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P is a good
mathematical
wrapper for “truly
feasible”.

“truly feasible” is
the informal set of
problems we can
solve exactly on all
reasonably sized
instances.
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to solve are NP
complete.

SAT, TSP,
3-COLOR,
CLIQUE, ...
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Descriptive Complexity

Input H\Computation\ — Answer
g1 G2 - Qn aa --- a - am
... 8 ...

Restrict attention to the complexity of computing individual bits
of the output, i.e., decision problems.

How hard is it to check if input has property S ?
How rich a language do we need to express property S?

There is a constructive isomorphism between these two
approaches.



Think of the Input as a Finite Logical Structure

Graph G = ({v1,...,vn},<, E s 1)
; =
Y4 = (E? s, t)
Binary Strlng Aw = ({p17"'7p8}’§ 78)

S = {p2.ps5,p7,Ps}
s =(S") w = 01001011
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boolean connectives: A,V,—
quantifiers: V. 3

numeric symbols: = < +, x, min, max
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B = Iy(x<ynS(x) € L()

g = S(min) € L(Zg)



First-Order Logic

input symbols: from X
variables: x,y,z, ...
boolean connectives: A,V,—
quantifiers: V,3

numeric symbols: = < +, x, min, max
a = Vx3Iy(E(x,y)) € L(Xg)
B = Iy(x<ynS(x) € L()

g = S(min) € L(Zg)

In this setting, with the structure of interest being the finite
input, FO is a weak, low-level complexity class.



Second-Order Logic: FO plus Relation Variables

Gscor = IR G'B'Vxy ((R(X) V G(X) V B(X)) A (E(x,y) =
(=(R(x) A R(y)) A =~(G(x) A G(y)) A=(B(x) A B(¥)))))
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Fagin’s Theorem: NP = SO3

Gscor = IR G'B'Vxy ((R(X) V G(X) V B(X)) A (E(x,y) =
(=(R(x) A R(y)) A =~(G(x) A G(y)) A=(B(x) A B(¥)))))
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Addition is First-Order
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Addition is First-Order

Q\ : STRUC[ZAB] — STRUC[ZS]

A ay da ... dp-1 an
B + by b2 ... bp1 bnp
S S4 S ... Sp-1 8Sp

cly = (3> i)(AG)ABG) A

(Vk.j > k > i)(A(k) v B(k)))

)
B
i

Ali) @ B(i) @ C(i)
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Parallel Machines: Quantifiers are Parallel

CRAM|(t(n)] = CRCW-PRAM-TIME[t(n)]-HARD[n®(")]
Assume array A[x] : x =1,...,rin memory.

Vx(A(x)) = write(1); proc p; : if (Ali] = 0) then write(0)

Global

Memory
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(ptC(R7X7y)

REACH
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Inductive Definitions and Least Fixed Point

E*(x,y) = x=y VvV E(x,y) v 3z(E*(x,2) N E*(z,Yy))

x=y Vv E(x,y) vV 3z(R(x,z) A R(z, y))

(pZ‘C(FLX:y)

©% :binRel(G) — binRel(G) is a monotone operator

Ge REACH & Gk (LFPp)(s,f)  E* = (LFPyg)

REACH = {G,s,t | s 5t} REACH ¢ FO

s >
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Tarski-Knaster Theorem

Thm. If ¢ : Rel*(G) — Rel"(G) is monotone, then LFP(;»)
exists and can be computed in P.

proof: Monotone means, forall RC S, ¢(R) C ¢(S).
Let P &g, 10 Thus,0=R0cC/lcC...CI.

Let t be min such that /' = /'+1. Note that t < nk where
n=1|VC. o) =1, sollisafixed point of .

Suppose ¢(F) = F. Byinductiononr,forall r, I" C F.
basecase: °=(CF.

inductive case: Assume // C F

By monotonicity, ¢(F) C ¢(F),i.e., Ft' CF.

Thus ' C F and [ =LFP(yp). O
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Inductive Definition of Transitive Closure

x=y VvV E(x,y) v 3z(R(x,z) AN R(z,y))
{(a,b) € VG x VC | dist(a,b) < 1}

SOIC(R7X7y)
I" = 8(0)



Inductive Definition of Transitive Closure

oe(R, X,y x=y Vv E(x,y) v 32(R(x,z) N R(z,y))
"= 80 {(a,b) € VG x VC | dist(a,b) < 1}
P = (0820 = {(a,b) € V€ x V@ | dist(a,b) < 2}

N~ ~—
I
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Inductive Definition of Transitive Closure

ow(R,x,y) = x=y V E(x,y) vV 3z(R(x,z) A R(z,y))

N=¢8®0) = {(ab)ecVCxVE|dist(ahb)<1}
R=(820) = {(ab)eVixVC| dist(ab) <2}
B=(8)B30) = {(ab)eVCGxVC| dsi(ab) <4}
=80 = {(ab)eVExVEC| dis(ab) <21}
(pE)1+eenl () = {(a,b) € V& x V@ | dist(a,b) < n}
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Inductive Definition of Transitive Closure

ow(R,x,y) = x=y V E(x,y) vV 3z(R(x,z) A R(z,y))

N=¢8®0) = {(ab)ecVCxVE|dist(ahb)<1}
R=(p820) = {(ab)e VExVE | dis(ab) <2}
B=(8)B30) = {(ab)eVCGxVC| dsi(ab) <4}
r=(e8)® = {(ab)eVCxVC|dsyab) <2}
(pE)1+eenl () = {(a,b) € V& x V@ | dist(a,b) < n}

LFP(grr) = @l "8"(@);  REACH € IND[log ]

Next we will show that IND[{(n)] = FO[{(n)].



vic(R,x,y) = x=y VvV E(x,y)Vv 3z(R(x,z2)AR(z,y))

1. Dummy universal quantification for base case:

(Vz.M)(32)(R(x,z) A R(z,y))
~(x=yVE(xY))

S
S
s

X
=
1Tl



vic(R,x,y) = x=y VvV E(x,y)Vv 3z(R(x,z2)AR(z,y))

1. Dummy universal quantification for base case:

vie(R,x,y) = (Vz.My)(32)(R(x,z) A R(z,y))
My = —(x=yVE(X,y))

2. Using Vv, replace two occurrences of R with one:

vie(R,x,y) = (Vz.My)(32)(Vuv.M2)R(u, v)
Mo

(u=xAv=2z)V (u=zAv=yY)



vic(R, X, y) x=yV E(x,y)Vv 3z(R(x,z)AR(z,y))

1. Dummy universal quantification for base case:

vie(R,x,y) = (Vz.My)(32)(R(x,z) A R(z,y))
My = —(x=yVE(X,y))

2. Using Vv, replace two occurrences of R with one:

vie(R,x,y) = (Vz.My)(32)(Vuv.M2)R(u, v)
Mo

(u=xAv=2z)V (u=zAv=yY)
3. Requantify x and y.

My = (x=uAy=v)

(PtC(R7 X, y) = [ (VZ.M1)(HZ)(VUV.MQ)(HX}/.M;;) ] R(X> y)

Every FO inductive definition is equivalent to a quantifier block.
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QB [(Vz.My)(3z2)(Vuv.Mp)(Vxy.Ms)]
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QB [(Vz.My)(3z2)(Vuv.Mp)(Vxy.Ms)]

(R, x,y) = [(Vz2.M;)(32)(Vuv.Mz)(Ixy.M3)]R(X, ¥)
SOTC(RaX’y) = [QBIC]R(X7y)

vic(0) = [QBy] (false)
Thus, for any structure A € STRUC[X ¢],

A€REACH & A= (LFPpg)(s, 1)

& AE ([QBy)"Hoe 4 false)(s, t)



CRAM[t(n)]

INDI[#(n)]

FO[t(n)]

QB

concurrent parallel random access machine;
polynomial hardware, parallel time O(t(n))

first-order, depth t(n) inductive definitions

t(n) repetitions of a block of restricted quantifiers:

[(Q1 Xq M1) s (Qka.Mk)]; M; quantifier—free

[QB][QB] - - - [QB] Mo
t(n)
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Thm. For all constructible, polynomially bounded t(n),
CRAM[t(n)] = IND[t(n)] = FO[t(n)]

proof idea: CRAM[t(n)] 2 FO[t(n)]: For QB with k variables,
keep in memory current value of formula on all possible
assignments, using n* bits of global memory.

Simulate each next quantifier in constant parallel time.

CRAM]t(n)] C FO[t(n)]: Inductively define new state of every
bit of every register of every processor in terms of this global
state at the previous time step. O

Thm. For all {(n), even beyond polynomial,

CRAM[{(n)] = FO[t(n)]
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Thm. For k =1,2,..., DSPACE[n*] = VAR[k + 1]

Since variables range over a universe of size n, a constant
number of variables can specify a polynomial number of gates.

The proof is just a more detailed look at CRAM[t(n)] = FO[t(n)].

A bounded number, k, of variables, is k log n bits and
corresponds to n* gates, i.e., polynomially much hardware.

A second-order variable of arity r is n" bits, corresponding to
2" gates.
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SO: Parallel Machines with Exponential Hardware

Given ¢ with n variables and m clauses, is ¢ € 3-SAT?
With r = m2" processors, recognize 3-SAT in constant time!

Let S be the first n bits of our processor number.
If processors S1, ... Sm notice that truth assignment S makes
all m clauses of ¢ true, then ¢ € 3-SAT, so S1 writes a 1.
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SO: Parallel Machines with Exponential Hardware

Thm. SO[{(n)] = CRAMJt(n)]-HARD[2"""] .

proof: SO[t(n)] is like FO[t(n)] but using a quantifier block
containing both first-order and second-order quantifiers.

The proof is similar to FO[{(n)] = CRAM[t(n)]. 0
Cor.
SO = PTIME Hierarchy = CRAM[1]-HARD[2‘1°“)]
SO[n°M] = PSPACE = CRAM[n°M]-HARD[2""]

so2"™] =  EXPTIME = CRAM[2""]-HARD[2"""]
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Parallel Time versus Amount of Hardware

PSPACE FO[2""] CRAM[2"""]-HARD[nO())]
= SO[n°M] = CRAM[n®(")]-HARD[2"""]
» We would love to understand this tradeoff.

» Is there such a thing as an inherently sequential problem?,
i.e., is NC # P?

» Same tradeoff as number of variables vs. number of
iterations of a quantifier block.



SO[t(n)]

CRAM[t(n)]-
HARD-[27"]
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» [C71] SAT is NP complete via ptime Turing reductions.
» [K72] Many important problems are NP complete, via <.
» [J73] ...stay complete via logspace reductions, <ug.

» [HIM78] ... stay complete via one-way logspace,
reductions, <q.jg.

» [180] ...stay complete first-order reductions.

» [V82]...stay complete via projections. (Non-uniform
reductions where each bit of the output depends on at
most one bit of the input).

» [I87] ...stay complete via first-order projections, <.
» [L75] Artificial, non-complete problems can be constructed.

» Dichotomy: “Natural” problems are complete for important
compexity classes [FV99, S78, ABISV09].
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» [ABI93] fop Isomorphism Thm. All NP complete sets via

<iop are first-order isomorphic. Also true for L, NL, P,
PSPACE, etc.
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fop Isomorphism Theorem proof sketch

[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

Schroder-Bernstein Thm. Let A and B be any two sets and
suppose thatf: A ! Bandg: B ! A. Then there exists
h-A & B (A< Bl A [Bl < |Al — |Al=B)

Proof: For a,c € AU B, say that ais an ancestor of c if we
can go from ato ¢ by applying a finite, non-zero, number of
applications of f and g.

h(a) def { g! (a) if ahas an odd number of ancestors

f(a) if @ has an even or infinite number of ancestors

Thus, h:A U 0

onto
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[BH77] Observation: All the NP complete sets in [GJ] are
p-isomorphic.

Lemma: Letf: A<, Band g : B <, Awhere f and g are 1:1
length-increasing functions. Assume also that f and g have left
inverses in FP. Then A is p-isomorphic to B.

Proof: Since f, g are length-increasing, the ancestor chains
are linear in length. Thus, the isomorphism, h, can be defined
as in the SB Thm, but now it can be computed in ptime. O
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Def. A C X* has p-time padding functions if Je, d € FPs.t.
1.Vw,xeX* weA < e(w,x)cA
2. Vw,x e ¥* d(e(w,x)) =x
3. Vw,x € ¥* |e(w,x)| > |w|+ |x].
Example: for SAT: e(w, x) o (W) A Cy A--- A Ciy, Where
Ci=(yVvy)ifx;=1,else (y vy).

Lemma: If A, B € NPC and have p-time padding functions, then
they are inter-reducible via p-time invertible 1:1
length-increasing reductions.

Lemma: All the NP complete sets in [GJ] have p-time padding
functions.

Thus, all the NP complete sets in [GJ] are p-isomorphic. O
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fop Isomorphism Theorem proof sketch

fop Isomorphism Thm. All NP complete sets via <, are

first-order isomorphic. Also true for NC', sAC', L, NL, P,
PSPACE, etc.

Key Lemma: Let f be a first-order projection (fop) that is 1:1
and of arity at least 2, i.e., it at least squares the size. Then the
following two predicates are first-order expressible concerning
a structure, A:

1. IE(A), meaning that f~1(A) exists.
2. #Ancestors(.A, r), meaning A has exactly r ancestors.
The rest of the proof is similar to proof from [BH77]. O
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fop Isomorphism Theorem Consequences

fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.
» Morally, the BH Isomorphism Conjecture is true.

» Each nice complexity class has exactly one complete
problem.

» Dichotomy Phenomenon: “Natural” computational
problems tend to be complete via fops for one of our
favorite complexity classes.

» Great for Algorithms and Complexity Theory!
» But not true in general [L75].

» Why does this seem to occur?

» Logical and Algebraic reasons, e.g., CSP.
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fop Isomorphism Thm. For nice complexity classes, all
complete sets via fops are first-order isomorphic.

Some were unhappy with the fop Iso Thm because of a
mismatch: fop more restrictive than fo.

First-Order Isomorphism Theorem [Agrawal01] For nice
complexity classes, all complete sets via fops are first-order
isomorphic.



