FO Isomorphism Theorems and Descriptive Complexity

Neil Immerman

UMasss, Amherst
people.cs.umass.edu/~immerman
"truly feasible" is the informal set of problems we can solve exactly on all reasonably sized instances.

Primitive Recursive	
SO (LFP) $\quad \mathrm{SO}\left[2^{n^{\text {O(1) }}}\right]$	EXPTIME
$\mathrm{FO}\left[2^{n^{O(1)}}\right] \quad \mathrm{FO}(\mathrm{PFP}) \quad$QSAT PSPACE complete $\mathrm{SO}(\mathrm{TC}) \quad \mathrm{SO}\left[n^{O(1)}\right]$	PSPACE
$\begin{aligned} & \mathrm{FO}\left[n^{O(1)}\right] \\ & \mathrm{FO}(\mathrm{LFP}) \end{aligned}$	P
	NC
$\mathrm{FO}[\log n] \quad$ feasible"	AC^{1}
$\mathrm{FO}(\mathrm{CFL})$	$\mathbf{s A C}{ }^{1}$
$\mathrm{FO}(\mathrm{TC}) \quad \mathrm{SO}$ (Krom) ${ }^{\text {a }}$ 2SAT NL comp.	NL
FO(DTC)	L
FO (REGULAR)	NC ${ }^{1}$
$\mathrm{FO}(\mathrm{COUNT}) \quad$ i	ThC ${ }^{0}$
FO \quad LOGTIME Hierarchy	AC^{0}

$$
\begin{gathered}
P= \\
\bigcup_{k=1}^{\infty} \text { DTIME }\left[n^{k}\right]
\end{gathered}
$$

Recursive	
Primitive Recursive	
$\mathrm{SO}(\mathrm{LFP}) \quad \mathrm{SO}\left[2^{n^{\text {O(1) }}}\right]$	EXPTIME
QSAT PSPACE complete $\mathrm{FO}\left[2^{n^{O(1)}}\right]$ $\mathrm{FO}(\mathrm{PFP})$ $\mathrm{SO}(\mathrm{TC})$ $\mathrm{SO}\left[n^{O(1)}\right]$ PSPACE	
$\mathrm{FO}\left[n^{O(1)}\right]$	P
	NC
$\mathrm{FO}[\log n] \quad$ feasible"	AC^{1}
$\mathrm{FO}(\mathrm{CFL}) \quad$!	sAC ${ }^{1}$
$\mathrm{FO}(\mathrm{TC}) \quad \mathrm{SO}(\mathrm{Krom})$ 2SAT \quad NL comp.	NL
$\mathrm{FO}(\mathrm{DTC})$	L
FO (REGULAR)	NC^{1}
$\mathrm{FO}(\mathrm{COUNT}) \quad$:	ThC ${ }^{0}$
FO	AC^{0}

NTIME[t(n)]:

if at least one of the $2^{t(n)}$ paths accepts.

NP =
∞
$\bigcup \operatorname{NTIME}\left[n^{k}\right]$
$k=1$
Many optimization problems we want to solve are NP complete.
SAT, TSP, 3-COLOR, CLIQUE, ...

Recursive	
Primitive Recursive	
SO (LFP) $\quad \mathrm{SO}\left[2^{n^{\text {O(1) }}}\right]$	EXPTIME
$\mathrm{FO}\left[2^{n^{O(1)}}\right] \quad \mathrm{FO}(\mathrm{PFP}) \quad$QSAT PSPACE complete $\mathrm{SO}(\mathrm{TC}) \quad \mathrm{SO}\left[n^{O(1)}\right]$	PSPACE
$\begin{aligned} & \mathrm{FO}\left[n^{O(1)}\right] \\ & \mathrm{FO}(\mathrm{LFP}) \end{aligned}$	P
$\mathrm{FO}\left[(\log n)^{O(1)}\right]$	NC
$\mathrm{FO}[\log n] \quad$ feasible"	AC^{1}
$\mathrm{FO}(\mathrm{CFL})$	sAC ${ }^{1}$
$\mathrm{FO}(\mathrm{TC}) \quad \mathrm{SO}(\mathrm{Krom}){ }^{\text {a }}$ 2SAT NL comp.	NL
FO (DTC) 2COLOR L comp.	L
FO (REGULAR)	NC ${ }^{1}$
$\mathrm{FO}(\mathrm{COUNT})$	ThC ${ }^{0}$
FO LOGTIME Hierarchy	AC^{0}

$\mathrm{NP}=$

$k=1$
Many optimization problems we want to solve are NP complete. SAT, TSP, 3-COLOR, CLIQUE, ...

As descision

 problems, all NP complete problems are isomorphic.

Descriptive Complexity

$$
\begin{gathered}
\text { Input } \\
q_{1} q_{2} \cdots q_{n}
\end{gathered} \mapsto \text { Computation } \mapsto \quad a_{1} a_{2} \cdots a_{i} \cdots a_{m}
$$

Descriptive Complexity

$$
\begin{array}{cc}
\text { Input } \\
q_{1} q_{2} \cdots q_{n}
\end{array} \mapsto \text { Computation } \mapsto \quad a_{1} a_{2} \cdots a_{i} \cdots a_{m}
$$

Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

Descriptive Complexity

$$
\begin{array}{ccc}
\begin{array}{c}
\text { Input } \\
q_{1} \\
q_{2}
\end{array} \cdots q_{n}
\end{array} \stackrel{\mapsto \text { Computation }}{ } \mapsto \begin{array}{cc}
\text { Answer } \\
a_{1} & a_{2} \\
\cdots & a_{i}
\end{array} \cdots a_{m}
$$

Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

How hard is it to check if input has property S ?

Descriptive Complexity

Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

How hard is it to check if input has property S ?

How rich a language do we need to express property S ?

Descriptive Complexity

Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

How hard is it to check if input has property S ?

How rich a language do we need to express property S ?

There is a constructive isomorphism between these two approaches.

Think of the Input as a Finite Logical Structure

Graph
$$
\Sigma_{g}=\left(E^{2}, s, t\right)
$$

$$
G=\left(\left\{v_{1}, \ldots, v_{n}\right\}, \leq, E, s, t\right)
$$

Binary String

$$
\begin{gathered}
\mathcal{A}_{w}=\left(\left\{p_{1}, \ldots, p_{8}\right\}, \leq, S\right) \\
S=\left\{p_{2}, p_{5}, p_{7}, p_{8}\right\} \\
w=01001011
\end{gathered}
$$

First-Order Logic

input symbols: from Σ
variables: $\quad x, y, z, \ldots$
boolean connectives: \wedge, \vee, \neg
quantifiers: \forall, \exists
numeric symbols: $=, \leq,+, \times, \min , \max$

$$
\begin{aligned}
\alpha & \equiv \forall x \exists y(E(x, y)) & \in \mathcal{L}\left(\Sigma_{g}\right) \\
\beta & \equiv \exists x \forall y(x \leq y \wedge S(x)) & \in \mathcal{L}\left(\Sigma_{s}\right) \\
\beta & \equiv S(\text { min }) & \in \mathcal{L}\left(\Sigma_{s}\right)
\end{aligned}
$$

First-Order Logic

input symbols: from Σ
variables: $\quad x, y, z, \ldots$
boolean connectives: \wedge, \vee, \neg
quantifiers: \forall, \exists
numeric symbols: $=, \leq,+, \times, \min , \max$

$$
\begin{aligned}
\alpha & \equiv \forall x \exists y(E(x, y)) & \in \mathcal{L}\left(\Sigma_{g}\right) \\
\beta & \equiv \exists x \forall y(x \leq y \wedge S(x)) & \in \mathcal{L}\left(\Sigma_{s}\right) \\
\beta & \equiv S(\text { min }) & \in \mathcal{L}\left(\Sigma_{s}\right)
\end{aligned}
$$

In this setting, with the structure of interest being the finite input, FO is a weak, low-level complexity class.

Second-Order Logic: FO plus Relation Variables

$$
\begin{aligned}
\Phi_{\text {scolor }} \equiv & \exists R^{1} G^{1} B^{1} \forall x y((R(x) \vee G(x) \vee B(x)) \wedge(E(x, y) \rightarrow \\
& (\neg(R(x) \wedge R(y)) \wedge \neg(G(x) \wedge G(y)) \wedge \neg(B(x) \wedge B(y)))))
\end{aligned}
$$

Second-Order Logic: FO plus Relation Variables

Fagin's Theorem: $\quad \mathrm{NP}=\mathrm{SO} \exists$

$$
\begin{aligned}
\Phi_{\text {color }} \equiv & \exists R^{1} G^{1} B^{1} \forall x y((R(x) \vee G(x) \vee B(x)) \wedge(E(x, y) \rightarrow \\
& (\neg(R(x) \wedge R(y)) \wedge \neg(G(x) \wedge G(y)) \wedge \neg(B(x) \wedge B(y)))))
\end{aligned}
$$

Addition is First-Order

$Q_{+}: \operatorname{STRUC}\left[\Sigma_{A B}\right] \rightarrow \operatorname{STRUC}\left[\Sigma_{s}\right]$

Addition is First-Order

$Q_{+}: \operatorname{STRUC}\left[\Sigma_{A B}\right] \rightarrow \operatorname{STRUC}\left[\Sigma_{s}\right]$

$$
\left.\begin{array}{r}
A \\
B \\
S
\end{array}+\begin{array}{lllll}
a_{1} & a_{2} & \ldots & a_{n-1} & a_{n} \\
b_{1} & b_{2} & \ldots & b_{n-1} & b_{n} \\
\hline s_{1} & s_{2} & \cdots & s_{n-1} & s_{n}
\end{array}\right] \begin{array}{r}
C(i) \equiv(\exists j>i)(A(j) \wedge B(j) \wedge \\
\\
(\forall k . j>k>i)(A(k) \vee B(k)))
\end{array}
$$

Addition is First-Order

$Q_{+}: \operatorname{STRUC}\left[\Sigma_{A B}\right] \rightarrow \operatorname{STRUC}\left[\Sigma_{s}\right]$

$$
\left.\begin{array}{rl}
A \\
B \\
S
\end{array}+\begin{array}{lllll}
a_{1} & a_{2} & \ldots & a_{n-1} & a_{n} \\
b_{1} & b_{2} & \ldots & b_{n-1} & b_{n} \\
\hline s_{1} & s_{2} & \ldots & s_{n-1} & s_{n}
\end{array}\right] \begin{gathered}
C(i) \equiv \\
\\
(\exists j>i)(A(j) \wedge B(j) \wedge \\
Q_{+}(i) \equiv A(i) \oplus B(i) \oplus C(i)
\end{gathered}
$$

Parallel Machines:

$\operatorname{CRAM}[t(n)]=\operatorname{CRCW}-\operatorname{PRAM}-\operatorname{TIME}[t(n)]-\operatorname{HARD}\left[\mathrm{O}^{(1)}\right]$

Parallel Machines:

$\operatorname{CRAM}[t(n)]=\mathrm{CRCW}-\operatorname{PRAM}-\operatorname{TIME}[t(n)]-\operatorname{HARD}\left[n^{O(1)}\right]$
Assume array $A[x]: x=1, \ldots, r$ in memory.

Parallel Machines:

$\operatorname{CRAM}[t(n)]=$ CRCW-PRAM-TIME $[t(n)]-\operatorname{HARD}\left[n^{O(1)}\right]$
Assume array $A[x]: x=1, \ldots, r$ in memory.
$\forall x(A(x)) \equiv$ write(1);

Parallel Machines:

Quantifiers are Parallel

$\operatorname{CRAM}[t(n)]=\mathrm{CRCW}-\operatorname{PRAM}-\operatorname{TIME}[t(n)]-\operatorname{HARD}\left[n^{O(1)}\right]$
Assume array $A[x]: x=1, \ldots, r$ in memory.
$\forall x(A(x)) \equiv$ write $(1) ;$ proc $p_{i}:$ if $(A[i]=0)$ then write (0)

Inductive Definitions and Least Fixed Point

$$
\mathrm{REACH}=\{G, s, t \mid s \xrightarrow{\star} t\}
$$

Inductive Definitions and Least Fixed Point

REACH $=\{G, s, t \mid s \xrightarrow{\star} t\}$
REACH \notin FO

Inductive Definitions and Least Fixed Point

$$
E^{\star}(x, y) \stackrel{\text { def }}{=} x=y \vee E(x, y) \vee \exists z\left(E^{\star}(x, z) \wedge E^{\star}(z, y)\right)
$$

$\mathrm{REACH}=\{G, s, t \mid s \xrightarrow{\star} t\}$
REACH \notin FO

Inductive Definitions and Least Fixed Point

$$
\begin{aligned}
E^{\star}(x, y) & \stackrel{\text { def }}{=} x=y \vee E(x, y) \vee \exists z\left(E^{\star}(x, z) \wedge E^{\star}(z, y)\right) \\
\varphi_{t c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))
\end{aligned}
$$

$\mathrm{REACH}=\{G, s, t \mid s \xrightarrow{\star} t\}$
REACH \notin FO

Inductive Definitions and Least Fixed Point

$$
\begin{aligned}
E^{\star}(x, y) & \stackrel{\text { def }}{=} x=y \vee E(x, y) \vee \exists z\left(E^{\star}(x, z) \wedge E^{\star}(z, y)\right) \\
\varphi_{t c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))
\end{aligned}
$$

$\varphi_{\text {tc }}^{G}: \operatorname{binRel}(G) \rightarrow \operatorname{binRel}(G) \quad$ is a monotone operator

$$
\mathrm{REACH}=\{G, s, t \mid s \xrightarrow{\star} t\} \quad \text { REACH } \notin \mathrm{FO}
$$

Inductive Definitions and Least Fixed Point

$$
\begin{aligned}
E^{\star}(x, y) & \stackrel{\text { def }}{=} x=y \vee E(x, y) \vee \exists z\left(E^{\star}(x, z) \wedge E^{\star}(z, y)\right) \\
\varphi_{t c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))
\end{aligned}
$$

$\varphi_{\text {tc }}^{G}: \operatorname{binRel}(G) \rightarrow \operatorname{binRel}(G) \quad$ is a monotone operator

$$
E^{\star}=\left(\mathrm{LFP} \varphi_{t c}\right)
$$

$$
\mathrm{REACH}=\{G, s, t \mid s \xrightarrow{\star} t\} \quad \text { REACH } \notin \mathrm{FO}
$$

Inductive Definitions and Least Fixed Point

$$
\begin{aligned}
E^{\star}(x, y) & \stackrel{\text { def }}{=} x=y \vee E(x, y) \vee \exists z\left(E^{\star}(x, z) \wedge E^{\star}(z, y)\right) \\
\varphi_{t c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))
\end{aligned}
$$

$\varphi_{\text {tc }}^{G}: \operatorname{binRel}(G) \rightarrow \operatorname{binRel}(G) \quad$ is a monotone operator

$$
\begin{aligned}
G \in \operatorname{REACH} \Leftrightarrow G \models\left(\operatorname{LFP} \varphi_{t c}\right)(s, t) & E^{\star}=\left(\operatorname{LFP} \varphi_{t c}\right) \\
\mathrm{REACH}=\{G, s, t \mid s \xrightarrow{\star} t\} & \mathrm{REACH} \notin \mathrm{FO}
\end{aligned}
$$

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P.

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P. proof: Monotone means, for all $R \subseteq S, \quad \varphi(R) \subseteq \varphi(S)$.

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P. proof: Monotone means, for all $R \subseteq S, \quad \varphi(R) \subseteq \varphi(S)$. Let $I^{0} \stackrel{\text { def }}{=} \emptyset ; \quad I^{r+1} \stackrel{\text { def }}{=} \varphi\left(I^{r}\right)$

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P.
proof: Monotone means, for all $R \subseteq S, \quad \varphi(R) \subseteq \varphi(S)$.
Let $I^{0} \stackrel{\text { def }}{=} \emptyset ; \quad I^{r+1} \stackrel{\text { def }}{=} \varphi\left(I^{r}\right) \quad$ Thus, $\emptyset=I^{0} \subseteq I^{1} \subseteq \cdots \subseteq I^{t}$.

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P. proof: Monotone means, for all $R \subseteq S, \quad \varphi(R) \subseteq \varphi(S)$. Let $I^{0} \stackrel{\text { def }}{=} \emptyset ; \quad I^{r+1} \stackrel{\text { def }}{=} \varphi\left(I^{r}\right) \quad$ Thus, $\emptyset=I^{0} \subseteq I^{1} \subseteq \cdots \subseteq I^{t}$.

Let t be min such that $I^{t}=I^{t+1}$. Note that $t \leq n^{k}$ where $n=\left|V^{G}\right|$.

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P. proof: Monotone means, for all $R \subseteq S, \quad \varphi(R) \subseteq \varphi(S)$. Let $I^{0} \stackrel{\text { def }}{=} \emptyset ; \quad I^{r+1} \stackrel{\text { def }}{=} \varphi\left(I^{r}\right) \quad$ Thus, $\emptyset=I^{0} \subseteq I^{1} \subseteq \cdots \subseteq I^{t}$.
Let t be min such that $I^{t}=I^{t+1}$. Note that $t \leq n^{k}$ where $n=\left|V^{G}\right| . \quad \varphi\left(I^{t}\right)=I^{t}, \quad$ so I^{t} is a fixed point of φ.

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P. proof: Monotone means, for all $R \subseteq S, \quad \varphi(R) \subseteq \varphi(S)$. Let $I^{0} \stackrel{\text { def }}{=} \emptyset ; \quad I^{r+1} \stackrel{\text { def }}{=} \varphi\left(I^{r}\right) \quad$ Thus, $\emptyset=I^{0} \subseteq I^{1} \subseteq \cdots \subseteq I^{t}$. Let t be min such that $I^{t}=I^{t+1}$. Note that $t \leq n^{k}$ where $n=\left|V^{G}\right| . \quad \varphi\left(I^{t}\right)=I^{t}, \quad$ so I^{t} is a fixed point of φ.

Suppose $\varphi(F)=F$.

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P. proof: Monotone means, for all $R \subseteq S, \quad \varphi(R) \subseteq \varphi(S)$. Let $I^{0} \stackrel{\text { def }}{=} \emptyset ; \quad I^{r+1} \stackrel{\text { def }}{=} \varphi\left(I^{r}\right) \quad$ Thus, $\emptyset=I^{0} \subseteq I^{1} \subseteq \cdots \subseteq I^{t}$. Let t be min such that $I^{t}=I^{t+1}$. Note that $t \leq n^{k}$ where $n=\left|V^{G}\right| . \quad \varphi\left(I^{t}\right)=I^{t}, \quad$ so I^{t} is a fixed point of φ.

Suppose $\varphi(F)=F . \quad$ By induction on r, for all $r, I^{r} \subseteq F$.

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P. proof: Monotone means, for all $R \subseteq S, \quad \varphi(R) \subseteq \varphi(S)$. Let $I^{0} \stackrel{\text { def }}{=} \emptyset ; \quad I^{r+1} \stackrel{\text { def }}{=} \varphi\left(I^{r}\right) \quad$ Thus, $\emptyset=I^{0} \subseteq I^{1} \subseteq \cdots \subseteq I^{t}$. Let t be min such that $I^{t}=I^{t+1}$. Note that $t \leq n^{k}$ where $n=\left|V^{G}\right| . \quad \varphi\left(I^{t}\right)=I^{t}, \quad$ so I^{t} is a fixed point of φ.

Suppose $\varphi(F)=F . \quad$ By induction on r, for all $r, I^{r} \subseteq F$. base case: $\quad \rho^{0}=\emptyset \subseteq F$.

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P. proof: Monotone means, for all $R \subseteq S, \quad \varphi(R) \subseteq \varphi(S)$. Let $I^{0} \stackrel{\text { def }}{=} \emptyset ; \quad I^{r+1} \stackrel{\text { def }}{=} \varphi\left(I^{r}\right) \quad$ Thus, $\emptyset=I^{0} \subseteq I^{1} \subseteq \cdots \subseteq I^{t}$. Let t be min such that $I^{t}=I^{t+1}$. Note that $t \leq n^{k}$ where $n=\left|V^{G}\right| . \quad \varphi\left(I^{t}\right)=I^{t}, \quad$ so I^{t} is a fixed point of φ.

Suppose $\varphi(F)=F . \quad$ By induction on r, for all $r, I^{r} \subseteq F$.
base case: $\quad \rho^{0}=\emptyset \subseteq F$.
inductive case: Assume $\mu^{j} \subseteq F$

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P. proof: Monotone means, for all $R \subseteq S, \quad \varphi(R) \subseteq \varphi(S)$. Let $I^{0} \stackrel{\text { def }}{=} \emptyset ; \quad I^{r+1} \stackrel{\text { def }}{=} \varphi\left(I^{r}\right) \quad$ Thus, $\emptyset=I^{0} \subseteq I^{1} \subseteq \cdots \subseteq I^{t}$. Let t be min such that $I^{t}=I^{t+1}$. Note that $t \leq n^{k}$ where $n=\left|V^{G}\right| . \quad \varphi\left(I^{t}\right)=I^{t}, \quad$ so I^{t} is a fixed point of φ.

Suppose $\varphi(F)=F . \quad$ By induction on r, for all $r, I^{r} \subseteq F$. base case: $\quad \rho^{0}=\emptyset \subseteq F$. inductive case: Assume $\mu^{j} \subseteq F$

By monotonicity, $\quad \varphi\left(\mu^{j}\right) \subseteq \varphi(F)$, i.e., $\quad j^{j+1} \subseteq F$.

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P. proof: Monotone means, for all $R \subseteq S, \quad \varphi(R) \subseteq \varphi(S)$. Let $I^{0} \stackrel{\text { def }}{=} \emptyset ; \quad I^{r+1} \stackrel{\text { def }}{=} \varphi\left(I^{r}\right) \quad$ Thus, $\emptyset=I^{0} \subseteq I^{1} \subseteq \cdots \subseteq I^{t}$. Let t be min such that $I^{t}=I^{t+1}$. Note that $t \leq n^{k}$ where $n=\left|V^{G}\right| . \quad \varphi\left(I^{t}\right)=I^{t}, \quad$ so I^{t} is a fixed point of φ.

Suppose $\varphi(F)=F . \quad$ By induction on r, for all $r, I^{r} \subseteq F$. base case: $\quad \rho^{0}=\emptyset \subseteq F$. inductive case: Assume $\mu^{j} \subseteq F$
By monotonicity, $\quad \varphi\left(\mu^{j}\right) \subseteq \varphi(F)$, i.e., $\quad j^{j+1} \subseteq F$.
Thus $I^{t} \subseteq F \quad$ and $\quad I^{t}=\operatorname{LFP}(\varphi)$.

Inductive Definition of Transitive Closure

$$
\varphi_{t c}(R, x, y) \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))
$$

Inductive Definition of Transitive Closure

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y)) \\
I^{1}=\varphi_{t c}^{G}(\emptyset) & =\left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 1\right\}
\end{aligned}
$$

Inductive Definition of Transitive Closure

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y)) \\
f^{1}=\varphi_{c}^{G}(()) & =\left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 1\right\} \\
R^{2}=\left(\varphi_{t c}^{G}\right)^{2}(()) & =\left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 2\right\}
\end{aligned}
$$

Inductive Definition of Transitive Closure

$$
\begin{aligned}
\varphi_{t c}^{c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y)) \\
I^{1}=\varphi_{c}^{G}(()) & =\left\{(a, b) \in V^{G} \times V^{G} \mid \text { dist }(a, b) \leq 1\right\} \\
R^{2}=\left(\varphi_{c t}^{G}\right)^{2}(b) & =\left\{(a, b) \in V^{G} \times V^{G} \mid \text { dist }(a, b) \leq 2\right\} \\
\beta=\left(\varphi_{t c}^{G}\right)^{3}(\emptyset) & =\left\{(a, b) \in V^{G} \times V^{G} \mid \text { dist }(a, b) \leq 4\right\}
\end{aligned}
$$

Inductive Definition of Transitive Closure

$$
\begin{array}{ccc}
\varphi_{t c}(R, x, y) & \equiv & x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y)) \\
I^{1}=\varphi_{t c}^{G}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 1\right\} \\
I^{2}=\left(\varphi_{t c}^{G}\right)^{2}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 2\right\} \\
I^{3}=\left(\varphi_{t c}^{G}\right)^{3}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 4\right\} \\
\vdots & = & \vdots \\
I^{r}=\left(\varphi_{t c}^{G}\right)^{r}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 2^{r-1}\right\}
\end{array}
$$

Inductive Definition of Transitive Closure

$$
\begin{array}{ccc}
\varphi_{t c}(R, x, y) & \equiv & x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y)) \\
I^{1}=\varphi_{t c}^{G}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 1\right\} \\
I^{2}=\left(\varphi_{t c}^{G}\right)^{2}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 2\right\} \\
I^{3}=\left(\varphi_{t c}^{G}\right)^{3}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 4\right\} \\
\vdots & = & \vdots \\
I^{r}=\left(\varphi_{t c}^{G}\right)^{r}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 2^{r-1}\right\} \\
\vdots & = & \vdots \\
\left(\varphi_{t c}^{G}\right)^{[1+\log n\rceil}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq n\right\}
\end{array}
$$

Inductive Definition of Transitive Closure

$$
\begin{array}{ccc}
\varphi_{t c}(R, x, y) & \equiv & x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y)) \\
I^{1}=\varphi_{t c}^{G}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 1\right\} \\
I^{2}=\left(\varphi_{t c}^{G}\right)^{2}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 2\right\} \\
\beta^{3}=\left(\varphi_{t c}^{G}\right)^{3}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 4\right\} \\
\vdots & = & \vdots \\
I^{r}=\left(\varphi_{t c}^{G}\right)^{r}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 2^{r-1}\right\} \\
\vdots & = & \vdots \\
\left(\varphi_{t c}^{G}\right)^{[1+\log n\rceil}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq n\right\} \\
\operatorname{LFP}\left(\varphi_{t c}\right) & = & \varphi_{t c}^{[1+\log n]}(\emptyset) ; \quad \operatorname{REACH} \in \operatorname{IND}[\log n]
\end{array}
$$

Inductive Definition of Transitive Closure

$$
\begin{array}{ccc}
\varphi_{t c}(R, x, y) & \equiv & x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y)) \\
I^{1}=\varphi_{t c}^{G}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 1\right\} \\
I^{2}=\left(\varphi_{t c}^{G}\right)^{2}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 2\right\} \\
I^{3}=\left(\varphi_{t c}^{G}\right)^{3}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 4\right\} \\
\vdots & = & \vdots \\
I^{r}=\left(\varphi_{t c}^{G}\right)^{r}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 2^{r-1}\right\} \\
\vdots & = & \vdots \\
\left(\varphi_{t c}^{G}\right)^{[1+\log n\rceil}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq n\right\} \\
\operatorname{LFP}\left(\varphi_{t c}\right) & = & \varphi_{t c}^{[1+\log n]}(\emptyset) ; \quad \operatorname{REACH} \in \operatorname{IND}[\log n]
\end{array}
$$

Next we will show that $\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]$.

$$
\varphi_{t c}(R, x, y) \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))
$$

1. Dummy universal quantification for base case:

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left(\forall z \cdot M_{1}\right)(\exists z)(R(x, z) \wedge R(z, y)) \\
M_{1} & \equiv \neg(x=y \vee E(x, y))
\end{aligned}
$$

$\varphi_{\text {tc }}(R, x, y) \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))$

1. Dummy universal quantification for base case:

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left(\forall z \cdot M_{1}\right)(\exists z)(R(x, z) \wedge R(z, y)) \\
M_{1} & \equiv \neg(x=y \vee E(x, y))
\end{aligned}
$$

2. Using \forall, replace two occurrences of R with one:

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right) R(u, v) \\
M_{2} & \equiv(u=x \wedge v=z) \vee(u=z \wedge v=y)
\end{aligned}
$$

$\varphi_{t c}(R, x, y) \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))$

1. Dummy universal quantification for base case:

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left(\forall z \cdot M_{1}\right)(\exists z)(R(x, z) \wedge R(z, y)) \\
M_{1} & \equiv \neg(x=y \vee E(x, y))
\end{aligned}
$$

2. Using \forall, replace two occurrences of R with one:

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right) R(u, v) \\
M_{2} & \equiv(u=x \wedge v=z) \vee(u=z \wedge v=y)
\end{aligned}
$$

3. Requantify x and y.

$$
\begin{gathered}
M_{3} \equiv(x=u \wedge y=v) \\
\varphi_{t c}(R, x, y) \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\exists x y \cdot M_{3}\right)\right] R(x, y)
\end{gathered}
$$

Every FO inductive definition is equivalent to a quantifier block.

$\mathrm{QB}_{\text {tc }} \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\forall x y \cdot M_{3}\right)\right]$

$$
\varphi_{t c}(R, x, y) \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\exists x y \cdot M_{3}\right)\right] R(x, y)
$$

$\mathrm{QB}_{t c} \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\forall x y \cdot M_{3}\right)\right]$

$$
\begin{aligned}
& \varphi_{t c}(R, x, y) \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\exists x y \cdot M_{3}\right)\right] R(x, y) \\
& \varphi_{t c}(R, x, y) \equiv\left[\mathrm{QB}_{t c}\right] R(x, y)
\end{aligned}
$$

$\mathrm{QB}_{t c} \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\forall x y \cdot M_{3}\right)\right]$

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\exists x y \cdot M_{3}\right)\right] R(x, y) \\
\varphi_{t c}(R, x, y) & \equiv\left[\mathrm{QB}_{t c}\right] R(x, y) \\
\varphi_{t c}^{r}(\emptyset) & \equiv\left[\mathrm{QB}_{t c}\right]^{r}(\text { false })
\end{aligned}
$$

$\mathrm{QB}_{t c} \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\forall x y \cdot M_{3}\right)\right]$

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\exists x y \cdot M_{3}\right)\right] R(x, y) \\
\varphi_{t c}(R, x, y) & \equiv\left[\mathrm{QB}_{t c}\right] R(x, y) \\
\varphi_{t c}^{r}(\emptyset) & \equiv\left[\mathrm{QB}_{t c}\right]^{r}(\mathbf{f a l s e})
\end{aligned}
$$

Thus, for any structure $\mathcal{A} \in \operatorname{STRUC}\left[\Sigma_{g}\right]$,

$$
\begin{aligned}
\mathcal{A} \in \operatorname{REACH} & \Leftrightarrow \mathcal{A} \models\left(\operatorname{LFP}_{t c}\right)(s, t) \\
& \Leftrightarrow \mathcal{A} \models\left(\left[\mathrm{QB}_{t c}\right]^{\lceil 1+\log \|\mathcal{A}\|]} \text { false }\right)(s, t)
\end{aligned}
$$

$\operatorname{CRAM}[t(n)]=$ concurrent parallel random access machine; polynomial hardware, parallel time $O(t(n))$
$\operatorname{IND}[t(n)]=$ first-order, depth $t(n)$ inductive definitions
$\mathrm{FO}[t(n)]=t(n)$ repetitions of a block of restricted quantifiers:

$$
\begin{aligned}
\mathrm{QB} & =\left[\left(Q_{1} x_{1} \cdot M_{1}\right) \cdots\left(Q_{k} x_{k} \cdot M_{k}\right)\right] ; \quad M_{i} \text { quantifier-free } \\
\varphi_{n} & =\underbrace{[\mathrm{QB}][\mathrm{QB}] \cdots[\mathrm{QB}]}_{t(n)} M_{0}
\end{aligned}
$$

parallel time $=$ inductive depth $=$ QB iteration

Thm. For all constructible, polynomially bounded $t(n)$,

$$
\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]
$$

parallel time $=$ inductive depth $=$ QB iteration

Thm. For all constructible, polynomially bounded $t(n)$,

$$
\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]
$$

proof idea: $\operatorname{CRAM}[t(n)] \supseteq \mathrm{FO}[t(n)]: \quad$ For QB with k variables, keep in memory current value of formula on all possible assignments, using n^{k} bits of global memory.

parallel time $=$ inductive depth $=$ QB iteration

Thm. For all constructible, polynomially bounded $t(n)$,

$$
\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]
$$

proof idea: $\operatorname{CRAM}[t(n)] \supseteq \mathrm{FO}[t(n)]$: For QB with k variables, keep in memory current value of formula on all possible assignments, using n^{k} bits of global memory.
Simulate each next quantifier in constant parallel time.

parallel time $=$ inductive depth $=$ QB iteration

Thm. For all constructible, polynomially bounded $t(n)$,

$$
\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]
$$

proof idea: $\operatorname{CRAM}[t(n)] \supseteq \mathrm{FO}[t(n)]$: For QB with k variables, keep in memory current value of formula on all possible assignments, using n^{k} bits of global memory. Simulate each next quantifier in constant parallel time.
$\operatorname{CRAM}[t(n)] \subseteq \mathrm{FO}[t(n)]: \quad$ Inductively define new state of every bit of every register of every processor in terms of this global state at the previous time step.

parallel time $=$ inductive depth $=$ QB iteration

Thm. For all constructible, polynomially bounded $t(n)$,

$$
\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]
$$

proof idea: $\operatorname{CRAM}[t(n)] \supseteq \operatorname{FO}[t(n)]$: For QB with k variables, keep in memory current value of formula on all possible assignments, using n^{k} bits of global memory. Simulate each next quantifier in constant parallel time.
$\operatorname{CRAM}[t(n)] \subseteq \mathrm{FO}[t(n)]: \quad$ Inductively define new state of every bit of every register of every processor in terms of this global state at the previous time step.

Thm. For all $t(n)$, even beyond polynomial,

$$
\operatorname{CRAM}[t(n)]=\operatorname{FO}[t(n)]
$$

Remember that
for all $t(n)$,

CRAM[$t(n)$]
$=$
$\operatorname{FO}[t(n)]$

Recursive	
Primitive Recursive	
SO (LFP) $\quad \mathrm{SO}\left[2^{n^{\text {O(1) }}}\right]$	EXPTIME
QSAT PSPACE complete $\mathrm{FO}\left[2^{n^{O(1)}}\right]$ $\mathrm{FO}(\mathrm{PFP})$ $\mathrm{SO}(\mathrm{TC})$ $\mathrm{SO}\left[n^{O(1)}\right]$ PSPACE	
$\begin{aligned} & \mathrm{FO}\left[n^{O(1)}\right] \\ & \mathrm{FO}(\mathrm{LFP}) \end{aligned}$	P
	NC
$\mathrm{FO}[\log n] \quad \stackrel{\{ }{i}$ feasible"	AC^{1}
FO (CFL)	sAC ${ }^{1}$
$\mathrm{FO}(\mathrm{TC}) \quad \mathrm{SO}\left(\right.$ Krom) ${ }^{\text {a }}$ 2SAT NL comp.	NL
$\mathrm{FO}(\mathrm{DTC})$	L
FO (REGULAR)	NC ${ }^{1}$
$\mathrm{FO}(\mathrm{COUNT})$!	ThC ${ }^{0}$
$\mathrm{FO} \quad$ LOGTIME Hierarchy	AC^{0}

Number of Variables Determines Amount of Hardware

Thm. For $k=1,2, \ldots, \quad \operatorname{DSPACE}\left[n^{k}\right]=\operatorname{VAR}[k+1]$

Number of Variables Determines Amount of Hardware

Thm. For $k=1,2, \ldots, \quad \operatorname{DSPACE}\left[n^{k}\right]=\operatorname{VAR}[k+1]$
Since variables range over a universe of size n, a constant number of variables can specify a polynomial number of gates.

Number of Variables Determines Amount of Hardware

Thm. For $k=1,2, \ldots, \quad \operatorname{DSPACE}\left[n^{k}\right]=\operatorname{VAR}[k+1]$
Since variables range over a universe of size n, a constant number of variables can specify a polynomial number of gates.

The proof is just a more detailed look at $\operatorname{CRAM}[t(n)]=\mathrm{FO}[t(n)]$.

Number of Variables Determines Amount of Hardware

Thm. For $k=1,2, \ldots, \quad \operatorname{DSPACE}\left[n^{k}\right]=\operatorname{VAR}[k+1]$
Since variables range over a universe of size n, a constant number of variables can specify a polynomial number of gates.

The proof is just a more detailed look at $\operatorname{CRAM}[t(n)]=\mathrm{FO}[t(n)]$.
A bounded number, k, of variables, is $k \log n$ bits and corresponds to n^{k} gates, i.e., polynomially much hardware.

Number of Variables Determines Amount of Hardware

Thm. For $k=1,2, \ldots, \quad \operatorname{DSPACE}\left[n^{k}\right]=\operatorname{VAR}[k+1]$
Since variables range over a universe of size n, a constant number of variables can specify a polynomial number of gates.

The proof is just a more detailed look at $\operatorname{CRAM}[t(n)]=\mathrm{FO}[t(n)]$.
A bounded number, k, of variables, is $k \log n$ bits and corresponds to n^{k} gates, i.e., polynomially much hardware.

A second-order variable of arity r is n^{r} bits, corresponding to $2^{n^{r}}$ gates.

SO: Parallel Machines with Exponential Hardware

Given φ with n variables and m clauses, is $\varphi \in 3$-SAT?

SO: Parallel Machines with Exponential Hardware

Given φ with n variables and m clauses, is $\varphi \in 3$-SAT?
With $r=m 2^{n}$ processors, recognize 3-SAT in constant time!

SO: Parallel Machines with Exponential Hardware

Given φ with n variables and m clauses, is $\varphi \in 3$-SAT?
With $r=m 2^{n}$ processors, recognize 3-SAT in constant time!
Let S be the first n bits of our processor number.

SO: Parallel Machines with Exponential Hardware

Given φ with n variables and m clauses, is $\varphi \in 3$-SAT?
With $r=m 2^{n}$ processors, recognize 3-SAT in constant time!
Let S be the first n bits of our processor number.
If processors $S 1, \ldots S m$ notice that truth assignment S makes all m clauses of φ true, then $\varphi \in 3$-SAT,

SO: Parallel Machines with Exponential Hardware

Given φ with n variables and m clauses, is $\varphi \in 3$-SAT?
With $r=m 2^{n}$ processors, recognize 3-SAT in constant time!
Let S be the first n bits of our processor number.
If processors $S 1, \ldots S m$ notice that truth assignment S makes all m clauses of φ true, then $\varphi \in 3$-SAT, so S1 writes a 1 .

SO: Parallel Machines with Exponential Hardware

Thm. $\quad \mathrm{SO}[t(n)]=\operatorname{CRAM}[t(n)]-\operatorname{HARD}\left[2^{\mathrm{n}^{\mathrm{O}(1)}}\right]$.

SO: Parallel Machines with Exponential Hardware

Thm. $\quad \operatorname{SO}[t(n)]=\operatorname{CRAM}[t(n)]-\operatorname{HARD}\left[2^{\mathrm{n}^{\mathrm{O}(1)}}\right]$.
proof: $\mathrm{SO}[t(n)]$ is like $\mathrm{FO}[t(n)]$ but using a quantifier block containing both first-order and second-order quantifiers.
The proof is similar to $\mathrm{FO}[t(n)]=\operatorname{CRAM}[t(n)]$.

SO: Parallel Machines with Exponential Hardware

Thm. $\quad \operatorname{SO}[t(n)]=\operatorname{CRAM}[t(n)]-\operatorname{HARD}\left[2^{\mathrm{n}^{0(1)}}\right]$.
proof: $\operatorname{SO}[t(n)]$ is like $\mathrm{FO}[t(n)]$ but using a quantifier block containing both first-order and second-order quantifiers.
The proof is similar to $\operatorname{FO}[t(n)]=\operatorname{CRAM}[t(n)]$.
Cor.

$$
\text { SO }=\text { PTIME Hierarchy }=\operatorname{CRAM}[1]-\operatorname{HARD}\left[2^{\mathrm{n}^{0(1)}}\right]
$$

SO: Parallel Machines with Exponential Hardware

Thm. $\quad \operatorname{SO}[t(n)]=\operatorname{CRAM}[t(n)]-\operatorname{HARD}\left[2^{\mathrm{n}^{\mathrm{O}(1)}}\right]$.
proof: $\operatorname{SO}[t(n)]$ is like $\mathrm{FO}[t(n)]$ but using a quantifier block containing both first-order and second-order quantifiers.
The proof is similar to $\operatorname{FO}[t(n)]=\operatorname{CRAM}[t(n)]$.
Cor.

$$
\begin{array}{cccc}
\text { SO } & =\text { PTIME Hierarchy } & =\operatorname{CRAM}[1]-\operatorname{HARD}\left[2^{2^{\mathrm{O}(1)}}\right] \\
\mathrm{SO}\left[n^{O(1)}\right] & =\quad \text { PSPACE } & =\operatorname{CRAM}\left[n^{O(1)}\right]-\operatorname{HARD}\left[2^{\mathrm{n}^{(1)}}\right]
\end{array}
$$

SO: Parallel Machines with Exponential Hardware

Thm. $\quad \operatorname{SO}[t(n)]=\operatorname{CRAM}[t(n)]-\operatorname{HARD}\left[2^{\mathrm{n}^{\mathrm{O}(1)}}\right]$.
proof: $\mathrm{SO}[t(n)]$ is like $\mathrm{FO}[t(n)]$ but using a quantifier block containing both first-order and second-order quantifiers.
The proof is similar to $\mathrm{FO}[t(n)]=\operatorname{CRAM}[t(n)]$.

Cor.

$$
\begin{array}{cc}
\mathrm{SO} & =\text { PTIME Hierarchy }
\end{array}=\operatorname{CRAM}[1]-\operatorname{HARD}\left[2^{\mathrm{n}^{O(1)}}\right]
$$

Parallel Time versus Amount of Hardware

$$
\begin{aligned}
\operatorname{PSPACE} & =\operatorname{FO}\left[2^{n(1)}\right]=\operatorname{CRAM}\left[2^{n^{0(1)}}\right]-\operatorname{HARD}\left[\mathrm{n}^{0(1)}\right] \\
& =\operatorname{SO}\left[n^{O(1)}\right]=\operatorname{CRAM}\left[n^{0(1)}\right]-\operatorname{HARD}\left[2^{2(1)}\right]
\end{aligned}
$$

Parallel Time versus Amount of Hardware

$$
\begin{aligned}
\operatorname{PSPACE} & =\mathrm{FO}\left[2^{n^{O(1)}}\right]=\operatorname{CRAM}\left[2^{n^{O(1)}}\right]-\operatorname{HARD}\left[\mathrm{n}^{\mathrm{O}(1)}\right] \\
& =\mathrm{SO}\left[n^{O(1)}\right]=\operatorname{CRAM}\left[n^{O(1)}\right]-\operatorname{HARD}\left[2^{2^{\mathrm{O}(1)}}\right]
\end{aligned}
$$

- We would love to understand this tradeoff.

Parallel Time versus Amount of Hardware

$$
\begin{aligned}
\operatorname{PSPACE} & =\mathrm{FO}\left[2^{n^{O(1)}}\right]=\operatorname{CRAM}\left[2^{n^{O(1)}}\right]-\operatorname{HARD}\left[\mathrm{n}^{\mathrm{O}(1)}\right] \\
& =\mathrm{SO}\left[n^{O(1)}\right]=\operatorname{CRAM}\left[n^{O(1)}\right]-\operatorname{HARD}\left[2^{\mathrm{n}^{\mathrm{O}(1)}}\right]
\end{aligned}
$$

- We would love to understand this tradeoff.
- Is there such a thing as an inherently sequential problem?, i.e., is $\mathrm{NC} \neq \mathrm{P}$?

Parallel Time versus Amount of Hardware

$$
\begin{aligned}
\operatorname{PSPACE} & =\mathrm{FO}\left[2^{n^{O(1)}}\right]=\operatorname{CRAM}\left[2^{n^{O(1)}}\right]-\operatorname{HARD}\left[\mathrm{n}^{\mathrm{O}(1)}\right] \\
& =\mathrm{SO}\left[n^{O(1)}\right]=\operatorname{CRAM}\left[n^{O(1)}\right]-\operatorname{HARD}\left[2^{2^{\mathrm{O}(1)}}\right]
\end{aligned}
$$

- We would love to understand this tradeoff.
- Is there such a thing as an inherently sequential problem?, i.e., is $\mathrm{NC} \neq \mathrm{P}$?
- Same tradeoff as number of variables vs. number of iterations of a quantifier block.

Reductions

- [C71] SAT is NP complete via ptime Turing reductions.

Reductions

- [C71] SAT is NP complete via ptime Turing reductions.
- [K72] Many important problems are NP complete, via \leq_{p}.

Reductions

- [C71] SAT is NP complete via ptime Turing reductions.
- [K72] Many important problems are NP complete, via \leq_{p}.
- [J73] . . . stay complete via logspace reductions, $\leq_{\text {log }}$.

Reductions

- [C71] SAT is NP complete via ptime Turing reductions.
- [K72] Many important problems are NP complete, via \leq_{p}.
- [J73] . . . stay complete via logspace reductions, \leq log.
- [HIM78] . . . stay complete via one-way logspace, reductions, $\leq_{1-\log }$.

Reductions

- [C71] SAT is NP complete via ptime Turing reductions.
- [K72] Many important problems are NP complete, via \leq_{p}.
- [J73] . . . stay complete via logspace reductions, \leq log.
- [HIM78] . . . stay complete via one-way logspace, reductions, $\leq_{1 \text {-log. }}$
- [I80] . . . stay complete first-order reductions.

Reductions

- [C71] SAT is NP complete via ptime Turing reductions.
- [K72] Many important problems are NP complete, via \leq_{p}.
- [J73] . . stay complete via logspace reductions, $\leq_{\text {log }}$.
- [HIM78] . . . stay complete via one-way logspace, reductions, $\leq_{1-\log }$.
- [180] . . . stay complete first-order reductions.
- [V82] . . . stay complete via projections. (Non-uniform reductions where each bit of the output depends on at most one bit of the input).

Reductions

- [C71] SAT is NP complete via ptime Turing reductions.
- [K72] Many important problems are NP complete, via \leq_{p}.
- [J73] . . stay complete via logspace reductions, $\leq_{\text {log }}$.
- [HIM78] . . . stay complete via one-way logspace, reductions, $\leq_{1-\log }$.
- [180] . . . stay complete first-order reductions.
- [V82] . . . stay complete via projections. (Non-uniform reductions where each bit of the output depends on at most one bit of the input).
- [187] . . . stay complete via first-order projections, $\leq_{\text {fop }}$.

Reductions

- [C71] SAT is NP complete via ptime Turing reductions.
- [K72] Many important problems are NP complete, via \leq_{p}.
- [J73] . . stay complete via logspace reductions, $\leq_{\text {log }}$.
- [HIM78] . . . stay complete via one-way logspace, reductions, $\leq_{1-\log }$.
- [180] . . . stay complete first-order reductions.
- [V82] . . . stay complete via projections. (Non-uniform reductions where each bit of the output depends on at most one bit of the input).
- [187] . . stay complete via first-order projections, $\leq_{\text {fop }}$.
- [L75] Artificial, non-complete problems can be constructed.

Reductions

- [C71] SAT is NP complete via ptime Turing reductions.
- [K72] Many important problems are NP complete, via \leq_{p}.
- [J73] . . . stay complete via logspace reductions, \leq log.
- [HIM78] . . stay complete via one-way logspace, reductions, $\leq_{1-\log \text {. }}$
- [180] . . . stay complete first-order reductions.
- [V82] . . . stay complete via projections. (Non-uniform reductions where each bit of the output depends on at most one bit of the input).
- [187] . . stay complete via first-order projections, $\leq_{\text {fop }}$.
- [L75] Artificial, non-complete problems can be constructed.
- Dichotomy: "Natural" problems are complete for important compexity classes [FV99, S78, ABISV09].

Isomorphism Conjecture

- [BH77] Isomorphism Conjecture: "All NP complete sets via ptime many-one reductions, \leq_{p}, are polynomial-time isomorphic."

Isomorphism Conjecture

- [BH77] Isomorphism Conjecture: "All NP complete sets via ptime many-one reductions, \leq_{p}, are polynomial-time isomorphic."
- [ABI93] fop Isomorphism Thm. All NP complete sets via $\leq_{\text {fop }}$ are first-order isomorphic. Also true for L, NL, P, PSPACE, etc.

fop Isomorphism Theorem proof sketch

[BH77] Observation: All the NP complete sets in [GJ] are p-isomorphic.

fop Isomorphism Theorem proof sketch

[BH77] Observation: All the NP complete sets in [GJ] are p-isomorphic.

Schröder-Bernstein Thm. Let A and B be any two sets and suppose that $f: A \xrightarrow{1: 1} B$ and $g: B \xrightarrow{1: 1} A$. Then there exists $h: A \underset{\substack{1: 1 \\ \text { onto }}}{\substack{\text { ond }}} B$.

fop Isomorphism Theorem proof sketch

[BH77] Observation: All the NP complete sets in [GJ] are p-isomorphic.

Schröder-Bernstein Thm. Let A and B be any two sets and suppose that $f: A \xrightarrow{1: 1} B$ and $g: B \xrightarrow{\text { 1i: }} A$. Then there exists $h: A \underset{\substack{1: 1 \\ \text { onto }}}{\substack{\text { n }}} B$.

$$
(|A| \leq|B| \wedge|B| \leq|A| \rightarrow|A|=|B|)
$$

fop Isomorphism Theorem proof sketch

[BH77] Observation: All the NP complete sets in [GJ] are p-isomorphic.

Schröder-Bernstein Thm. Let A and B be any two sets and suppose that $f: A \xrightarrow{1: 1} B$ and $g: B \xrightarrow{1: 1} A$. Then there exists $h: A \underset{\substack{1: 1 \\ \text { onto }}}{1:} B . \quad(|A| \leq|B| \wedge|B| \leq|A| \rightarrow|A|=|B|)$

Proof: For $a, c \in A \cup B$, say that a is an ancestor of c if we can go from a to c by applying a finite, non-zero, number of applications of f and g.

fop Isomorphism Theorem proof sketch

[BH77] Observation: All the NP complete sets in [GJ] are p-isomorphic.

Schröder-Bernstein Thm. Let A and B be any two sets and suppose that $f: A \xrightarrow{1: 1} B$ and $g: B \xrightarrow{1: 1} A$. Then there exists $h: A \underset{\substack{1: 1 \\ \text { onto }}}{1:} B . \quad(|A| \leq|B| \wedge|B| \leq|A| \rightarrow|A|=|B|)$

Proof: For $a, c \in A \cup B$, say that a is ancestor of c if we can go from a to c by applying a finite, non-zero, number of applications of f and g.

$$
h(a) \stackrel{\text { def }}{=} \begin{cases}g^{-1}(a) & \text { if } a \text { has an odd number of ancestors } \\ f(a) & \text { if } a \text { has an even or infinite number of ancestors }\end{cases}
$$

fop Isomorphism Theorem proof sketch

[BH77] Observation: All the NP complete sets in [GJ] are p-isomorphic.

Schröder-Bernstein Thm. Let A and B be any two sets and
 $h: A \underset{\text { oño }}{\substack{1: 1 \\ \text { oñ }}} B . \quad(|A| \leq|B| \wedge|B| \leq|A| \rightarrow|A|=|B|)$

Proof: For $a, c \in A \cup B$, say that a is an ancestor of c if we can go from a to c by applying a finite, non-zero, number of applications of f and g.

$$
h(a) \stackrel{\text { def }}{=} \begin{cases}g^{-1}(a) & \text { if } a \text { has an odd number of ancestors } \\ f(a) & \text { if } a \text { has an even or infinite number of ancestors }\end{cases}
$$

Thus, $h: A \underset{\substack{1.1 \\ \text { oño }}}{\substack{\text { and }}}$
[BH77] Observation: All the NP complete sets in [GJ] are p-isomorphic.
[BH77] Observation: All the NP complete sets in [GJ] are p-isomorphic.
Lemma: Let $f: A \leq_{p} B$ and $g: B \leq_{p} A$ where f and g are 1:1 length-increasing functions. Assume also that f and g have left inverses in FP. Then A is p-isomorphic to B.
[BH77] Observation: All the NP complete sets in [GJ] are p-isomorphic.
Lemma: Let $f: A \leq_{p} B$ and $g: B \leq_{p} A$ where f and g are $1: 1$ length-increasing functions. Assume also that f and g have left inverses in FP. Then A is p-isomorphic to B.

Proof: Since f, g are length-increasing, the ancestor chains are linear in length. Thus, the isomorphism, h, can be defined as in the SB Thm, but now it can be computed in ptime.

Def. $A \subseteq \Sigma^{*}$ has p-time padding functions if $\exists e, d \in \mathrm{FP}$ s.t.

1. $\forall w, x \in \Sigma^{*} \quad w \in A \leftrightarrow e(w, x) \in A$
2. $\forall w, x \in \Sigma^{*} \quad d(e(w, x))=x$
3. $\forall w, x \in \Sigma^{*} \quad|e(w, x)| \geq|w|+|x|$.

Def. $A \subseteq \Sigma^{*}$ has p-time padding functions if $\exists e, d \in \mathrm{FP}$ s.t.

1. $\forall w, x \in \Sigma^{*} \quad w \in A \leftrightarrow e(w, x) \in A$
2. $\forall w, x \in \Sigma^{*} \quad d(e(w, x))=x$
3. $\forall w, x \in \Sigma^{*} \quad|e(w, x)| \geq|w|+|x|$.

Example: for SAT: $\quad e(w, x) \stackrel{\text { def }}{=}(w) \wedge \underbrace{C_{1} \wedge \cdots \wedge C_{|x|}}$, where
$C_{i}=(y \vee \bar{y})$ if $x_{i}=1$, else $(\bar{y} \vee y)$.

Def. $A \subseteq \Sigma^{*}$ has p-time padding functions if $\exists e, d \in \mathrm{FP}$ s.t.

1. $\forall w, x \in \Sigma^{*} \quad w \in A \leftrightarrow e(w, x) \in A$
2. $\forall w, x \in \Sigma^{*} \quad d(e(w, x))=x$
3. $\forall w, x \in \Sigma^{*} \quad|e(w, x)| \geq|w|+|x|$.

Example: for SAT: $e(w, x) \stackrel{\text { def }}{=}(w) \wedge \underbrace{C_{1} \wedge \cdots \wedge C_{|x|}}$, where
$C_{i}=(y \vee \bar{y})$ if $x_{i}=1$, else $(\bar{y} \vee y)$.
Lemma: If $A, B \in \mathrm{NPC}$ and have p -time padding functions, then they are inter-reducible via p-time invertible 1:1
length-increasing reductions.

Def. $A \subseteq \Sigma^{*}$ has p-time padding functions if $\exists e, d \in \mathrm{FP}$ s.t.

1. $\forall w, x \in \Sigma^{*} \quad w \in A \leftrightarrow e(w, x) \in A$
2. $\forall w, x \in \Sigma^{*} \quad d(e(w, x))=x$
3. $\forall w, x \in \Sigma^{*} \quad|e(w, x)| \geq|w|+|x|$.

Example: for SAT: $e(w, x) \stackrel{\text { def }}{=}(w) \wedge \underbrace{C_{1} \wedge \cdots \wedge C_{|x|}}$, where
$C_{i}=(y \vee \bar{y})$ if $x_{i}=1$, else $(\bar{y} \vee y)$.
Lemma: If $A, B \in$ NPC and have p -time padding functions, then they are inter-reducible via p-time invertible 1:1 length-increasing reductions.
Lemma: All the NP complete sets in [GJ] have p-time padding functions.

Def. $A \subseteq \Sigma^{*}$ has p-time padding functions if $\exists e, d \in \mathrm{FP}$ s.t.

1. $\forall w, x \in \Sigma^{*} \quad w \in A \leftrightarrow e(w, x) \in A$
2. $\forall w, x \in \Sigma^{*} \quad d(e(w, x))=x$
3. $\forall w, x \in \Sigma^{*} \quad|e(w, x)| \geq|w|+|x|$.

Example: for SAT: $e(w, x) \stackrel{\text { def }}{=}(w) \wedge \underbrace{C_{1} \wedge \cdots \wedge C_{|x|}}$, where
$C_{i}=(y \vee \bar{y})$ if $x_{i}=1$, else $(\bar{y} \vee y)$.
Lemma: If $A, B \in$ NPC and have p -time padding functions, then they are inter-reducible via p-time invertible 1:1 length-increasing reductions.

Lemma: All the NP complete sets in [GJ] have p-time padding functions.

Thus, all the NP complete sets in [GJ] are p-isomorphic.

fop Isomorphism Theorem proof sketch

fop Isomorphism Thm. All NP complete sets via $\leq_{\text {fop }}$ are first-order isomorphic. Also true for $\mathrm{NC}^{1}, \mathrm{sAC}^{1}, \mathrm{~L}, \mathrm{NL}, \mathrm{P}$, PSPACE, etc.

fop Isomorphism Theorem proof sketch

fop Isomorphism Thm. All NP complete sets via $\leq_{\text {fop }}$ are first-order isomorphic. Also true for $\mathrm{NC}^{1}, \mathrm{sAC}^{1}, \mathrm{~L}, \mathrm{NL}, \mathrm{P}$, PSPACE, etc.

Key Lemma: Let f be a first-order projection (fop) that is $1: 1$ and of arity at least 2, i.e., it at least squares the size. Then the following two predicates are first-order expressible concerning a structure, \mathcal{A} :

1. $\operatorname{IE}(\mathcal{A})$, meaning that $f^{-1}(\mathcal{A})$ exists.
2. \#Ancestors (\mathcal{A}, r), meaning \mathcal{A} has exactly r ancestors.

fop Isomorphism Theorem proof sketch

fop Isomorphism Thm. All NP complete sets via $\leq_{\text {fop }}$ are first-order isomorphic. Also true for $\mathrm{NC}^{1}, \mathrm{sAC}^{1}, \mathrm{~L}, \mathrm{NL}, \mathrm{P}$, PSPACE, etc.

Key Lemma: Let f be a first-order projection (fop) that is $1: 1$ and of arity at least 2, i.e., it at least squares the size. Then the following two predicates are first-order expressible concerning a structure, \mathcal{A} :

1. $\operatorname{IE}(\mathcal{A})$, meaning that $f^{-1}(\mathcal{A})$ exists.
2. \#Ancestors (\mathcal{A}, r), meaning \mathcal{A} has exactly r ancestors. The rest of the proof is similar to proof from [BH77].

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all complete sets via fops are first-order isomorphic.

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all complete sets via fops are first-order isomorphic.

- Morally, the BH Isomorphism Conjecture is true.

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all complete sets via fops are first-order isomorphic.

- Morally, the BH Isomorphism Conjecture is true.
- Each nice complexity class has exactly one complete problem.

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all complete sets via fops are first-order isomorphic.

- Morally, the BH Isomorphism Conjecture is true.
- Each nice complexity class has exactly one complete problem.
- Dichotomy Phenomenon: "Natural" computational problems tend to be complete via fops for one of our favorite complexity classes.

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all complete sets via fops are first-order isomorphic.

- Morally, the BH Isomorphism Conjecture is true.
- Each nice complexity class has exactly one complete problem.
- Dichotomy Phenomenon: "Natural" computational problems tend to be complete via fops for one of our favorite complexity classes.
- Great for Algorithms and Complexity Theory!

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all complete sets via fops are first-order isomorphic.

- Morally, the BH Isomorphism Conjecture is true.
- Each nice complexity class has exactly one complete problem.
- Dichotomy Phenomenon: "Natural" computational problems tend to be complete via fops for one of our favorite complexity classes.
- Great for Algorithms and Complexity Theory!
- But not true in general [L75].

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all complete sets via fops are first-order isomorphic.

- Morally, the BH Isomorphism Conjecture is true.
- Each nice complexity class has exactly one complete problem.
- Dichotomy Phenomenon: "Natural" computational problems tend to be complete via fops for one of our favorite complexity classes.
- Great for Algorithms and Complexity Theory!
- But not true in general [L75].
- Why does this seem to occur?

fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all complete sets via fops are first-order isomorphic.

- Morally, the BH Isomorphism Conjecture is true.
- Each nice complexity class has exactly one complete problem.
- Dichotomy Phenomenon: "Natural" computational problems tend to be complete via fops for one of our favorite complexity classes.
- Great for Algorithms and Complexity Theory!
- But not true in general [L75].
- Why does this seem to occur?
- Logical and Algebraic reasons, e.g., CSP.

fop Isomorphism Thm. For nice complexity classes, all complete sets via fops are first-order isomorphic.
fop Isomorphism Thm. For nice complexity classes, all complete sets via fops are first-order isomorphic.

Some were unhappy with the fop Iso Thm because of a mismatch: fop more restrictive than fo.
fop Isomorphism Thm. For nice complexity classes, all complete sets via fops are first-order isomorphic.

Some were unhappy with the fop Iso Thm because of a mismatch: fop more restrictive than fo.

First-Order Isomorphism Theorem [Agrawal01] For nice complexity classes, all complete sets via fops are first-order isomorphic.

