
Fundamental Th. of Reductions: If S ≤ T , then,

1. If T is r.e., then S is r.e..

2. If T is co-r.e., then S is co-r.e..

3. If T is Recursive, then S is Recursive.

Proof: S ≤ T ∧ T ∈ r.e. ⇒ S ∈ r.e.

Let f : S ≤ T , i.e., ∀x(x ∈ S ⇔ f(x) ∈ T ), T = Wi.

From Mi compute the TM Mi′ which on input x does the following: (a). compute f(x); (b) run
Mi(f(x))

Mi′ = f Mi

(x ∈ S) ⇔ (f(x) ∈ T ) ⇔ (Mi(f(x)) = 1) ⇔ (Mi′(x) = 1)

Therefore, S = Wi′ , and S is r.e. as desired.

In other words, PS = pT ◦ f . We are given the Turing machines that compute the partial recursive
function pT and the total recursive function f . From these, we can easily construct the Turing
machine, Mi′ , which computes pS .

Observation 4.1 f : S ≤ T ⇔ f : S ≤ T .

Thus, T ∈ co-r.e. ⇒ T ∈ r.e. ⇒ S ∈ r.e. ⇒ S ∈ co-r.e.

T ∈ Recursive ⇒ (T ∈ r.e. ∧ T ∈ co-r.e.) ⇒

(S ∈ r.e. ∧ S ∈ co-r.e.) ⇒ S ∈ Recursive �

Moral: Suppose S ≤ T . Then,

• If T is easy, then so is S.

• If S is hard, then so is T .
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Proposition 4.2 For S ⊆ N or S ⊆ {0, 1}?, S is r.e. complete iff S is co-r.e. complete.

Proof: Suppose S is r.e. complete. Thus, S ∈ r.e. and ∀B ∈ r.e.B ≤ S.

Thus S ∈ co-r.e.. Also, for all B ∈ r.e., B ≤ S. Thus, B ≤ S.

Thus, all co-r.e. sets are reducible to S. Thus S is r.e. complete.

The proof of the converse is similar, i.e., essentially identical. �
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The Arithmetic Hierarchy is at the top of the World-of-Computability-and-Complexity diagram.

Definition 4.3 Let S ⊆ N. S is an element of Σk iff there is a decidable predicate ϕ, such that,

S =
{
n
∣∣ (∃x1)(∀x2) · · · (Qkxk)ϕ(n, x1, . . . , xk)

}
,

here Qk is ∀ if k is even and ∃ if k is odd.

Similarly, S is an element of Πk iff,

S =
{
n
∣∣ (∀x1)(∃x2) · · · (Q′

kxk)ψ(n, x1, . . . , xk)
}
,

for some decidable predicate ψ. Here Q′
k is ∀ if k is odd and ∃ if k is even.

Define the Arithmetic Hierarchy (AH) to be
∞⋃
k=1

Σk. Note that AH is thus also equal to
∞⋃
k=1

Πk. �

Proposition 4.4 Σ1 = r.e. and Π1 = co-r.e..

Proof: Let Wi be an arbitrary r.e. set. Observe that

Wi =
{
n
∣∣ ∃c ∈ N COMP(i, n, c, 1)

}
.

Here COMP(i, n, c, y) is the very useful decidable predicate meaning that c is an encoding of a
complete halting computation of TM Mi(n) and the output is y, i.e., Mi(n) = y.

Thus, Wi ∈ Σ1.

Conversely, suppose that S ∈ Σ1, i.e.,

S =
{
n
∣∣ (∃x)ϕ(n, x)

}
, for a decidable predicate, ϕ.

We can build a TM, MS which accepts exactly S by doing the following:

for x = 0 to∞, if (ϕ(n, x)) : return(1).

Thus, we have shown that r.e. = Σ1.

From the definition of Σ1 and Π1 it follows that Σ1 = co-Π1. Thus, co-r.e. = Π1. �
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