FO Isomorphism Theorems and Descriptive

Complexity

Neil Immerman

UMasss, Amherst

people.cs.umass.edu/~immerman

people.cs.umass.edu/~immerman

co-te. complete Arithmetic Hierarchy FO(N) Te. complete
Halt Halt
co-re. FOY(N) re. FOI(N)
Recursive
Primitive Recursive
‘ EXPTIME
SO(LFP) so[2""]
QSAT PSPACE complete
PSPACE
FO[2""”] FO(PFP) SO(TC) SO[ROM)]
co-NP complete PTIME Hierarchy SO NP complete
SAT SAT
co-NP SOV NP sO3
NP N co-NP
0(1) ,+""*, P complet
FO [“] '.' Hf;rn-“x compiere P
FO(LFP) SO(Horn) SAT
“truly feasible” is FO[(logn)?(] S osraly Y NC

the informal set of FO[log 1] 7 feasible” Ac!
problems we can FO(CFL) y sAC!
solve exactly on all | FOTO sOkrom:~284T L cwmp — NL

: FO(DTC) TT—2COLOR Leomp —5 L

reasonably sized) ; 1
. FO(REGULAR) ! NC!
Instances. -
FO(COUNT) ThC®
FO LOGTIME Hierarchy ACO

co-te. complete Arithmetic Hierarchy FO(N) Te. complete
Halt } Halt
co-re. FOY(N) re. FOI(N)
P = Recursive
o0 Primitive Recursive
k
|J DTIME[n"]
) EXPTIME
k=1 SOLFP) SO[2"""]
QSAT PSPACE complete
PSPACE
Fo[2"""] FO(PFP) SO(TC) SO[nOY)]
co-NP complete PTIME Hierarchy SO NP complete
SAT SAT
co-NP SOV NP SOd
NP N co-NP
O(1) o P let
FO [“] '.' Hf;rn-“x compiere P
FO(LFP) SO(Horn) i
“truly feasible” is FO[(logn)?(] S osraly Y NC
the informal set of FO[log 1] 7 feasible” Ac!
problems we can FO(CFL) y sAC!
solve exactly on all [FoTo) somrom 21 M.comp —7" NL
: FO(DTC) TT—2COLOR Leomp —5 L
reasonably sized) ; 1
. FO(REGULAR) ! NC!
Instances. -
FO(COUNT) ThC?
FO LOGTIME Hierarchy ACO

P

[e.9]
|J DTIME[n"]
k=1

P is a good
mathematical
wrapper for “truly
feasible”.

“truly feasible” is
the informal set of
problems we can
solve exactly on all
reasonably sized
instances.

Arithmetic Hierarchy FO(N)

co-r.e. complete

r.e. complete

Halt Halt
- co-re. FOY(N) re. FO3(NN) -
Recursive
Primitive Recursive
‘ EXPTIME
SO(LFP) SO[2""]
QSAT PSPACE complete
PSPACE
Fo[2"™”] FO(PFP) SO(TC) SO[n°M)]
co-NP complete PTIME Hierarchy SO NP complete
SAT SAT
co-NP SOV NP sO3
NP N co-NP
O(1) ,+""+, P complete
FO[“] '.' Hnl'nA'.‘ P
FO(LFP) SO(Horn) SAT
FO[(log n)°®)] S struly Y NC
FO[log n] ; feasible” % AC!
FO(CFL) i SAC!
FO(TC) SO(Krom);~23AT NLeomp_—— NL
FO(DTC) TT—2COLOR Leomp —5 L
FO(REGULAR) H NC!
FO(COUNT)] ThC®
FO LOGTIME Hierarchy ACO

NTIME[¢(n)]: a mathematical fiction

-,
o —® 0
. e o
input w, l[w|=n o
N accepts w .

if at least S o L@
one of the 21" o
paths accepts. .
—

t(n)

co-te. complete Arithmetic Hierarchy FO(N) Te. complete
Halt Halt
co-re. FOVY(N) re. FOI(N)
Recursive
NP — Primitive Recursive
[ee]
k » EXPTIME
| l NTIME[n] SO(LFP) SO[2"")]
k_ 1 QSAT PSPACE complete
- PSPACE
F0[2m)(n] FO(PEP) SO(TC) SO[ROW)]
co-NP complete PTIME Hierarchy SO NP complete
SAT SAT
co-NP SOV NP SoOd
NP N co-NP
O(1) ,+""+, P complete
FO[”] '.' Horn—“‘ P
FO(LFP) SO(Horn) SAT -
FO[(log n)°V)] Sosray NC
FO[log 7] ; feasible” AC!
FO(CFL) SAC!
FO(TC) SO(Krom):" ! . NL
FO(DTC) TT—2COLOR Leomp —5 L
FO(REGULAR) ; NC!
FO(COUNT) ThC®
FO LOGTIME Hierarchy '\‘ AC?

NP

[e.9]
|J NTIME[n"]
k=1
Many optimization
problems we want
to solve are NP
complete.

SAT, TSP,
3-COLOR,
CLIQUE, ...

co-te. complete Arithmetic Hierarchy FO(N) Te. complete
Halt } Halt
co-re. FOY(N) re. FO3(NN)
Recursive
Primitive Recursive
‘ EXPTIME
SO(LFP) so[2""]
QSAT PSPACE complete
PSPACE
FO[2""”] FO(PFP) SO(TC) SO[ROM)]
co-NP complete PTIME Hierarchy SO NP complete
SAT SAT
co-NP SOV NP sO3
NP N co-NP
O(1) ,+""+, P complete
FO[“] '.' Hnl'nA'.‘ P
FO(LFP) SO(Horn) SAT
FO[(log n)°®)] ! Struly ““ NC
FOllog n] ; feasible” AC!
FO(CFL) B SAC!
FO(TC) SO(Krom):~23AT NLeomp_—— NL
FO(DTC) TT—2COLOR Leomp —5 L
FO(REGULAR) i NC!
FO(COUNT) ThC®
! LOGTIME Hierarchy ACY

FO

Arithmetic Hierarchy FO(N)

co-r.e. complete

r.e. complete

NP — Hal co-re. FOVY(N) re. FOIN) el
0o Recursive
U NTIME[I’IK] Primitive Recursive
k=1
- EXPTIME
Many optimization (LFP) _ sop’]
bl QSAT PSPACE complete
problems we want - S sopoo PSPACE
to solve Iare NP s PTIME Hierarchy SO oo
Comp ete. AL co-NP SOV NP sO3 .
NP N co-NP
SAT’ TS P’ FO[MO(”] "I:I--:‘—“ P complete
3-COLOR, FO(LFP) SO(Horn) L SAT P
CLIQUE,... [mo— — -
As descision FO[log n] ;o feasibler AC!
problems, all NP FOCFD SAC!
complete problems | "9 Sottom % NL
are isomorphic FO@TO) T 2COLOR_ L eomp. L
phic. FO(REGULAR) : NC!
FO(COUNT) ! ThC?
FO ¢ LOGTIME Hierarchy - ACO

Descriptive Complexity

Input
41 Q92 -+ Qn

Answer

| Computation|
a1 a2 oo a’ “ o am

Descriptive Complexity

Input
41 Q92 -+ Qn

Answer

H\Computation\ —

Restrict attention to the complexity of computing individual bits
of the output, i.e., decision problems.

Descriptive Complexity

Input H\Computation\ — Answer
g1 G2 - Qn aa --- a - am
... 8 ...

Restrict attention to the complexity of computing individual bits
of the output, i.e., decision problems.

How hard is it to check if input has property S ?

Descriptive Complexity

Input H\Computation\ — Answer
g1 G2 - Qn aa --- a - am
... 8 ...

Restrict attention to the complexity of computing individual bits
of the output, i.e., decision problems.

How hard is it to check if input has property S ?

How rich a language do we need to express property S?

Descriptive Complexity

Input H\Computation\ — Answer
g1 G2 - Qn aa --- a - am
... 8 ...

Restrict attention to the complexity of computing individual bits
of the output, i.e., decision problems.

How hard is it to check if input has property S ?
How rich a language do we need to express property S?

There is a constructive isomorphism between these two
approaches.

Think of the Input as a Finite Logical Structure

Graph G = ({v1,...,vn},<, E s 1)
; =
Y4 = (E? s, t)
Binary Strlng Aw = ({p17"'7p8}’§ 78)

S = {p2.ps5,p7,Ps}
s =(S") w = 01001011

First-Order Logic

input symbols: from X
variables: x,y,z, ...
boolean connectives: A,V,—
quantifiers: V. 3

numeric symbols: = < +, x, min, max
a = Vx3Iy(E(x,y)) € L(Xg)
B = Iy(x<ynS(x) € L()

g = S(min) € L(Zg)

First-Order Logic

input symbols: from X
variables: x,y,z, ...
boolean connectives: A,V,—
quantifiers: V,3

numeric symbols: = < +, x, min, max
a = Vx3Iy(E(x,y)) € L(Xg)
B = Iy(x<ynS(x) € L()

g = S(min) € L(Zg)

In this setting, with the structure of interest being the finite
input, FO is a weak, low-level complexity class.

Second-Order Logic: FO plus Relation Variables

Gscor = IR G'B'Vxy ((R(X) V G(X) V B(X)) A (E(x,y) =
(=(R(x) A R(y)) A =~(G(x) A G(y)) A=(B(x) A B(¥)))))

Second-Order Logic: FO plus Relation Variables

Fagin’s Theorem: NP = SO3

Gscor = IR G'B'Vxy ((R(X) V G(X) V B(X)) A (E(x,y) =
(=(R(x) A R(y)) A =~(G(x) A G(y)) A=(B(x) A B(¥)))))

co-r.e. complete Arithmetic Hierarchy ~ FO(N) r.e. complete

Halt Halt
co-re. FOY(N) re. FO3(N)
Recursive
Primitive Recursive
) EXPTIME
SO(LFP) so[2""]
QSAT PSPACE complete
PSPACE
FO[2"""] FO(PFP) SO(TC) SO[ROW]
co-NP complete PTIME Hierarchy SO NP complete
SAT SAT
co-NP SOV NP sSO3
NP N co-NP
FO[n®M]
P
FO(LFP) SO(Horn) 5
FO[(logn)°M] '." “truly ““ NC
FO[log] I feasible” % AC!

FO(CFL) ; . v
FO(TC) SO(Krom)7~—23AT NLcomp_—<— N
FOQTO) T OOR omp T L

FO(REGULAR)

.: "‘ NCl
FO(COUNT) i ThC®

FO { LOGTIME Hierarchy AC?

Addition is First-Order

Q+ : STRUC[ZAB] — STRUC[ZS]

A a d ... Adap-{ @an
B + by b ... bp1 by
S S4 S ... Sp-1 8Sp

Addition is First-Order

Q\ : STRUC[ZAB] — STRUC[ZS]

A a da ... dap-1 an
B + by b2 ... bp1 bnp
S S4 S ... Sp-1 8Sp

9]
—~
-~.
~—

= (3>)(AG) A BG) A

(Vk.j > k > i)(A(k) v B(k)))

Addition is First-Order

Q\ : STRUC[ZAB] — STRUC[ZS]

A ay da ... dp-1 an
B + by b2 ... bp1 bnp
S S4 S ... Sp-1 8Sp

cly = (3> i)(AG)ABG) A

(Vk.j > k > i)(A(k) v B(k)))

)
B
i

Ali) @ B(i) @ C(i)

Parallel Machines:

CRAM][(n)] = CRCW-PRAM-TIME[t(n)]-HARD[nO()]

Parallel Machines: Quantifiers are Parallel

CRAM][(n)] = CRCW-PRAM-TIME[t(n)]-HARD[nO()]

Assume array A[x] : x =1,...,rin memory.

Global

Memory

Parallel Machines: Quantifiers are Parallel

CRAM|(t(n)] = CRCW-PRAM-TIME[t(n)]-HARD[n®(")]
Assume array A[x] : x =1,...,rin memory.

Vx(A(x)) = write(1);

Global

Memory

Parallel Machines: Quantifiers are Parallel

CRAM|(t(n)] = CRCW-PRAM-TIME[t(n)]-HARD[n®(")]
Assume array A[x] : x =1,...,rin memory.

Vx(A(x)) = write(1); proc p; : if (Ali] = 0) then write(0)

Global

Memory

FO

CRAM][1]

Logarithmic-Time
Hierarchy

co-te. complete Arithmetic Hierarchy FO(N) Te. complete
Halt Halt
co-re. FOV(N) re. FO3(NN)
Recursive
Primitive Recursive
EXPTIME
SO(LFP) so[2""]
QSAT PSPACE complete
PSPACE
FO[2""”] FO(PFP) SO(TC) SO[nOW)
co-NP complete PTIME Hierarchy SO NP complete
SAT SAT
co-NP SOV NP SoOd
NP N co-NP
O(1) ,+”""+, P complete
FO[”] '.' Horn—“‘ P
FO(LFP) SO(Horn) SAT
FO[(log n)°®)] ; “truly l“‘ NC

FO[log n] ; feasible” AC!
FO(CFL) SAC!
FO(TC) SO(Krom):" . NL

FO(DTC) TT—ZCOLOR Leomp —5 L
FO(REGULAR) : NC!

FO(COUNT) ThC?
FO LOGTIME Hierarchy 5 AC?

Inductive Definitions and Least Fixed Point

REACH = {G,s,t | s 5t}

s >

Inductive Definitions and Least Fixed Point

REACH = {G,s,t | s> t} REACH ¢ FO

s >

Inductive Definitions and Least Fixed Point

E*(x,y) = x=y VvV E(x,y) v 3z(E*(x,2) N E*(z,Yy))

REACH = {G,s,t | s 5t} REACH ¢ FO

s >

Inductive Definitions and Least Fixed Point

E*(x,y)

(ptC(R7X7y)

REACH

= x=y V E(x,y) v 3z(E*(x,2) AN E*(z,y))

x=y Vv E(x,y) vV 3z(R(x,z) A R(z, y))

= {Gst]|s5t} REACH ¢ FO

=

Inductive Definitions and Least Fixed Point

E*(x,y) = x=y VvV E(x,y) v 3z(E*(x,2) N E*(z,Yy))

x=y Vv E(x,y) vV 3z(R(x,z) A R(z, y))

(pZ‘C(FLX:y)

©% :binRel(G) — binRel(G) is a monotone operator

REACH = {G,s,t | s 5t} REACH ¢ FO

s >

Inductive Definitions and Least Fixed Point

E*(x,y) = x=y VvV E(x,y) v 3z(E*(x,2) N E*(z,Yy))

x=y Vv E(x,y) vV 3z(R(x,z) A R(z, y))

(pZ‘C(FLX:y)

©% :binRel(G) — binRel(G) is a monotone operator

E* = (LFPyy)

REACH = {G,s,t | s 5t} REACH ¢ FO

s >

Inductive Definitions and Least Fixed Point

E*(x,y) = x=y VvV E(x,y) v 3z(E*(x,2) N E*(z,Yy))

x=y Vv E(x,y) vV 3z(R(x,z) A R(z, y))

(pZ‘C(FLX:y)

©% :binRel(G) — binRel(G) is a monotone operator

Ge REACH & Gk (LFPp)(s,f) E* = (LFPyg)

REACH = {G,s,t | s 5t} REACH ¢ FO

s >

Tarski-Knaster Theorem

Thm. If ¢ : Rel*(G) — Rel"(G) is monotone, then LFP(;»)
exists and can be computed in P.

Tarski-Knaster Theorem

Thm. If ¢ : Rel*(G) — Rel"(G) is monotone, then LFP(;»)
exists and can be computed in P.

proof: Monotone means, forall RC S, ¢(R) C ¢(S).

Tarski-Knaster Theorem

Thm. If ¢ : Rel*(G) — Rel"(G) is monotone, then LFP(;»)
exists and can be computed in P.

proof: Monotone means, forall RC S, ¢(R) C ¢(S).

Let 0 &g, 1 & ()

Tarski-Knaster Theorem

Thm. If ¢ : Rel*(G) — Rel"(G) is monotone, then LFP(;»)
exists and can be computed in P.

proof: Monotone means, forall RC S, ¢(R) C ¢(S).

Let P &g, 10 Thus,0=R0cC/lcC...CI.

Tarski-Knaster Theorem

Thm. If ¢ : Rel*(G) — Rel"(G) is monotone, then LFP(;»)
exists and can be computed in P.

proof: Monotone means, forall RC S, ¢(R) C ¢(S).
Let P &g, 10 Thus,0=R0cC/lcC...CI.

Let t be min such that /' = /'+1. Note that t < nk where
n=1|VvA.

Tarski-Knaster Theorem

Thm. If ¢ : Rel*(G) — Rel"(G) is monotone, then LFP(;»)
exists and can be computed in P.

proof: Monotone means, forall RC S, ¢(R) C ¢(S).
Let P &g, 10 Thus,0=R0cC/lcC...CI.

Let t be min such that /' = /'+1. Note that t < nk where
n=1|VC. o) =1, sollisafixed point of .

Tarski-Knaster Theorem

Thm. If ¢ : Rel*(G) — Rel"(G) is monotone, then LFP(;»)
exists and can be computed in P.

proof: Monotone means, forall RC S, ¢(R) C ¢(S).
Let P &g, 10 Thus,0=R0cC/lcC...CI.

Let t be min such that /' = /'+1. Note that t < nk where
n=1|VC. o) =1, sollisafixed point of .

Suppose ¢(F) = F.

Tarski-Knaster Theorem

Thm. If ¢ : Rel*(G) — Rel"(G) is monotone, then LFP(;»)
exists and can be computed in P.

proof: Monotone means, forall RC S, ¢(R) C ¢(S).
Let P &g, 10 Thus,0=R0cC/lcC...CI.

Let t be min such that /' = /'+1. Note that t < nk where
n=1|VC. o) =1, sollisafixed point of .

Suppose ¢(F) = F. Byinductiononr,forall r, I" C F.

Tarski-Knaster Theorem

Thm. If ¢ : Rel*(G) — Rel"(G) is monotone, then LFP(;»)
exists and can be computed in P.

proof: Monotone means, forall RC S, ¢(R) C ¢(S).
Let P &g, 10 Thus,0=R0cC/lcC...CI.

Let t be min such that /' = /'+1. Note that t < nk where
n=1|VC. o) =1, sollisafixed point of .

Suppose ¢(F) = F. Byinductiononr,forall r, I" C F.

basecase: °=(CF.

Tarski-Knaster Theorem

Thm. If ¢ : Rel*(G) — Rel"(G) is monotone, then LFP(;»)
exists and can be computed in P.

proof: Monotone means, forall RC S, ¢(R) C ¢(S).
Let P &g, 10 Thus,0=R0cC/lcC...CI.

Let t be min such that /' = /'+1. Note that t < nk where
n=1|VC. o) =1, sollisafixed point of .

Suppose ¢(F) = F. Byinductiononr,forall r, I" C F.
basecase: °=(CF.

inductive case: Assume / C F

Tarski-Knaster Theorem

Thm. If ¢ : Rel*(G) — Rel"(G) is monotone, then LFP(;»)
exists and can be computed in P.

proof: Monotone means, forall RC S, ¢(R) C ¢(S).
Let P &g, 10 Thus,0=R0cC/lcC...CI.

Let t be min such that /' = /'+1. Note that t < nk where
n=1|VC. o) =1, sollisafixed point of .

Suppose ¢(F) = F. Byinductiononr,forall r, I" C F.
basecase: °=(CF.
inductive case: Assume / C F

By monotonicity, ¢(F) C ¢(F),i.e., Ft' CF.

Tarski-Knaster Theorem

Thm. If ¢ : Rel*(G) — Rel"(G) is monotone, then LFP(;»)
exists and can be computed in P.

proof: Monotone means, forall RC S, ¢(R) C ¢(S).
Let P &g, 10 Thus,0=R0cC/lcC...CI.

Let t be min such that /' = /'+1. Note that t < nk where
n=1|VC. o) =1, sollisafixed point of .

Suppose ¢(F) = F. Byinductiononr,forall r, I" C F.
basecase: °=(CF.

inductive case: Assume // C F

By monotonicity, ¢(F) C ¢(F),i.e., Ft' CF.

Thus ' C F and [=LFP(yp). O

Inductive Definition of Transitive Closure

vic(R, X, y) = x=y Vv E(x,y) v 3z(R(x,z) N R(z,y))

Inductive Definition of Transitive Closure

x=y VvV E(x,y) v 3z(R(x,z) AN R(z,y))
{(a,b) € VG x VC | dist(a,b) < 1}

SOIC(R7X7y)
I" = 8(0)

Inductive Definition of Transitive Closure

oe(R, X,y x=y Vv E(x,y) v 32(R(x,z) N R(z,y))
"= 80 {(a,b) € VG x VC | dist(a,b) < 1}
P = (0820 = {(a,b) € V€ x V@ | dist(a,b) < 2}

N~ ~—
I

Inductive Definition of Transitive Closure

ow(R,x,y) = x=y V E(x,y) vV 3z(R(x,z) A R(z,y))
N=¢8®0) = {(ab)ecVCxVE|dist(ahb)<1}
P=(p8)20) = {(ab)e VGx VG| dis(a b) <2}
B=(8)B30) = {(ab)eVCGxVC| dsi(ab) <4}

Inductive Definition of Transitive Closure

ow(R,x,y) = x=y V E(x,y) vV 3z(R(x,z) A R(z,y))
N=¢8®0) = {(ab)ecVCxVE|dist(ahb)<1}
P=(p8)20) = {(ab)e VGx VG| dis(a b) <2}
B=(8)B30) = {(ab)eVCGxVC| dsi(ab) <4}

r=(e8)® = {(ab)eVCxVC|dsyab) <2}

Inductive Definition of Transitive Closure

ow(R,x,y) = x=y VvV E(x,y) v 3z(R(x,z) A R(z,y))
N=¢8®0) = {(ab)ecVCxVE|dist(ahb)<1}
R=(820) = {(ab)eVixVC| dist(ab) <2}
B=(8)B30) = {(ab)eVCGxVC| dsi(ab) <4}
r=(e8)® = {(ab)eVCxVC|dsyab) <2}

(pE)1+eenl () = {(a,b) € V& x V@ | dist(a,b) < n}

Inductive Definition of Transitive Closure

ow(R,x,y) = x=y V E(x,y) vV 3z(R(x,z) A R(z,y))

N=¢8®0) = {(ab)ecVCxVE|dist(ahb)<1}
R=(820) = {(ab)eVixVC| dist(ab) <2}
B=(8)B30) = {(ab)eVCGxVC| dsi(ab) <4}
=80 = {(ab)eVExVEC| dis(ab) <21}
(pE)1+eenl () = {(a,b) € V& x V@ | dist(a,b) < n}

LFP(pr) = ol "8"(p); REACH ¢ IND[log n]

Inductive Definition of Transitive Closure

ow(R,x,y) = x=y V E(x,y) vV 3z(R(x,z) A R(z,y))

N=¢8®0) = {(ab)ecVCxVE|dist(ahb)<1}
R=(p820) = {(ab)e VExVE | dis(ab) <2}
B=(8)B30) = {(ab)eVCGxVC| dsi(ab) <4}
r=(e8)® = {(ab)eVCxVC|dsyab) <2}
(pE)1+eenl () = {(a,b) € V& x V@ | dist(a,b) < n}

LFP(grr) = @l "8"(@); REACH € IND[log]

Next we will show that IND[{(n)] = FO[{(n)].

vic(R,x,y) = x=y VvV E(x,y)Vv 3z(R(x,z2)AR(z,y))

1. Dummy universal quantification for base case:

(Vz.M)(32)(R(x,z) A R(z,y))
~(x=yVE(xY))

S
S
s

X
=
1Tl

vic(R,x,y) = x=y VvV E(x,y)Vv 3z(R(x,z2)AR(z,y))

1. Dummy universal quantification for base case:

vie(R,x,y) = (Vz.My)(32)(R(x,z) A R(z,y))
My = —(x=yVE(X,y))

2. Using Vv, replace two occurrences of R with one:

vie(R,x,y) = (Vz.My)(32)(Vuv.M2)R(u, v)
Mo

(u=xAv=2z)V (u=zAv=yY)

vic(R, X, y) x=yV E(x,y)Vv 3z(R(x,z)AR(z,y))

1. Dummy universal quantification for base case:

vie(R,x,y) = (Vz.My)(32)(R(x,z) A R(z,y))
My = —(x=yVE(X,y))

2. Using Vv, replace two occurrences of R with one:

vie(R,x,y) = (Vz.My)(32)(Vuv.M2)R(u, v)
Mo

(u=xAv=2z)V (u=zAv=yY)
3. Requantify x and y.

My = (x=uAy=v)

(PtC(R7 X, y) = [(VZ.M1)(HZ)(VUV.MQ)(HX}/.M;;)] R(X> y)

Every FO inductive definition is equivalent to a quantifier block.

QB [(Vz.My)(3z2)(Vuv.Mp)(Vxy.Ms)]

(R, x,y) = [(Vz2.M;)(32)(Vuv.Mz)(Ixy.M3)]R(X, ¥)

QB [(Vz.My)(3z2)(Vuv.Mp)(Vxy.Ms)]

(R, x,y) = [(Vz2.M;)(32)(Vuv.Mz)(Ixy.M3)]R(X, ¥)

SOTC(Ra va) = [QBIC]R(X7 y)

QB [(Vz.My)(3z2)(Vuv.Mp)(Vxy.Ms)]

(R, x,y) = [(Vz2.M;)(32)(Vuv.Mz)(Ixy.M3)]R(X, ¥)
SOTC(Raxvy) = [QBIC]R(X7y)

v1e(0) = [QB]'(false)

QB [(Vz.My)(3z2)(Vuv.Mp)(Vxy.Ms)]

(R, x,y) = [(Vz2.M;)(32)(Vuv.Mz)(Ixy.M3)]R(X, ¥)
SOTC(RaX’y) = [QBIC]R(X7y)

vic(0) = [QBy] (false)
Thus, for any structure A € STRUC[X ¢],

A€REACH & A= (LFPpg)(s, 1)

& AE ([QBy)"Hoe 4 false)(s, t)

CRAM[t(n)]

INDI[#(n)]

FO[t(n)]

QB

concurrent parallel random access machine;
polynomial hardware, parallel time O(t(n))

first-order, depth t(n) inductive definitions

t(n) repetitions of a block of restricted quantifiers:

[(Q1 Xq M1) s (Qka.Mk)]; M; quantifier—free

[QB][QB] - - - [QB] Mo
t(n)

parallel time = inductive depth = QB iteration

Thm. For all constructible, polynomially bounded t(n),

CRAM[t(n)] = IND[t(n)] = FO[t(n)]

parallel time = inductive depth = QB iteration

Thm. For all constructible, polynomially bounded t(n),
CRAM[t(n)] = IND[t(n)] = FO[t(n)]

proof idea: CRAM[t(n)] 2 FO[t(n)]: For QB with k variables,
keep in memory current value of formula on all possible
assignments, using n* bits of global memory.

parallel time = inductive depth = QB iteration

Thm. For all constructible, polynomially bounded t(n),
CRAM[t(n)] = IND[t(n)] = FO[t(n)]

proof idea: CRAM[t(n)] 2 FO[t(n)]: For QB with k variables,
keep in memory current value of formula on all possible
assignments, using n* bits of global memory.

Simulate each next quantifier in constant parallel time.

parallel time = inductive depth = QB iteration

Thm. For all constructible, polynomially bounded t(n),
CRAM[t(n)] = IND[t(n)] = FO[t(n)]

proof idea: CRAM[t(n)] 2 FO[t(n)]: For QB with k variables,
keep in memory current value of formula on all possible
assignments, using n* bits of global memory.

Simulate each next quantifier in constant parallel time.

CRAM]t(n)] C FO[t(n)]: Inductively define new state of every
bit of every register of every processor in terms of this global
state at the previous time step. O

parallel time = inductive depth = QB iteration

Thm. For all constructible, polynomially bounded t(n),
CRAM[t(n)] = IND[t(n)] = FO[t(n)]

proof idea: CRAM[t(n)] 2 FO[t(n)]: For QB with k variables,
keep in memory current value of formula on all possible
assignments, using n* bits of global memory.

Simulate each next quantifier in constant parallel time.

CRAM]t(n)] C FO[t(n)]: Inductively define new state of every
bit of every register of every processor in terms of this global
state at the previous time step. O

Thm. For all {(n), even beyond polynomial,

CRAM[{(n)] = FO[t(n)]

co-te. complete Arithmetic Hierarchy FO(N) Te. complete
Halt Halt
co-re. FOV(N) re. FO3(NN)
Recursive
Primitive Recursive
For t(n) poly bdd,
EXPTIME
SO(LFP) so[2""]
QSAT PSPACE complete
PSPACE
CRAM[t(n)] | _ro=" roem somosou
co-NP complete PTIME Hierarchy SO NP complete
SAT SAT
= co-NP SOV NP SoOd
NP N co-NP
O(1) ,*°""«, P complete
IND[t(n)] FO[”] ',' Horn—“‘ ? P
FO(LFP) SO(Horn) SAT
= FO[(log n)°®)] ; “truly l“‘ NC
FO[log n] ; feasible” AC!
FO[t(n)] ,
FO(CFL) : SAC!
FO(TC) SO(Krom):" . NL
FO(DTC) TT—ZCOLOR Leomp —5 L
FO(REGULAR) : NC!
FO(COUNT) ! ThC?
FO LOGTIME Hierarchy '\‘ AC?

co-te. complete Arithmetic Hierarchy FO(N) Te. complete
Halt Halt
co-re. FOV(N) re. FO3(NN)
Recursive
Primitive Recursive
Remember that
EXPTIME
SO(LFP) SO[2""]
fOF al I t(n) ’ QSAT PSPACE complete
PSPACE
FO[2"""] FO(PFP) SO(TC) SO[R°W)
CR AM t n co-NP complete PTIME Hierarchy SO NP complete
[t(m)] ST sar
co-NP SOV NP SoOd
NP N co-NP
o 0(1) ,*°""«, P complete
FO[”] '.' Horn—“‘ N P
FO [1’(n)] FO(LFP) SO(Horn) SAT
FO[(log n)°®)] S “truly l“‘ NC
FO[log n] ; feasible” AC!
FO(CFL) SAC!
FO(TC) SO(Krom):" e NL
FO(DTC) TT—ZCOLOR Leomp —5 L
FO(REGULAR) : NC!
FO(COUNT) ! ThC?
FO LOGTIME Hierarchy '\‘ ACO

Number of Variables Determines Amount of Hardware

Thm. For k =1,2,..., DSPACE[n*] = VAR[k + 1]

Number of Variables Determines Amount of Hardware

Thm. For k =1,2,..., DSPACE[n*] = VAR[k + 1]

Since variables range over a universe of size n, a constant
number of variables can specify a polynomial number of gates.

Number of Variables Determines Amount of Hardware

Thm. For k =1,2,..., DSPACE[n*] = VAR[k + 1]

Since variables range over a universe of size n, a constant
number of variables can specify a polynomial number of gates.

The proof is just a more detailed look at CRAM[t(n)] = FO[t(n)].

Number of Variables Determines Amount of Hardware

Thm. For k =1,2,..., DSPACE[n*] = VAR[k + 1]

Since variables range over a universe of size n, a constant
number of variables can specify a polynomial number of gates.

The proof is just a more detailed look at CRAM[t(n)] = FO[t(n)].

A bounded number, k, of variables, is k log n bits and
corresponds to n* gates, i.e., polynomially much hardware.

Number of Variables Determines Amount of Hardware

Thm. For k =1,2,..., DSPACE[n*] = VAR[k + 1]

Since variables range over a universe of size n, a constant
number of variables can specify a polynomial number of gates.

The proof is just a more detailed look at CRAM[t(n)] = FO[t(n)].

A bounded number, k, of variables, is k log n bits and
corresponds to n* gates, i.e., polynomially much hardware.

A second-order variable of arity r is n" bits, corresponding to
2" gates.

SO: Parallel Machines with Exponential Hardware

Given ¢ with n variables and m clauses, is ¢ € 3-SAT?

SO: Parallel Machines with Exponential Hardware

Given ¢ with n variables and m clauses, is ¢ € 3-SAT?
With r = m2" processors, recognize 3-SAT in constant time!

SO: Parallel Machines with Exponential Hardware

Given ¢ with n variables and m clauses, is ¢ € 3-SAT?
With r = m2" processors, recognize 3-SAT in constant time!
Let S be the first n bits of our processor number.

SO: Parallel Machines with Exponential Hardware

Given ¢ with n variables and m clauses, is ¢ € 3-SAT?
With r = m2" processors, recognize 3-SAT in constant time!

Let S be the first n bits of our processor number.

If processors S1, ... Sm notice that truth assignment S makes
all m clauses of ¢ true, then ¢ € 3-SAT,

SO: Parallel Machines with Exponential Hardware

Given ¢ with n variables and m clauses, is ¢ € 3-SAT?
With r = m2" processors, recognize 3-SAT in constant time!

Let S be the first n bits of our processor number.
If processors S1, ... Sm notice that truth assignment S makes
all m clauses of ¢ true, then ¢ € 3-SAT, so S1 writes a 1.

SO: Parallel Machines with Exponential Hardware

Thm. SO[{(n)] = CRAMJt(n)]-HARD[2"""] .

SO: Parallel Machines with Exponential Hardware

Thm. SO[{(n)] = CRAMJt(n)]-HARD[2"""] .

proof: SO[t(n)] is like FO[t(n)] but using a quantifier block
containing both first-order and second-order quantifiers.
The proof is similar to FO[{(n)] = CRAM[t(n)]. O

SO: Parallel Machines with Exponential Hardware

Thm. SO[{(n)] = CRAMJt(n)]-HARD[2"""] .

proof: SO[t(n)] is like FO[t(n)] but using a quantifier block
containing both first-order and second-order quantifiers.
The proof is similar to FO[{(n)] = CRAM[t(n)]. O

Cor.

SO = PTIME Hierarchy = CRAMJ[1]-HARD[2"""]

SO: Parallel Machines with Exponential Hardware

Thm. SO[{(n)] = CRAMJt(n)]-HARD[2"""] .

proof: SO[t(n)] is like FO[t(n)] but using a quantifier block
containing both first-order and second-order quantifiers.
The proof is similar to FO[{(n)] = CRAM[t(n)]. O

Cor.

SO = PTIME Hierarchy = CRAMJ[1]-HARD[2"""]

so[n°M] = PSPACE — CRAM[HO“)]—HARD[Z“O“)]

SO: Parallel Machines with Exponential Hardware

Thm. SO[{(n)] = CRAMJt(n)]-HARD[2"""] .

proof: SO[t(n)] is like FO[t(n)] but using a quantifier block
containing both first-order and second-order quantifiers.

The proof is similar to FO[{(n)] = CRAM[t(n)]. 0
Cor.
SO = PTIME Hierarchy = CRAM[1]-HARD[2‘1°“)]
SO[n°M] = PSPACE = CRAM[n°M]-HARD[2""]

so2"™] = EXPTIME = CRAM[2""]-HARD[2"""]

Parallel Time versus Amount of Hardware

PSPACE = FO[2""] = CRAM[2""]-HARD[nO()]

= SO[n°M] = CRAM[n®(")]-HARD[2"""]

Parallel Time versus Amount of Hardware

PSPACE = FO[2""] = CRAM[2""]-HARD[nO()]

= SO[n°M] = CRAM[n®(")]-HARD[2"""]

» We would love to understand this tradeoff.

Parallel Time versus Amount of Hardware

PSPACE FO[2""] CRAM[2"""]-HARD[nO())]
= SO[n°M] = CRAM[n®(")]-HARD[2"""]
» We would love to understand this tradeoff.

» Is there such a thing as an inherently sequential problem?,
i.e., is NC # P?

Parallel Time versus Amount of Hardware

PSPACE FO[2""] CRAM[2"""]-HARD[nO())]
= SO[n°M] = CRAM[n®(")]-HARD[2"""]
» We would love to understand this tradeoff.

» Is there such a thing as an inherently sequential problem?,
i.e., is NC # P?

» Same tradeoff as number of variables vs. number of
iterations of a quantifier block.

SO[t(n)]

CRAM[t(n)]-
HARD-[27"]

co-te. complete Arithmetic Hierarchy FO(N) Te. complete
Halt Halt
co-re. FOV(N) re. FO3(NN)
Recursive
Primitive Recursive
EXPTIME
SO(LFP) so[2""]
QSAT PSPACE complete
PSPACE
FO[2""”] FO(PFP) SO(TC) SO[nOW)
co-NP complete PTIME Hierarchy SO NP complete
SAT SAT
co-NP SOV NP SoOd
NP N co-NP
O(1) ,+”""+, P complete
FO[”] '.' Horn—“‘ P
FO(LFP) SO(Horn) SAT
FO[(log n)°®)] ; “truly l“‘ NC

FO[log n] ; feasible” AC!
FO(CFL) SAC!
FO(TC) SO(Krom):" . NL

FO(DTC) TT—ZCOLOR Leomp —5 L
FO(REGULAR) : NC!

FO(COUNT) ! ThC?
FO LOGTIME Hierarchy '\‘ AC?

» [C71] SAT is NP complete via ptime Turing reductions.

» [C71] SAT is NP complete via ptime Turing reductions.
» [K72] Many important problems are NP complete, via <.

» [C71] SAT is NP complete via ptime Turing reductions.
» [K72] Many important problems are NP complete, via <.
» [J73] ...stay complete via logspace reductions, <ug.

» [C71] SAT is NP complete via ptime Turing reductions.
» [K72] Many important problems are NP complete, via <.
» [J73] ...stay complete via logspace reductions, <ug.

» [HIM78] ... stay complete via one-way logspace,
reductions, <q.jg.

» [C71] SAT is NP complete via ptime Turing reductions.
» [K72] Many important problems are NP complete, via <.
» [J73] ...stay complete via logspace reductions, <ug.

» [HIM78] ... stay complete via one-way logspace,
reductions, <q.jg.

» [180] ...stay complete first-order reductions.

» [C71] SAT is NP complete via ptime Turing reductions.

» [K72] Many important problems are NP complete, via <.

» [J73] ...stay complete via logspace reductions, <ug.

» [HIM78] ... stay complete via one-way logspace,
reductions, <q.jg.

» [180] ...stay complete first-order reductions.

» [V82]...stay complete via projections. (Non-uniform

reductions where each bit of the output depends on at
most one bit of the input).

» [C71] SAT is NP complete via ptime Turing reductions.
» [K72] Many important problems are NP complete, via <.
» [J73] ...stay complete via logspace reductions, <ug.

» [HIM78] ... stay complete via one-way logspace,
reductions, <q.jg.

» [180] ...stay complete first-order reductions.

» [V82]...stay complete via projections. (Non-uniform
reductions where each bit of the output depends on at
most one bit of the input).

» [I87] ...stay complete via first-order projections, <.

» [C71] SAT is NP complete via ptime Turing reductions.
» [K72] Many important problems are NP complete, via <.
» [J73] ...stay complete via logspace reductions, <ug.

» [HIM78] ... stay complete via one-way logspace,
reductions, <q.jg.

» [180] ...stay complete first-order reductions.

» [V82]...stay complete via projections. (Non-uniform
reductions where each bit of the output depends on at
most one bit of the input).

» [I87] ...stay complete via first-order projections, <.
» [L75] Artificial, non-complete problems can be constructed.

» [C71] SAT is NP complete via ptime Turing reductions.
» [K72] Many important problems are NP complete, via <.
» [J73] ...stay complete via logspace reductions, <ug.

» [HIM78] ... stay complete via one-way logspace,
reductions, <q.jg.

» [180] ...stay complete first-order reductions.

» [V82]...stay complete via projections. (Non-uniform
reductions where each bit of the output depends on at
most one bit of the input).

» [I87] ...stay complete via first-order projections, <.
» [L75] Artificial, non-complete problems can be constructed.

» Dichotomy: “Natural” problems are complete for important
compexity classes [FV99, S78, ABISV09].

Isomorphism Conjecture

» [BH77] Isomorphism Conjecture: “All NP complete sets
via ptime many-one reductions, <p, are polynomial-time
isomorphic.”

Isomorphism Conjecture

» [BH77] Isomorphism Conjecture: “All NP complete sets
via ptime many-one reductions, <p, are polynomial-time
isomorphic.”

» [ABI93] fop Isomorphism Thm. All NP complete sets via

<iop are first-order isomorphic. Also true for L, NL, P,
PSPACE, etc.

fop Isomorphism Theorem proof sketch

[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

fop Isomorphism Theorem proof sketch

[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

Schroder-Bernstein Thm. Let A and B be any two sets and
suppose thatf: A ! Bandg: B ! A. Then there exists
h:A X B.

fop Isomorphism Theorem proof sketch

[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

Schroder-Bernstein Thm. Let A and B be any two sets and
suppose thatf: A ! Bandg: B ! A. Then there exists
h-A & B (A< Bl A [Bl < |Al — |Al=B)

fop Isomorphism Theorem proof sketch

[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

Schroder-Bernstein Thm. Let A and B be any two sets and
supposethatf: A ! Band g: B ' A. Then there exists
h-A & B (A< Bl A [Bl < |Al — |Al=B)

Proof: For a,c € AU B, say that ais an ancestor of c if we
can go from ato ¢ by applying a finite, non-zero, number of
applications of f and g.

fop Isomorphism Theorem proof sketch

[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

Schroder-Bernstein Thm. Let A and B be any two sets and
suppose thatf: A ! Bandg: B ! A. Then there exists
h-A & B (A< Bl A [Bl < |Al — |Al=B)

Proof: For a,c € AU B, say that ais an ancestor of c if we
can go from ato ¢ by applying a finite, non-zero, number of
applications of f and g.

h(a) def { g! (a) if ahas an odd number of ancestors

f(a) if @ has an even or infinite number of ancestors

fop Isomorphism Theorem proof sketch

[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

Schroder-Bernstein Thm. Let A and B be any two sets and
suppose thatf: A ! Bandg: B ! A. Then there exists
h-A & B (A< Bl A [Bl < |Al — |Al=B)

Proof: For a,c € AU B, say that ais an ancestor of c if we
can go from ato ¢ by applying a finite, non-zero, number of
applications of f and g.

h(a) def { g! (a) if ahas an odd number of ancestors

f(a) if @ has an even or infinite number of ancestors

Thus, h:A U 0

onto

[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

Lemma: Letf: A<, Band g : B <, Awhere f and g are 1:1
length-increasing functions. Assume also that f and g have left
inverses in FP. Then A is p-isomorphic to B.

[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

Lemma: Letf: A<, Band g : B <, Awhere f and g are 1:1
length-increasing functions. Assume also that f and g have left
inverses in FP. Then A is p-isomorphic to B.

Proof: Since f, g are length-increasing, the ancestor chains
are linear in length. Thus, the isomorphism, h, can be defined
as in the SB Thm, but now it can be computed in ptime. O

Def. A C ¥* has p-time padding functions if Je, d € FPs.t.
1.Vw,xeX* weA < e(w,x)cA
2. Vw,x e ¥* d(e(w,x)) =x
3. Vw,x e ¥* |e(w,x)| > |w|+ |x].

Def. A C ¥* has p-time padding functions if Je, d € FPs.t.
1.Vw,xeX* weA < e(w,x)cA
2. Vw,x e ¥* d(e(w,x)) =x
3. Vw,x € ¥* |e(w,x)| > |w|+ |x].
Example: for SAT: e(w, x) o (W) A Cy A--- A Ciy, Where
~————

Ci=(yVvy)ifx;=1,else (y vy).

Def. A C X* has p-time padding functions if Je, d € FPs.t.
1.Vw,xeX* weA < e(w,x)cA
2. Vw,x e ¥* d(e(w,x)) =x
3. Vw,x € ¥* |e(w,x)| > |w|+ |x].
Example: for SAT: e(w, x) o (W) A Cy A--- A Ciy, Where
Ci=(yVvy)ifx;=1,else (y vy).

Lemma: If A, B € NPC and have p-time padding functions, then
they are inter-reducible via p-time invertible 1:1
length-increasing reductions.

Def. A C X* has p-time padding functions if Je, d € FPs.t.
1.Vw,xeX* weA < e(w,x)cA
2. Vw,x e ¥* d(e(w,x)) =x
3. Vw,x € ¥* |e(w,x)| > |w|+ |x].
Example: for SAT: e(w, x) o (W) A Cy A--- A Ciy, Where
Ci=(yVvy)ifx;=1,else (y vy).

Lemma: If A, B € NPC and have p-time padding functions, then
they are inter-reducible via p-time invertible 1:1
length-increasing reductions.

Lemma: All the NP complete sets in [GJ] have p-time padding
functions.

Def. A C X* has p-time padding functions if Je, d € FPs.t.
1.Vw,xeX* weA < e(w,x)cA
2. Vw,x e ¥* d(e(w,x)) =x
3. Vw,x € ¥* |e(w,x)| > |w|+ |x].
Example: for SAT: e(w, x) o (W) A Cy A--- A Ciy, Where
Ci=(yVvy)ifx;=1,else (y vy).

Lemma: If A, B € NPC and have p-time padding functions, then
they are inter-reducible via p-time invertible 1:1
length-increasing reductions.

Lemma: All the NP complete sets in [GJ] have p-time padding
functions.

Thus, all the NP complete sets in [GJ] are p-isomorphic. O

fop Isomorphism Theorem proof sketch

fop Isomorphism Thm. All NP complete sets via <, are
first-order isomorphic. Also true for NC', sAC', L, NL, P,
PSPACE, etc.

fop Isomorphism Theorem proof sketch

fop Isomorphism Thm. All NP complete sets via <, are

first-order isomorphic. Also true for NC', sAC', L, NL, P,
PSPACE, etc.

Key Lemma: Let f be a first-order projection (fop) that is 1:1
and of arity at least 2, i.e., it at least squares the size. Then the
following two predicates are first-order expressible concerning
a structure, A:

1. 1E(.A), meaning that f~'(A) exists.

2. #Ancestors(.A, r), meaning A has exactly r ancestors.

fop Isomorphism Theorem proof sketch

fop Isomorphism Thm. All NP complete sets via <, are

first-order isomorphic. Also true for NC', sAC', L, NL, P,
PSPACE, etc.

Key Lemma: Let f be a first-order projection (fop) that is 1:1
and of arity at least 2, i.e., it at least squares the size. Then the
following two predicates are first-order expressible concerning
a structure, A:

1. IE(A), meaning that f~1(A) exists.
2. #Ancestors(.A, r), meaning A has exactly r ancestors.
The rest of the proof is similar to proof from [BH77]. O

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

» Morally, the BH Isomorphism Conjecture is true.

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.
» Morally, the BH Isomorphism Conjecture is true.

» Each nice complexity class has exactly one complete
problem.

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

» Morally, the BH Isomorphism Conjecture is true.
» Each nice complexity class has exactly one complete
problem.

» Dichotomy Phenomenon: “Natural” computational
problems tend to be complete via fops for one of our
favorite complexity classes.

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

v

Morally, the BH Isomorphism Conjecture is true.

Each nice complexity class has exactly one complete
problem.

Dichotomy Phenomenon: “Natural” computational
problems tend to be complete via fops for one of our
favorite complexity classes.

Great for Algorithms and Complexity Theory!

v

v

v

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.
» Morally, the BH Isomorphism Conjecture is true.

» Each nice complexity class has exactly one complete
problem.

» Dichotomy Phenomenon: “Natural” computational
problems tend to be complete via fops for one of our
favorite complexity classes.

» Great for Algorithms and Complexity Theory!
» But not true in general [L75].

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.
» Morally, the BH Isomorphism Conjecture is true.

» Each nice complexity class has exactly one complete
problem.

» Dichotomy Phenomenon: “Natural” computational
problems tend to be complete via fops for one of our
favorite complexity classes.

» Great for Algorithms and Complexity Theory!
» But not true in general [L75].
» Why does this seem to occur?

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.
» Morally, the BH Isomorphism Conjecture is true.

» Each nice complexity class has exactly one complete
problem.

» Dichotomy Phenomenon: “Natural” computational
problems tend to be complete via fops for one of our
favorite complexity classes.

» Great for Algorithms and Complexity Theory!
» But not true in general [L75].

» Why does this seem to occur?

» Logical and Algebraic reasons, e.g., CSP.

Arithmetic Hierarchy FO(N = complete

co-r.e. complete
FO-SAT/ F FO-VALID
iz O SALE FOVIN) —_ & FOI(N) Hal
Recursive
succinctQSAT EXPSPACE complet:
20(1)

‘271()(1‘,]

SOPEP) 50[2>"| EXPSPACE |CH[2”'

Sop") EXPTIME [0000 g0,

SO(LFP)
SAT PSPACE complete
CRAM[Q“O“)} FO[?"O(”] FO(PFP) SO(TC) SO[nOW)] PSPACE CH[nOW, o0
PTIME Hierarchy SO H[O(1)_QWHr]

co-NP comple!
SAT

NP N co-NP

FO [nO(l)] . ﬁ;]'l;{g‘complete »
FO(LFP) SO(Horn) > SAT
CRAM((log n)O(l)] FO[(log n)O(])} S “ruly \“ NC
CRAM][(log n)] FOllog n] feasible” - Ac
FO(CFL) AC!

FO(TC) SO(Krom) ~—25AT NL comp. —~— NL
FODTC) W L

FOREGULAR) S NC!

FO(COUNT) ThC’
CRAM[O(1)] FO ;. LOGTIME Hierarchy ACO

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

Some were unhappy with the fop Iso Thm because of a
mismatch: fop more restrictive than fo.

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

Some were unhappy with the fop Iso Thm because of a
mismatch: fop more restrictive than fo.

First-Order Isomorphism Theorem [Agrawal01] For nice
complexity classes, all complete sets via fops are first-order
isomorphic.

