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P =
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k=1

DTIME[nk ]

P is a good
mathematical

wrapper for “truly
feasible”.

“truly feasible” is
the informal set of
problems we can

solve exactly on all
reasonably sized

instances.
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NTIME[t(n)]: a mathematical fiction

input w , |w | = n

N accepts w

if at least

one of the 2t(n)

paths accepts.
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NP =
∞⋃

k=1

NTIME[nk ]

Many optimization
problems we want

to solve are NP
complete.

SAT, TSP,
3-COLOR,
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NP =
∞⋃

k=1

NTIME[nk ]

Many optimization
problems we want

to solve are NP
complete.

SAT, TSP,
3-COLOR,

CLIQUE, . . .

As descision
problems, all NP

complete problems
are isomorphic.



Descriptive Complexity

Input
q1 q2 · · · qn

7→ Computation 7→ Answer
a1 a2 · · · ai · · · am

· · · S · · ·

Restrict attention to the complexity of computing individual bits
of the output, i.e., decision problems.

How hard is it to check if input has property S ?

How rich a language do we need to express property S?

There is a constructive isomorphism between these two
approaches.
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Think of the Input as a Finite Logical Structure

Graph G = ({v1, . . . , vn},≤, E , s, t)

Σg = (E2, s, t)
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Binary String Aw = ({p1, . . . ,p8},≤ ,S)
S = {p2,p5,p7,p8}

Σs = (S1) w = 01001011



First-Order Logic

input symbols: from Σ
variables: x , y , z, . . .

boolean connectives: ∧,∨,¬
quantifiers: ∀, ∃

numeric symbols: =,≤,+,×,min,max

α ≡ ∀x∃y(E(x , y)) ∈ L(Σg)

β ≡ ∃x∀y(x ≤ y ∧ S(x)) ∈ L(Σs)

β ≡ S(min) ∈ L(Σs)

In this setting, with the structure of interest being the finite
input, FO is a weak, low-level complexity class.



First-Order Logic

input symbols: from Σ
variables: x , y , z, . . .

boolean connectives: ∧,∨,¬
quantifiers: ∀, ∃

numeric symbols: =,≤,+,×,min,max

α ≡ ∀x∃y(E(x , y)) ∈ L(Σg)

β ≡ ∃x∀y(x ≤ y ∧ S(x)) ∈ L(Σs)

β ≡ S(min) ∈ L(Σs)

In this setting, with the structure of interest being the finite
input, FO is a weak, low-level complexity class.



Second-Order Logic: FO plus Relation Variables

Fagin’s Theorem: NP = SO∃

Φ3color ≡ ∃R1 G1 B1 ∀ x y ((R(x) ∨G(x) ∨ B(x)) ∧ (E(x , y)→
(¬(R(x) ∧ R(y)) ∧ ¬(G(x) ∧G(y)) ∧ ¬(B(x) ∧ B(y)))))
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Addition is First-Order

Q+ : STRUC[ΣAB]→ STRUC[Σs]

A a1 a2 . . . an−1 an
B + b1 b2 . . . bn−1 bn

S s1 s2 . . . sn−1 sn

C(i) ≡ (∃j > i)
(

A(j) ∧ B(j) ∧

(∀k .j > k > i)(A(k) ∨ B(k))
)

Q+(i) ≡ A(i) ⊕ B(i) ⊕ C(i)
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Parallel Machines:

Quantifiers are Parallel

CRAM[t(n)] = CRCW-PRAM-TIME[t(n)]-HARD[nO(1)]

Assume array A[x ] : x = 1, . . . , r in memory.

∀x(A(x)) ≡ write(1); proc pi : if (A[i] = 0) then write(0)
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FO

=

CRAM[1]

=

AC0

=

Logarithmic-Time
Hierarchy



Inductive Definitions and Least Fixed Point

E?(x , y)
def
= x = y ∨ E(x , y) ∨ ∃z(E?(x , z) ∧ E?(z, y))

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z(R(x , z) ∧ R(z, y))

ϕG
tc : binRel(G) → binRel(G) is a monotone operator

G ∈ REACH ⇔ G |= (LFPϕtc)(s, t) E? = (LFPϕtc)

REACH =
{

G, s, t
∣∣ s ?→ t

}

REACH 6∈ FO
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Tarski-Knaster Theorem

Thm. If ϕ : Relk (G)→ Relk (G) is monotone, then LFP(ϕ)
exists and can be computed in P.

proof: Monotone means, for all R ⊆ S, ϕ(R) ⊆ ϕ(S).

Let I0 def
= ∅; Ir+1 def

= ϕ(Ir ) Thus, ∅ = I0 ⊆ I1 ⊆ · · · ⊆ I t .

Let t be min such that I t = I t+1. Note that t ≤ nk where
n = |V G|. ϕ(I t ) = I t , so I t is a fixed point of ϕ.

Suppose ϕ(F ) = F . By induction on r , for all r , Ir ⊆ F .

base case: I0 = ∅ ⊆ F .

inductive case: Assume I j ⊆ F

By monotonicity, ϕ(I j) ⊆ ϕ(F ), i.e., I j+1 ⊆ F .

Thus I t ⊆ F and I t = LFP(ϕ). �
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Inductive Definition of Transitive Closure

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z(R(x , z) ∧ R(z, y))

I1 = ϕG
tc(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 1
}

I2 = (ϕG
tc)2(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 2
}

I3 = (ϕG
tc)3(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 4
}

... =
...

...

Ir = (ϕG
tc)r (∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 2r−1}
... =

...
...

(ϕG
tc)d1+log ne(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ n
}

LFP(ϕtc) = ϕ
d1+log ne
tc (∅); REACH ∈ IND[log n]

Next we will show that IND[t(n)] = FO[t(n)].
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ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z (R(x , z)∧R(z, y))

1. Dummy universal quantification for base case:

ϕtc(R, x , y) ≡ (∀z.M1)(∃z)(R(x , z) ∧ R(z, y))

M1 ≡ ¬(x = y ∨ E(x , y))

2. Using ∀, replace two occurrences of R with one:

ϕtc(R, x , y) ≡ (∀z.M1)(∃z)(∀uv .M2)R(u, v)

M2 ≡ (u = x ∧ v = z) ∨ (u = z ∧ v = y)

3. Requantify x and y .

M3 ≡ (x = u ∧ y = v)

ϕtc(R, x , y) ≡ [ (∀z.M1)(∃z)(∀uv .M2)(∃xy .M3) ] R(x , y)

Every FO inductive definition is equivalent to a quantifier block.
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QBtc ≡ [(∀z.M1)(∃z)(∀uv .M2)(∀xy .M3)]

ϕtc(R, x , y) ≡ [(∀z.M1)(∃z)(∀uv .M2)(∃xy .M3)]R(x , y)

ϕtc(R, x , y) ≡ [QBtc]R(x , y)

ϕr
tc(∅) ≡ [QBtc]r (false)

Thus, for any structure A ∈ STRUC[Σg],

A ∈ REACH ⇔ A |= (LFPϕtc)(s, t)

⇔ A |= ([QBtc]d1+log ||A||e false)(s, t)
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CRAM[t(n)] = concurrent parallel random access machine;
polynomial hardware, parallel time O(t(n))

IND[t(n)] = first-order, depth t(n) inductive definitions

FO[t(n)] = t(n) repetitions of a block of restricted quantifiers:

QB = [(Q1x1.M1) · · · (Qkxk .Mk )]; Mi quantifier-free

ϕn = [QB][QB] · · · [QB]︸ ︷︷ ︸
t(n)

M0



parallel time = inductive depth = QB iteration

Thm. For all constructible, polynomially bounded t(n),

CRAM[t(n)] = IND[t(n)] = FO[t(n)]

proof idea: CRAM[t(n)] ⊇ FO[t(n)]: For QB with k variables,
keep in memory current value of formula on all possible
assignments, using nk bits of global memory.
Simulate each next quantifier in constant parallel time.

CRAM[t(n)] ⊆ FO[t(n)]: Inductively define new state of every
bit of every register of every processor in terms of this global
state at the previous time step. �

Thm. For all t(n), even beyond polynomial,

CRAM[t(n)] = FO[t(n)]
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For t(n) poly bdd,

CRAM[t(n)]

=

IND[t(n)]

=

FO[t(n)]



Remember that

for all t(n),

CRAM[t(n)]

=

FO[t(n)]



Number of Variables Determines Amount of Hardware

Thm. For k = 1,2, . . . , DSPACE[nk ] = VAR[k + 1]

Since variables range over a universe of size n, a constant
number of variables can specify a polynomial number of gates.

The proof is just a more detailed look at CRAM[t(n)] = FO[t(n)].

A bounded number, k , of variables, is k log n bits and
corresponds to nk gates, i.e., polynomially much hardware.

A second-order variable of arity r is nr bits, corresponding to
2nr

gates.
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SO: Parallel Machines with Exponential Hardware

Given ϕ with n variables and m clauses, is ϕ ∈ 3-SAT?

With r = m2n processors, recognize 3-SAT in constant time!

Let S be the first n bits of our processor number.
If processors S1, . . .Sm notice that truth assignment S makes
all m clauses of ϕ true, then ϕ ∈ 3-SAT, so S1 writes a 1.
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SO: Parallel Machines with Exponential Hardware

Thm. SO[t(n)] = CRAM[t(n)]-HARD[2nO(1)
] .

proof: SO[t(n)] is like FO[t(n)] but using a quantifier block
containing both first-order and second-order quantifiers.
The proof is similar to FO[t(n)] = CRAM[t(n)]. �

Cor.

SO = PTIME Hierarchy = CRAM[1]-HARD[2nO(1)
]

SO[nO(1)] = PSPACE = CRAM[nO(1)]-HARD[2nO(1)
]

SO[2nO(1)
] = EXPTIME = CRAM[2nO(1)

]-HARD[2nO(1)
]
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I Is there such a thing as an inherently sequential problem?,
i.e., is NC 6= P?

I Same tradeoff as number of variables vs. number of
iterations of a quantifier block.
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Reductions

I [C71] SAT is NP complete via ptime Turing reductions.

I [K72] Many important problems are NP complete, via ≤p.
I [J73] . . . stay complete via logspace reductions, ≤log.
I [HIM78] . . . stay complete via one-way logspace,

reductions, ≤1-log.
I [I80] . . . stay complete first-order reductions.
I [V82] . . . stay complete via projections. (Non-uniform

reductions where each bit of the output depends on at
most one bit of the input).

I [I87] . . . stay complete via first-order projections, ≤fop.
I [L75] Artificial, non-complete problems can be constructed.
I Dichotomy: “Natural” problems are complete for important

compexity classes [FV99, S78, ABISV09].
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Isomorphism Conjecture

I [BH77] Isomorphism Conjecture: “All NP complete sets
via ptime many-one reductions, ≤p, are polynomial-time
isomorphic.”

I [ABI93] fop Isomorphism Thm. All NP complete sets via
≤fop are first-order isomorphic. Also true for L, NL, P,
PSPACE, etc.
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fop Isomorphism Theorem proof sketch

[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

Schröder-Bernstein Thm. Let A and B be any two sets and
suppose that f : A 1:1→ B and g : B 1:1→ A. Then there exists
h : A 1:1→

onto
B. (|A| ≤ |B| ∧ |B| ≤ |A| → |A| = |B|)

Proof: For a, c ∈ A ∪ B, say that a is an ancestor of c if we
can go from a to c by applying a finite, non-zero, number of
applications of f and g.

h(a)
def
=

{
g−1(a) if a has an odd number of ancestors
f (a) if a has an even or infinite number of ancestors

Thus, h : A 1:1→
onto

B �
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Schröder-Bernstein Thm. Let A and B be any two sets and
suppose that f : A 1:1→ B and g : B 1:1→ A. Then there exists
h : A 1:1→

onto
B.

(|A| ≤ |B| ∧ |B| ≤ |A| → |A| = |B|)

Proof: For a, c ∈ A ∪ B, say that a is an ancestor of c if we
can go from a to c by applying a finite, non-zero, number of
applications of f and g.

h(a)
def
=

{
g−1(a) if a has an odd number of ancestors
f (a) if a has an even or infinite number of ancestors

Thus, h : A 1:1→
onto

B �



fop Isomorphism Theorem proof sketch

[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.
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[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

Lemma: Let f : A ≤p B and g : B ≤p A where f and g are 1:1
length-increasing functions. Assume also that f and g have left
inverses in FP. Then A is p-isomorphic to B.

Proof: Since f ,g are length-increasing, the ancestor chains
are linear in length. Thus, the isomorphism, h, can be defined
as in the SB Thm, but now it can be computed in ptime. �
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Def. A ⊆ Σ∗ has p-time padding functions if ∃e,d ∈ FP s.t.

1. ∀w , x ∈ Σ∗ w ∈ A ↔ e(w , x) ∈ A
2. ∀w , x ∈ Σ∗ d(e(w , x)) = x
3. ∀w , x ∈ Σ∗ |e(w , x)| ≥ |w |+ |x |.

Example: for SAT: e(w , x)
def
= (w) ∧ C1 ∧ · · · ∧ C|x |︸ ︷︷ ︸, where

Ci = (y ∨ y) if xi = 1, else (y ∨ y).

Lemma: If A,B ∈ NPC and have p-time padding functions, then
they are inter-reducible via p-time invertible 1:1
length-increasing reductions.

Lemma: All the NP complete sets in [GJ] have p-time padding
functions.

Thus, all the NP complete sets in [GJ] are p-isomorphic. �
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fop Isomorphism Theorem proof sketch

fop Isomorphism Thm. All NP complete sets via ≤fop are
first-order isomorphic. Also true for NC1, sAC1, L, NL, P,
PSPACE, etc.

Key Lemma: Let f be a first-order projection (fop) that is 1:1
and of arity at least 2, i.e., it at least squares the size. Then the
following two predicates are first-order expressible concerning
a structure, A:

1. IE(A), meaning that f−1(A) exists.
2. #Ancestors(A, r), meaning A has exactly r ancestors.

The rest of the proof is similar to proof from [BH77]. �



fop Isomorphism Theorem proof sketch

fop Isomorphism Thm. All NP complete sets via ≤fop are
first-order isomorphic. Also true for NC1, sAC1, L, NL, P,
PSPACE, etc.

Key Lemma: Let f be a first-order projection (fop) that is 1:1
and of arity at least 2, i.e., it at least squares the size. Then the
following two predicates are first-order expressible concerning
a structure, A:

1. IE(A), meaning that f−1(A) exists.
2. #Ancestors(A, r), meaning A has exactly r ancestors.

The rest of the proof is similar to proof from [BH77]. �



fop Isomorphism Theorem proof sketch

fop Isomorphism Thm. All NP complete sets via ≤fop are
first-order isomorphic. Also true for NC1, sAC1, L, NL, P,
PSPACE, etc.

Key Lemma: Let f be a first-order projection (fop) that is 1:1
and of arity at least 2, i.e., it at least squares the size. Then the
following two predicates are first-order expressible concerning
a structure, A:

1. IE(A), meaning that f−1(A) exists.
2. #Ancestors(A, r), meaning A has exactly r ancestors.

The rest of the proof is similar to proof from [BH77]. �



fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

I Morally, the BH Isomorphism Conjecture is true.
I Each nice complexity class has exactly one complete

problem.
I Dichotomy Phenomenon: “Natural” computational

problems tend to be complete via fops for one of our
favorite complexity classes.

I Great for Algorithms and Complexity Theory!
I But not true in general [L75].
I Why does this seem to occur?
I Logical and Algebraic reasons, e.g., CSP.
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problem.
I Dichotomy Phenomenon: “Natural” computational

problems tend to be complete via fops for one of our
favorite complexity classes.
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fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

Some were unhappy with the fop Iso Thm because of a
mismatch: fop more restrictive than fo.

First-Order Isomorphism Theorem [Agrawal01] For nice
complexity classes, all complete sets via fops are first-order
isomorphic.
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