamic Examples

Parity
I Does binary string w have an odd number of 1’s?
I Static: TIME[n], FO[Ω(log n/ log log n)]
I Dynamic: Dyn-TIME[1], Dyn-FO

REACHu

I Is t reachable from s in undirected graph G?
I Static: not in FO, requires FO[Ω(log n/ log log n)]
I Dynamic: in Dyn-FO [Patnaik, I]

connectivity,
minimum spanning trees, in Dyn-FO
k -edge connectivity, . . .

Dynamic Examples

Parity
I Does binary string w have an odd number of 1’s?
I Static: TIME[n], FO[Ω(log n/ log log n)]
I Dynamic: Dyn-TIME[1], Dyn-FO

REACHu

I Is t reachable from s in undirected graph G?
I Static: not in FO, requires FO[Ω(log n/ log log n)]
I Dynamic: in Dyn-FO [Patnaik, I]

connectivity,
minimum spanning trees, in Dyn-FO
k -edge connectivity, . . .

Fact: [Dong & Su] REACH(acyclic) ∈ DynFO

ins(a,b,E) : P ′(x , y) ≡ P(x , y) ∨ (P(x ,a) ∧ P(b, y))

x

u v

a b

y

del(a,b,E):

P ′(x , y) ≡ P(x , y) ∧
[
¬(P(x ,a) ∧ P(b, y))

∨ (∃uv)
(
P(x ,u) ∧ E(u, v) ∧ P(v , y)

∧ P(u,a) ∧ ¬P(v ,a) ∧ (a 6= u ∨ b 6= v)
)]

Fact: [Dong & Su] REACH(acyclic) ∈ DynFO

ins(a,b,E) : P ′(x , y) ≡ P(x , y) ∨ (P(x ,a) ∧ P(b, y))

x

u v

a b

y

del(a,b,E):

P ′(x , y) ≡ P(x , y) ∧
[
¬(P(x ,a) ∧ P(b, y))

∨ (∃uv)
(
P(x ,u) ∧ E(u, v) ∧ P(v , y)

∧ P(u,a) ∧ ¬P(v ,a) ∧ (a 6= u ∨ b 6= v)
)]

Fact: [Dong & Su] REACH(acyclic) ∈ DynFO

ins(a,b,E) : P ′(x , y) ≡ P(x , y) ∨ (P(x ,a) ∧ P(b, y))

x

u v

a b

y

del(a,b,E):

P ′(x , y) ≡ P(x , y) ∧
[
¬(P(x ,a) ∧ P(b, y))

∨ (∃uv)
(
P(x ,u) ∧ E(u, v) ∧ P(v , y)

∧ P(u,a) ∧ ¬P(v ,a) ∧ (a 6= u ∨ b 6= v)
)]

Reachability Problems

REACH =
{

G
∣∣ G directed, s ?→

G
t
}

NL

REACHd =
{

G
∣∣ G directed, outdegree ≤ 1 s ?→

G
t
}

L

REACHu =
{

G
∣∣ G undirected, s ?→

G
t
}

L

REACHa =
{

G
∣∣ G alternating, s ?→

G
t
}

P

s t
b

Facts about dynamic REACHABILITY Problems:

REACH(acyclic) ∈ Dyn-FO [DS]

REACHd ∈ Dyn-QF [H]

REACHu ∈ Dyn-FO [PI]

REACH ∈ Dyn-FO(COUNT) [H]

PAD(REACHa) ∈ Dyn-FO [PI]

Exciting New Result

Thm. REACH ∈ Dyn-FO

[Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas
Schwentick, Thomas Zeume]

http://arxiv.org/abs/1502.07467

REACH ≤ Matrix Rank ∈ Dyn-FO

http://arxiv.org/abs/1502.07467

Thm. 1 [Hesse] REACHd (acyclic) ∈ Dyn-FO

proof: Maintain E , E∗, D (outdegree = 1).

ins(a,b,E): (ignore if outdegree or acyclicity violated)

E ′(x , y) ≡ E(x , y) ∨ (x = a ∧ y = b)

D′(x) ≡ D(x) ∨ x = a
E∗′(x , y) ≡ E∗(x , y) ∨ (E∗(x ,a) ∧ E∗(b, y))

del(a,b,E):

E ′(x , y) ≡ E(x , y) ∧ (x 6= a ∨ y 6= b)

D′(x) ≡ D(x) ∧ x 6= a
E∗′(x , y) ≡ E∗(x , y) ∧ ¬(E∗(x ,a) ∧ E(a,b) ∧ E∗(b, y))

�

Thm. 1 [Hesse] REACHd (acyclic) ∈ Dyn-FO

proof: Maintain E , E∗, D (outdegree = 1).

ins(a,b,E): (ignore if outdegree or acyclicity violated)

E ′(x , y) ≡ E(x , y) ∨ (x = a ∧ y = b)

D′(x) ≡ D(x) ∨ x = a
E∗′(x , y) ≡ E∗(x , y) ∨ (E∗(x ,a) ∧ E∗(b, y))

del(a,b,E):

E ′(x , y) ≡ E(x , y) ∧ (x 6= a ∨ y 6= b)

D′(x) ≡ D(x) ∧ x 6= a
E∗′(x , y) ≡ E∗(x , y) ∧ ¬(E∗(x ,a) ∧ E(a,b) ∧ E∗(b, y))

�

Dynamic Reasoning

Reasoning About reachability – can we get to y from x by
following a sequence of pointers –

is crucial for understanding
programs and proving that they meet their specifications.

y1

x y2

y3

y

x1

x0

x2

x4

x3

n

n n

n

n

n n

n∗

Dynamic Reasoning

Reasoning About reachability – can we get to y from x by
following a sequence of pointers – is crucial for understanding
programs and proving that they meet their specifications.

y1

x y2

y3

y

x1

x0

x2

x4

x3

n

n n

n

n

n n

n∗

In general, reasoning about reachability is undecidable.

I Can express tilings and thus runs of Turing Machines.

I Even worse, can express finite path and thus finite and
thus standard natural numbers. Thus satisfiablity of
FO(TC) is as hard as the Arithmetic Hierarchy [Avron].

In general, reasoning about reachability is undecidable.

I Can express tilings and thus runs of Turing Machines.

I Even worse, can express finite path and thus finite and
thus standard natural numbers. Thus satisfiablity of
FO(TC) is as hard as the Arithmetic Hierarchy [Avron].

Itzhaky, Banerjee, Immerman, Aleks Nanevski, Sagiv,
“Effectively-Propositional Reasoning About Reachability in
Linked Data Structures” CAV 2013.

I For now, restrict to acyclic fields.

I n(x , y) means that x points to y .

I Use predicate symbol, n∗, but not n.

I The following axioms assure that n∗ is the reflexive
transitive closure of some acyclic, functional n.

acyclic ≡ ∀xy (n∗(x , y) ∧ n∗(y , x) ↔ x = y)

transitive ≡ ∀xyz (n∗(x , y) ∧ n∗(y , z) → n∗(x , z))

linear ≡ ∀xyz (n∗(x , y) ∧ n∗(x , z) → n∗(y , z) ∨ n∗(z, y))

Itzhaky, Banerjee, Immerman, Aleks Nanevski, Sagiv,
“Effectively-Propositional Reasoning About Reachability in
Linked Data Structures” CAV 2013.

I For now, restrict to acyclic fields.

I n(x , y) means that x points to y .

I Use predicate symbol, n∗, but not n.

I The following axioms assure that n∗ is the reflexive
transitive closure of some acyclic, functional n.

acyclic ≡ ∀xy (n∗(x , y) ∧ n∗(y , x) ↔ x = y)

transitive ≡ ∀xyz (n∗(x , y) ∧ n∗(y , z) → n∗(x , z))

linear ≡ ∀xyz (n∗(x , y) ∧ n∗(x , z) → n∗(y , z) ∨ n∗(z, y))

Itzhaky, Banerjee, Immerman, Aleks Nanevski, Sagiv,
“Effectively-Propositional Reasoning About Reachability in
Linked Data Structures” CAV 2013.

I For now, restrict to acyclic fields.

I n(x , y) means that x points to y .

I Use predicate symbol, n∗, but not n.

I The following axioms assure that n∗ is the reflexive
transitive closure of some acyclic, functional n.

acyclic ≡ ∀xy (n∗(x , y) ∧ n∗(y , x) ↔ x = y)

transitive ≡ ∀xyz (n∗(x , y) ∧ n∗(y , z) → n∗(x , z))

linear ≡ ∀xyz (n∗(x , y) ∧ n∗(x , z) → n∗(y , z) ∨ n∗(z, y))

Itzhaky, Banerjee, Immerman, Aleks Nanevski, Sagiv,
“Effectively-Propositional Reasoning About Reachability in
Linked Data Structures” CAV 2013.

I For now, restrict to acyclic fields.

I n(x , y) means that x points to y .

I Use predicate symbol, n∗, but not n.

I The following axioms assure that n∗ is the reflexive
transitive closure of some acyclic, functional n.

acyclic ≡ ∀xy (n∗(x , y) ∧ n∗(y , x) ↔ x = y)

transitive ≡ ∀xyz (n∗(x , y) ∧ n∗(y , z) → n∗(x , z))

linear ≡ ∀xyz (n∗(x , y) ∧ n∗(x , z) → n∗(y , z) ∨ n∗(z, y))

Itzhaky, Banerjee, Immerman, Aleks Nanevski, Sagiv,
“Effectively-Propositional Reasoning About Reachability in
Linked Data Structures” CAV 2013.

I For now, restrict to acyclic fields.

I n(x , y) means that x points to y .

I Use predicate symbol, n∗, but not n.

I The following axioms assure that n∗ is the reflexive
transitive closure of some acyclic, functional n.

acyclic ≡ ∀xy (n∗(x , y) ∧ n∗(y , x) ↔ x = y)

transitive ≡ ∀xyz (n∗(x , y) ∧ n∗(y , z) → n∗(x , z))

linear ≡ ∀xyz (n∗(x , y) ∧ n∗(x , z) → n∗(y , z) ∨ n∗(z, y))

Itzhaky, Banerjee, Immerman, Aleks Nanevski, Sagiv,
“Effectively-Propositional Reasoning About Reachability in
Linked Data Structures” CAV 2013.

I For now, restrict to acyclic fields.

I n(x , y) means that x points to y .

I Use predicate symbol, n∗, but not n.

I The following axioms assure that n∗ is the reflexive
transitive closure of some acyclic, functional n.

acyclic ≡ ∀xy (n∗(x , y) ∧ n∗(y , x) ↔ x = y)

transitive ≡ ∀xyz (n∗(x , y) ∧ n∗(y , z) → n∗(x , z))

linear ≡ ∀xyz (n∗(x , y) ∧ n∗(x , z) → n∗(y , z) ∨ n∗(z, y))

Itzhaky, Banerjee, Immerman, Aleks Nanevski, Sagiv,
“Effectively-Propositional Reasoning About Reachability in
Linked Data Structures” CAV 2013.

I For now, restrict to acyclic fields.

I n(x , y) means that x points to y .

I Use predicate symbol, n∗, but not n.

I The following axioms assure that n∗ is the reflexive
transitive closure of some acyclic, functional n.

acyclic ≡ ∀xy (n∗(x , y) ∧ n∗(y , x) ↔ x = y)

transitive ≡ ∀xyz (n∗(x , y) ∧ n∗(y , z) → n∗(x , z))

linear ≡ ∀xyz (n∗(x , y) ∧ n∗(x , z) → n∗(y , z) ∨ n∗(z, y))

Effectively-Propositional Reasoning about
Reachability in Linked Data Structures

I Assume acyclic, transitive and linear axioms, as integrity
constraints.

I Automatically transform a program manipulating linked lists
to an ∀∃ correctness condition.

I Using Hesse’s dynQF algorithm for REACHd , these ∀∃
formulas are closed under weakest precondition.

I The negation of the correctness condition is ∃∀, thus
equi-satisfiable with a propositional formula (EPR).

I Use a SAT solver to automatically prove correctness or find
counter-example runs, typically in only a few seconds.

Effectively-Propositional Reasoning about
Reachability in Linked Data Structures

I Assume acyclic, transitive and linear axioms, as integrity
constraints.

I Automatically transform a program manipulating linked lists
to an ∀∃ correctness condition.

I Using Hesse’s dynQF algorithm for REACHd , these ∀∃
formulas are closed under weakest precondition.

I The negation of the correctness condition is ∃∀, thus
equi-satisfiable with a propositional formula (EPR).

I Use a SAT solver to automatically prove correctness or find
counter-example runs, typically in only a few seconds.

Effectively-Propositional Reasoning about
Reachability in Linked Data Structures

I Assume acyclic, transitive and linear axioms, as integrity
constraints.

I Automatically transform a program manipulating linked lists
to an ∀∃ correctness condition.

I Using Hesse’s dynQF algorithm for REACHd , these ∀∃
formulas are closed under weakest precondition.

I The negation of the correctness condition is ∃∀, thus
equi-satisfiable with a propositional formula (EPR).

I Use a SAT solver to automatically prove correctness or find
counter-example runs, typically in only a few seconds.

Effectively-Propositional Reasoning about
Reachability in Linked Data Structures

I Assume acyclic, transitive and linear axioms, as integrity
constraints.

I Automatically transform a program manipulating linked lists
to an ∀∃ correctness condition.

I Using Hesse’s dynQF algorithm for REACHd , these ∀∃
formulas are closed under weakest precondition.

I The negation of the correctness condition is ∃∀, thus
equi-satisfiable with a propositional formula (EPR).

I Use a SAT solver to automatically prove correctness or find
counter-example runs, typically in only a few seconds.

Effectively-Propositional Reasoning about
Reachability in Linked Data Structures

I Assume acyclic, transitive and linear axioms, as integrity
constraints.

I Automatically transform a program manipulating linked lists
to an ∀∃ correctness condition.

I Using Hesse’s dynQF algorithm for REACHd , these ∀∃
formulas are closed under weakest precondition.

I The negation of the correctness condition is ∃∀, thus
equi-satisfiable with a propositional formula (EPR).

I Use a SAT solver to automatically prove correctness or find
counter-example runs, typically in only a few seconds.

Effectively-Propositional Reasoning (EPR)

I FO-SAT is undecidable (co-r.e. complete).

I EPR: ∃∀ formulas; no function symbols.
I constant symbols: c1, . . . , ck

I ϕ = ∃x1 . . . xs∀y1 . . . yt (α(x , t , c))

I small model: ϕ ∈ FO-SAT iff has model size ≤ k + s.
I EPR-SAT ∈ Σp

2 (2nd level polynomial-time hierarchy)
I If t is fixed, then reducible to SAT.
I Z3 seems to do very well for us on EPR-SAT.

Effectively-Propositional Reasoning (EPR)

I FO-SAT is undecidable (co-r.e. complete).
I EPR: ∃∀ formulas; no function symbols.

I constant symbols: c1, . . . , ck

I ϕ = ∃x1 . . . xs∀y1 . . . yt (α(x , t , c))

I small model: ϕ ∈ FO-SAT iff has model size ≤ k + s.
I EPR-SAT ∈ Σp

2 (2nd level polynomial-time hierarchy)
I If t is fixed, then reducible to SAT.
I Z3 seems to do very well for us on EPR-SAT.

Effectively-Propositional Reasoning (EPR)

I FO-SAT is undecidable (co-r.e. complete).
I EPR: ∃∀ formulas; no function symbols.
I constant symbols: c1, . . . , ck

I ϕ = ∃x1 . . . xs∀y1 . . . yt (α(x , t , c))

I small model: ϕ ∈ FO-SAT iff has model size ≤ k + s.
I EPR-SAT ∈ Σp

2 (2nd level polynomial-time hierarchy)
I If t is fixed, then reducible to SAT.
I Z3 seems to do very well for us on EPR-SAT.

Effectively-Propositional Reasoning (EPR)

I FO-SAT is undecidable (co-r.e. complete).
I EPR: ∃∀ formulas; no function symbols.
I constant symbols: c1, . . . , ck

I ϕ = ∃x1 . . . xs∀y1 . . . yt (α(x , t , c))

I small model: ϕ ∈ FO-SAT iff has model size ≤ k + s.
I EPR-SAT ∈ Σp

2 (2nd level polynomial-time hierarchy)
I If t is fixed, then reducible to SAT.
I Z3 seems to do very well for us on EPR-SAT.

Effectively-Propositional Reasoning (EPR)

I FO-SAT is undecidable (co-r.e. complete).
I EPR: ∃∀ formulas; no function symbols.
I constant symbols: c1, . . . , ck

I ϕ = ∃x1 . . . xs∀y1 . . . yt (α(x , t , c))

I small model: ϕ ∈ FO-SAT iff has model size ≤ k + s.

I EPR-SAT ∈ Σp
2 (2nd level polynomial-time hierarchy)

I If t is fixed, then reducible to SAT.
I Z3 seems to do very well for us on EPR-SAT.

Effectively-Propositional Reasoning (EPR)

I FO-SAT is undecidable (co-r.e. complete).
I EPR: ∃∀ formulas; no function symbols.
I constant symbols: c1, . . . , ck

I ϕ = ∃x1 . . . xs∀y1 . . . yt (α(x , t , c))

I small model: ϕ ∈ FO-SAT iff has model size ≤ k + s.
I EPR-SAT ∈ Σp

2 (2nd level polynomial-time hierarchy)

I If t is fixed, then reducible to SAT.
I Z3 seems to do very well for us on EPR-SAT.

Effectively-Propositional Reasoning (EPR)

I FO-SAT is undecidable (co-r.e. complete).
I EPR: ∃∀ formulas; no function symbols.
I constant symbols: c1, . . . , ck

I ϕ = ∃x1 . . . xs∀y1 . . . yt (α(x , t , c))

I small model: ϕ ∈ FO-SAT iff has model size ≤ k + s.
I EPR-SAT ∈ Σp

2 (2nd level polynomial-time hierarchy)
I If t is fixed, then reducible to SAT.

I Z3 seems to do very well for us on EPR-SAT.

Effectively-Propositional Reasoning (EPR)

I FO-SAT is undecidable (co-r.e. complete).
I EPR: ∃∀ formulas; no function symbols.
I constant symbols: c1, . . . , ck

I ϕ = ∃x1 . . . xs∀y1 . . . yt (α(x , t , c))

I small model: ϕ ∈ FO-SAT iff has model size ≤ k + s.
I EPR-SAT ∈ Σp

2 (2nd level polynomial-time hierarchy)
I If t is fixed, then reducible to SAT.
I Z3 seems to do very well for us on EPR-SAT.

Thm. 2 [Hesse] Reachability of functional graphs is in DynQF.

proof idea: If adding an edge, e, would create a cycle, then we
maintain relation p∗ – the path relation without the edge
completing the cycle – as well as E∗, E and D.

Surprisingly this can all be maintained via quantifier-free
formulas, without remembering which edges we are leaving
out in computing p∗. �

Using Thm. 2, the above methodology has been extended to
cyclic deterministic graphs.

I Itzhaky, Banerjee, Immerman, Nanevski, Sagiv,
“Effectively-Propositional Reasoning About Reachability in
Linked Data Structures” CAV 2013.

I Itzhaky, Banerjee, Immerman, Lahav, Nanevski, Sagiv,
“Modular Reasoning about Heap Paths via Effectively
Propositional Formulas”, POPL 2014

Thm. 2 [Hesse] Reachability of functional graphs is in DynQF.

proof idea: If adding an edge, e, would create a cycle, then we
maintain relation p∗ – the path relation without the edge
completing the cycle – as well as E∗, E and D.

Surprisingly this can all be maintained via quantifier-free
formulas, without remembering which edges we are leaving
out in computing p∗. �

Using Thm. 2, the above methodology has been extended to
cyclic deterministic graphs.

I Itzhaky, Banerjee, Immerman, Nanevski, Sagiv,
“Effectively-Propositional Reasoning About Reachability in
Linked Data Structures” CAV 2013.

I Itzhaky, Banerjee, Immerman, Lahav, Nanevski, Sagiv,
“Modular Reasoning about Heap Paths via Effectively
Propositional Formulas”, POPL 2014

Extensions

I Extensions to EPR: we can have functions symbols, as
long as we can guarantee the the closure of the function
symbols on any finite set remains finite.

I What data structures can we handle: lists, doubly linked
lists, cyclic lists; binary trees, . . .

I The [CAV13] and [POPL14] papers assume that correct
invariants are given for each loop. On-going work to
automatically generate and prove loop invariants:

I Feldman, Padon, I, Sagiv, Shoham, “Bounded Quantifier
Instantiation for Checking Inductive Invariants” [TACAS17]

I Padon, I, Karbyshev, Sagiv, Shoham, “Decidability of
Inferring Inductive Invariants” [POPL16].

I Padon, McMillan, Panda, Sagiv, Shoham, “Ivy: Safety
Verification by Interactive Generalization” [PLDI16].

I Karbyshev, Bjorner, Itzhaky, Rinetzky, Shoham,
“Property-Directed Inference of Universal Invariants or
Proving Their Absence” [CAV15].

Extensions

I Extensions to EPR: we can have functions symbols, as
long as we can guarantee the the closure of the function
symbols on any finite set remains finite.

I What data structures can we handle: lists, doubly linked
lists, cyclic lists; binary trees, . . .

I The [CAV13] and [POPL14] papers assume that correct
invariants are given for each loop. On-going work to
automatically generate and prove loop invariants:

I Feldman, Padon, I, Sagiv, Shoham, “Bounded Quantifier
Instantiation for Checking Inductive Invariants” [TACAS17]

I Padon, I, Karbyshev, Sagiv, Shoham, “Decidability of
Inferring Inductive Invariants” [POPL16].

I Padon, McMillan, Panda, Sagiv, Shoham, “Ivy: Safety
Verification by Interactive Generalization” [PLDI16].

I Karbyshev, Bjorner, Itzhaky, Rinetzky, Shoham,
“Property-Directed Inference of Universal Invariants or
Proving Their Absence” [CAV15].

Extensions

I Extensions to EPR: we can have functions symbols, as
long as we can guarantee the the closure of the function
symbols on any finite set remains finite.

I What data structures can we handle: lists, doubly linked
lists, cyclic lists; binary trees, . . .

I The [CAV13] and [POPL14] papers assume that correct
invariants are given for each loop. On-going work to
automatically generate and prove loop invariants:

I Feldman, Padon, I, Sagiv, Shoham, “Bounded Quantifier
Instantiation for Checking Inductive Invariants” [TACAS17]

I Padon, I, Karbyshev, Sagiv, Shoham, “Decidability of
Inferring Inductive Invariants” [POPL16].

I Padon, McMillan, Panda, Sagiv, Shoham, “Ivy: Safety
Verification by Interactive Generalization” [PLDI16].

I Karbyshev, Bjorner, Itzhaky, Rinetzky, Shoham,
“Property-Directed Inference of Universal Invariants or
Proving Their Absence” [CAV15].

Extensions

I Extensions to EPR: we can have functions symbols, as
long as we can guarantee the the closure of the function
symbols on any finite set remains finite.

I What data structures can we handle: lists, doubly linked
lists, cyclic lists; binary trees, . . .

I The [CAV13] and [POPL14] papers assume that correct
invariants are given for each loop. On-going work to
automatically generate and prove loop invariants:

I Feldman, Padon, I, Sagiv, Shoham, “Bounded Quantifier
Instantiation for Checking Inductive Invariants” [TACAS17]

I Padon, I, Karbyshev, Sagiv, Shoham, “Decidability of
Inferring Inductive Invariants” [POPL16].

I Padon, McMillan, Panda, Sagiv, Shoham, “Ivy: Safety
Verification by Interactive Generalization” [PLDI16].

I Karbyshev, Bjorner, Itzhaky, Rinetzky, Shoham,
“Property-Directed Inference of Universal Invariants or
Proving Their Absence” [CAV15].

Extensions

I Extensions to EPR: we can have functions symbols, as
long as we can guarantee the the closure of the function
symbols on any finite set remains finite.

I What data structures can we handle: lists, doubly linked
lists, cyclic lists; binary trees, . . .

I The [CAV13] and [POPL14] papers assume that correct
invariants are given for each loop. On-going work to
automatically generate and prove loop invariants:

I Feldman, Padon, I, Sagiv, Shoham, “Bounded Quantifier
Instantiation for Checking Inductive Invariants” [TACAS17]

I Padon, I, Karbyshev, Sagiv, Shoham, “Decidability of
Inferring Inductive Invariants” [POPL16].

I Padon, McMillan, Panda, Sagiv, Shoham, “Ivy: Safety
Verification by Interactive Generalization” [PLDI16].

I Karbyshev, Bjorner, Itzhaky, Rinetzky, Shoham,
“Property-Directed Inference of Universal Invariants or
Proving Their Absence” [CAV15].

Extensions

I Extensions to EPR: we can have functions symbols, as
long as we can guarantee the the closure of the function
symbols on any finite set remains finite.

I What data structures can we handle: lists, doubly linked
lists, cyclic lists; binary trees, . . .

I The [CAV13] and [POPL14] papers assume that correct
invariants are given for each loop. On-going work to
automatically generate and prove loop invariants:

I Feldman, Padon, I, Sagiv, Shoham, “Bounded Quantifier
Instantiation for Checking Inductive Invariants” [TACAS17]

I Padon, I, Karbyshev, Sagiv, Shoham, “Decidability of
Inferring Inductive Invariants” [POPL16].

I Padon, McMillan, Panda, Sagiv, Shoham, “Ivy: Safety
Verification by Interactive Generalization” [PLDI16].

I Karbyshev, Bjorner, Itzhaky, Rinetzky, Shoham,
“Property-Directed Inference of Universal Invariants or
Proving Their Absence” [CAV15].

Extensions

I Extensions to EPR: we can have functions symbols, as
long as we can guarantee the the closure of the function
symbols on any finite set remains finite.

I What data structures can we handle: lists, doubly linked
lists, cyclic lists; binary trees, . . .

I The [CAV13] and [POPL14] papers assume that correct
invariants are given for each loop. On-going work to
automatically generate and prove loop invariants:

I Feldman, Padon, I, Sagiv, Shoham, “Bounded Quantifier
Instantiation for Checking Inductive Invariants” [TACAS17]

I Padon, I, Karbyshev, Sagiv, Shoham, “Decidability of
Inferring Inductive Invariants” [POPL16].

I Padon, McMillan, Panda, Sagiv, Shoham, “Ivy: Safety
Verification by Interactive Generalization” [PLDI16].

I Karbyshev, Bjorner, Itzhaky, Rinetzky, Shoham,
“Property-Directed Inference of Universal Invariants or
Proving Their Absence” [CAV15].

I When does this work?
I When doesn’t this work?

I When does this work?

I When doesn’t this work?

I When does this work?
I When doesn’t this work?

I Init→ Inv; Inv ∧Tr→ Inv′; Inv→ Safe

I Herbrand Thm. ϕ universal ⇒
ϕ ∈ FO-SAT ⇔ ϕ has Herbrand model, H |= ϕ

I Cor. Complete FO-UNSATmethodology:
I Skolemize ϕ: ϕS is universal: ϕS = ∀x (α(x));

ϕ ∈ FO-SAT ⇔ ϕS ∈ FO-SAT

I grnd(α)
def
=
{
α(t)

∣∣ t ∈ |H|
}

I ϕ ∈ FO-UNSAT ⇔ grnd(α) ∈ UNSAT
I Feldman, Padon, I, Sagiv, Shoham, “Bounded Quantifier

Instantiation for Checking Inductive Invariants” [TACAS17]
I Can Understand Decidability of Checking FO Inductive

Invariants, via bounded depth of nesting of functions in t
needed for unsatisfiability.

I Herbrand Thm. ϕ universal ⇒
ϕ ∈ FO-SAT ⇔ ϕ has Herbrand model, H |= ϕ

I Cor. Complete FO-UNSATmethodology:

I Skolemize ϕ: ϕS is universal: ϕS = ∀x (α(x));

ϕ ∈ FO-SAT ⇔ ϕS ∈ FO-SAT

I grnd(α)
def
=
{
α(t)

∣∣ t ∈ |H|
}

I ϕ ∈ FO-UNSAT ⇔ grnd(α) ∈ UNSAT
I Feldman, Padon, I, Sagiv, Shoham, “Bounded Quantifier

Instantiation for Checking Inductive Invariants” [TACAS17]
I Can Understand Decidability of Checking FO Inductive

Invariants, via bounded depth of nesting of functions in t
needed for unsatisfiability.

I Herbrand Thm. ϕ universal ⇒
ϕ ∈ FO-SAT ⇔ ϕ has Herbrand model, H |= ϕ

I Cor. Complete FO-UNSATmethodology:
I Skolemize ϕ: ϕS is universal: ϕS = ∀x (α(x));

ϕ ∈ FO-SAT ⇔ ϕS ∈ FO-SAT

I grnd(α)
def
=
{
α(t)

∣∣ t ∈ |H|
}

I ϕ ∈ FO-UNSAT ⇔ grnd(α) ∈ UNSAT
I Feldman, Padon, I, Sagiv, Shoham, “Bounded Quantifier

Instantiation for Checking Inductive Invariants” [TACAS17]
I Can Understand Decidability of Checking FO Inductive

Invariants, via bounded depth of nesting of functions in t
needed for unsatisfiability.

I Herbrand Thm. ϕ universal ⇒
ϕ ∈ FO-SAT ⇔ ϕ has Herbrand model, H |= ϕ

I Cor. Complete FO-UNSATmethodology:
I Skolemize ϕ: ϕS is universal: ϕS = ∀x (α(x));

ϕ ∈ FO-SAT ⇔ ϕS ∈ FO-SAT

I grnd(α)
def
=
{
α(t)

∣∣ t ∈ |H|
}

I ϕ ∈ FO-UNSAT ⇔ grnd(α) ∈ UNSAT
I Feldman, Padon, I, Sagiv, Shoham, “Bounded Quantifier

Instantiation for Checking Inductive Invariants” [TACAS17]
I Can Understand Decidability of Checking FO Inductive

Invariants, via bounded depth of nesting of functions in t
needed for unsatisfiability.

I Herbrand Thm. ϕ universal ⇒
ϕ ∈ FO-SAT ⇔ ϕ has Herbrand model, H |= ϕ

I Cor. Complete FO-UNSATmethodology:
I Skolemize ϕ: ϕS is universal: ϕS = ∀x (α(x));

ϕ ∈ FO-SAT ⇔ ϕS ∈ FO-SAT

I grnd(α)
def
=
{
α(t)

∣∣ t ∈ |H|
}

I ϕ ∈ FO-UNSAT ⇔ grnd(α) ∈ UNSAT

I Feldman, Padon, I, Sagiv, Shoham, “Bounded Quantifier
Instantiation for Checking Inductive Invariants” [TACAS17]

I Can Understand Decidability of Checking FO Inductive
Invariants, via bounded depth of nesting of functions in t
needed for unsatisfiability.

I Herbrand Thm. ϕ universal ⇒
ϕ ∈ FO-SAT ⇔ ϕ has Herbrand model, H |= ϕ

I Cor. Complete FO-UNSATmethodology:
I Skolemize ϕ: ϕS is universal: ϕS = ∀x (α(x));

ϕ ∈ FO-SAT ⇔ ϕS ∈ FO-SAT

I grnd(α)
def
=
{
α(t)

∣∣ t ∈ |H|
}

I ϕ ∈ FO-UNSAT ⇔ grnd(α) ∈ UNSAT
I Feldman, Padon, I, Sagiv, Shoham, “Bounded Quantifier

Instantiation for Checking Inductive Invariants” [TACAS17]

I Can Understand Decidability of Checking FO Inductive
Invariants, via bounded depth of nesting of functions in t
needed for unsatisfiability.

I Herbrand Thm. ϕ universal ⇒
ϕ ∈ FO-SAT ⇔ ϕ has Herbrand model, H |= ϕ

I Cor. Complete FO-UNSATmethodology:
I Skolemize ϕ: ϕS is universal: ϕS = ∀x (α(x));

ϕ ∈ FO-SAT ⇔ ϕS ∈ FO-SAT

I grnd(α)
def
=
{
α(t)

∣∣ t ∈ |H|
}

I ϕ ∈ FO-UNSAT ⇔ grnd(α) ∈ UNSAT
I Feldman, Padon, I, Sagiv, Shoham, “Bounded Quantifier

Instantiation for Checking Inductive Invariants” [TACAS17]
I Can Understand Decidability of Checking FO Inductive

Invariants, via bounded depth of nesting of functions in t
needed for unsatisfiability.

Thank You!

Anindya Banerjee, Bill Hesse,

Yotam Feldman, Shachar Itzhaky,

Aleksandr Karbyshev, Ori Lahav,

Aleksandar Nanevski, Oded Padon,

Sushant Patnaik, Mooly Sagiv,

Sharon Shoham

