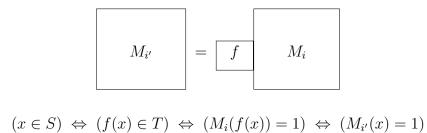
Fundamental Th. of Reductions: If $S \leq T$, then,

- 1. If T is r.e., then S is r.e..
- 2. If T is co-r.e., then S is co-r.e..
- 3. If T is Recursive, then S is Recursive.

Proof: $S \leq T \land T \in \text{r.e.} \Rightarrow S \in \text{r.e.}$ Let $f: S \leq T$, i.e., $\forall x(x \in S \Leftrightarrow f(x) \in T), \quad T = W_i$.

From M_i compute the TM $M_{i'}$ which on input x does the following: (a). compute f(x); (b) run $M_i(f(x))$



Therefore, $S = W_{i'}$, and S is r.e. as desired.

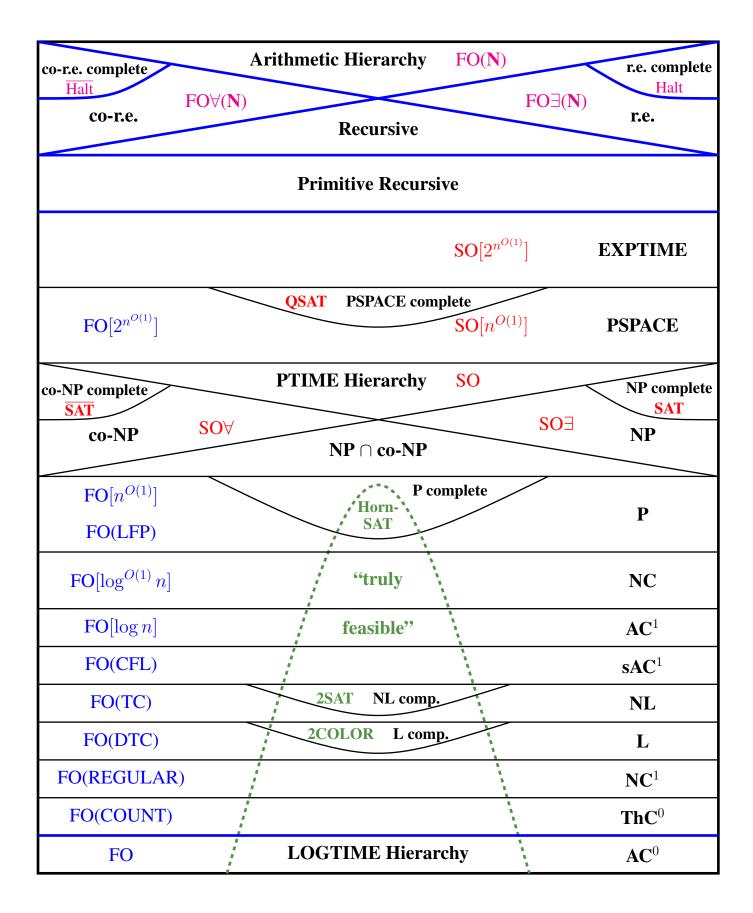
In other words, $P_S = p_T \circ f$. We are given the Turing machines that compute the partial recursive function p_T and the total recursive function f. From these, we can easily construct the Turing machine, $M_{i'}$, which computes p_S .

Observation 4.1 $f: S \leq T \quad \Leftrightarrow \quad f: \overline{S} \leq \overline{T}.$

 $\begin{array}{lll} \text{Thus,} & T \in \text{co-r.e.} \ \Rightarrow \ \overline{T} \in \text{r.e.} \ \Rightarrow \ \overline{S} \in \text{r.e.} \ \Rightarrow \ S \in \text{co-r.e.} \\ T \in \text{Recursive} & \Rightarrow & (T \in \text{r.e.} \ \land \ T \in \text{co-r.e.}) & \Rightarrow \\ (S \in \text{r.e.} \ \land \ S \in \text{co-r.e.}) & \Rightarrow & S \in \text{Recursive} \end{array}$

Moral: Suppose $S \leq T$. Then,

- If T is easy, then so is S.
- If S is hard, then so is T.



Proposition 4.2 For $S \subseteq \mathbf{N}$ or $S \subseteq \{0,1\}^*$, S is r.e. complete iff \overline{S} is co-r.e. complete.

Proof: Suppose S is r.e. complete. Thus, $S \in$ r.e. and $\forall B \in$ r.e. $B \leq S$. Thus $\overline{S} \in$ co-r.e.. Also, for all $B \in$ r.e., $B \leq S$. Thus, $\overline{B} \leq \overline{S}$. Thus, all co-r.e. sets are reducible to \overline{S} . Thus \overline{S} is r.e. complete. The proof of the converse is similar, i.e., essentially identical.

The Arithmetic Hierarchy is at the top of the World-of-Computability-and-Complexity diagram.

Definition 4.3 Let $S \subseteq \mathbf{N}$. S is an element of Σ_k iff there is a decidable predicate φ , such that,

$$S = \{n \mid (\exists x_1)(\forall x_2)\cdots(Q_k x_k)\varphi(n, x_1, \dots, x_k)\},\$$

here Q_k is \forall if k is even and \exists if k is odd.

Similarly, S is an element of Π_k iff,

$$S = \{n \mid (\forall x_1)(\exists x_2)\cdots(Q'_k x_k)\psi(n, x_1, \dots, x_k)\},\$$

for some decidable predicate ψ . Here Q'_k is \forall if k is odd and \exists if k is even.

Define the Arithmetic Hierarchy (AH) to be $\bigcup_{k=1}^{\infty} \Sigma_k$. Note that AH is thus also equal to $\bigcup_{k=1}^{\infty} \Pi_k$. \Box

Proposition 4.4 Σ_1 = r.e. and Π_1 = co-r.e..

Proof: Let W_i be an arbitrary r.e. set. Observe that

$$W_i = \{n \mid \exists c \in \mathbf{N} \mid \mathsf{COMP}(i, n, c, 1)\}.$$

Here COMP(i, n, c, y) is the very useful decidable predicate meaning that c is an encoding of a complete halting computation of TM $M_i(n)$ and the output is y, i.e., $M_i(n) = y$.

Thus, $W_i \in \Sigma_1$.

Conversely, suppose that $S \in \Sigma_1$, i.e.,

 $S = \{n \mid (\exists x) \varphi(n, x)\}, \text{ for a decidable predicate, } \varphi.$

We can build a TM, M_S which accepts exactly S by doing the following:

for x = 0 to ∞ , if $(\varphi(n, x))$: return(1).

Thus, we have shown that r.e. $= \Sigma_1$.

From the definition of Σ_1 and Π_1 it follows that $\Sigma_1 = \text{co-}\Pi_1$. Thus, co-r.e. $= \Pi_1$.