CS601

Lecture 2

$$M(w) \equiv \begin{cases} y & \text{if } M \text{ on input ``>}w\sqcup'' \text{ eventually} \\ & \text{halts with output ``>}y\sqcup'' \\ \nearrow & \text{otherwise} \end{cases}$$

 $\Sigma_0 \equiv \Sigma - \{ \triangleright, \sqcup \};$ Usually, $\Sigma_0 = \{0, 1\};$ $w, y \in \Sigma_0^*$

Definition 2.1 Let $f : \Sigma_0^* \to \Sigma_0^*$ be a total or partial function. We say that f is a **partial, recursive function** iff $\exists TM M(f = M(\cdot))$, i.e., $\forall w \in \Sigma_0^*(f(w) = M(w))$.

Remark 2.2 There is an easy to compute 1:1 and onto map between $\{0,1\}^*$ and **N** [Exercise]. Thus we can think of the contents of a TM tape as a natural number and talk about $f : \mathbf{N} \to \mathbf{N}$ being a **recursive** function.

If the partial, recursive function f is total, i.e., $f : \mathbf{N} \to \mathbf{N}$ then we say that f is a **total, recursive function**. A partial function that is not total is called **strictly partial**.

Some Recursive Functions

Lecture 2

CS601

Proposition 2.3 *The following functions are recursive. They are all total except for peven.*

$$copy(w) = ww$$

$$\sigma(n) = n + 1$$

$$plus(n,m) = n + m$$

$$mult(n,m) = n \times m$$

$$exp(n,m) = n^{m} \quad (we \ let \ exp(0,0) = 1)$$

$$\chi even(n) = \begin{cases} 1 & if n \ is \ even \\ 0 & otherwise \end{cases}$$

$$peven(n) = \begin{cases} 1 & if n \ is \ even \\ \nearrow & otherwise \end{cases}$$

Proof: Exercise: please convince yourself that you can build TMs to compute all of these functions! \Box

Recursive Sets = **Decidable Sets** = **Computable Sets**

Definition 2.4 Let $S \subseteq \Sigma_0^*$ or $S \subseteq \mathbb{N}$.

S is a **recursive set** iff the function χ_S is a (total) recursive function,

 $\chi_S(x) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{otherwise} \end{cases}$

Examples: The following sets are recursive:

•
$$\{2n \mid n \in \mathbf{N}\}, \{2n+1 \mid n \in \mathbf{N}\}$$

•
$$\{p \in \mathbf{N} \mid n \text{ is prime}\}$$

• N, Ø

- 0^{*}, in fact, every regular set is recursive.
- $\{0^n 1^n \mid n \in \mathbf{N}\}$, in fact, every CFL is recursive.

•
$$\left\{ 0^{n^2} \mid n \in \mathbf{N} \right\}$$

S is a **recursive set** iff the function χ_S is a (total) recursive function,

$$\chi_S(x) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{otherwise} \end{cases} \text{ the characteristic function of } S$$

Definition 2.5 *S* is a **recursively enumerable set** (*S* is **r.e.**) iff the function p_S is a (partial) recursive function,

 $p_S(x) = \begin{cases} 1 & \text{if } x \in S \\ \nearrow & \text{otherwise} \end{cases}$ the polite characteristic function of S

Proposition 2.6 If S is recursive then S is r.e.

Proof: Suppose S is recursive and let M be the TM computing χ_S . Build M' computing the following function:

$$M'(x) = \begin{cases} 1 & \text{if } M(x) = 1 \\ \nearrow & \text{otherwise} \end{cases} = p_S(x)$$

CS601

Recursive = r.e. \cap **co-**r.e.

C a class of sets, define co-**C** the class of sets whose complements are in **C**, co-**C** = $\{S \mid \overline{S} \in \mathbf{C}\}$. Define:

 $r_S(x) = \begin{cases} \nearrow & \text{if } x \in S \\ 0 & \text{otherwise} \end{cases}$ the rude characteristic function of S

Observation 2.7 *S* is co-r.e. iff r_S is a partial recursive function.

Theorem 2.8 *S* is recursive iff S and \overline{S} are both r.e.

Thus, Recursive = r.e. \cap co-r.e.

Proof: If $S \in$ Recursive then χ_S is a recursive function.

Thus so is $\chi_{\overline{S}}(x) = 1 - \chi_S(x)$

Thus, S and \overline{S} are both recursive and thus both r.e.

Suppose $S \in \text{r.e.} \cap \text{co-r.e.}$

 $p_S = M(\cdot); \quad r_S = M'(\cdot).$

Run M and M' in parallel – sometimes called **dovetailing**:

Define $T = M \| M'$ on input x:

- 1. **for** n := 1 to ∞ {
- 2. run M(x) for n steps.
- 3. if M(x) = 1 in *n* steps then return(1)
- 4. run M'(x) for *n* steps.
- 5. if M'(x) = 0 in *n* steps then return(0)

Thus, $T(\cdot) = \chi_S$ and thus $S \in \text{Recursive}$.

Definition 2.9 The **busy beaver function** bb(n) is the maximum number of one's that an n state TM with alphabet $\Sigma = \{0, 1\}$ can leave on its tape and halt when started on the all 0 tape.

Note: In this example, to be consistent with literature, e.g., Hopcroft article¹, we are taking our tape alphablet $\Sigma = \{0, 1\}$.

Note that bb(n) is well defined:

There are only finitely many *n*-state TMs, with $\Sigma = \{0, 1\}$.

 $M_0 \ M_1 \ M_2 \ M_3 \ \dots \ M_{289} \ M_{290} \ \dots \ M_{3042} \ M_{3043} \ \dots \ M_{t(n)}$ Some finite subset of these eventually halt on input 0.

 M_1 M_3 M_{289} M_{3043} One of these prints the max # of 1's = bb(n).

1 17 22,961 407

Lecture 2

¹John Hopcroft, "Turing Machines" Scientific American, May 1984.

	q_1	q_2	q_3
0	$q_2, 1, \rightarrow$	$q_3, 0, \rightarrow$	$q_3, 1, \leftarrow$
1	h, 1, -	$q_2, 1, \rightarrow$	$q_1, 1, \leftarrow$

 $\mathbf{bb}(3) \ge 6$

CS601 How quickly does bb(n) grow as n gets large?

O(hyperexp(hyperexp(n))) ?

Lecture 2

hyperexp
$$(n) = 2^{2^{\cdot \cdot^2}} n$$

States	Max # of 1's	Lower Bound for $bb(n)$
3	bb (3)	6
4	bb (4)	12
5	bb (5)	17
6	bb (6)	35
7	bb (7)	22,961
8	bb (8)	$3^{92} \sim 7.9 \times 10^{43}$

Theorem 2.10 Let $f : \mathbf{N} \to \mathbf{N}$ be a total, recursive function.

$$\lim_{n \to \infty} \left(\frac{f(n)}{\mathbf{bb}(n)} \right) = 0$$

That is, bb(n) is eventually bigger than any total, computable function!

Proof:

Let $g(n) = n \cdot (1 + \max_{i \le n} f(i))$. Note: g is total, recursive.

Note: $\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = 0$

We'll show that, $bb(n) \ge g(n)$, for all sufficiently large n.

g(n) is computed by some k-state TM.

For any *n*, let TM $C_n =$ print *n* compute *g* binary to unary $\lceil \log n \rceil$ *k* 17

 C_n has $\lceil \log n \rceil + k + 17$ states.

 C_n prints g(n) 1's.

For $n \ge \lceil \log n \rceil + k + 17$ states,

 $bb(n) \ge bb(\lceil \log n \rceil + k + 17) \ge g(n)$

Fact 2.11 (Cantor) The pairing function $P(i, j) = \frac{(i+j)(i+j+1)}{2} + i$ is a 1:1 correspondence between $\mathbf{N} \times \mathbf{N}$ and \mathbf{N} : $P : \mathbf{N} \times \mathbf{N} \xrightarrow[onto]{i:1}{onto} \mathbf{N}$.

$$\begin{split} P(L(w),R(w)) \ &= \ w \\ L(P(i,j)) \ &= \ i \\ R(P(i,j)) \ &= \ j \end{split}$$

We can use the pairing function to think of a natural number as a pair of natural numbers.

Thus, the input to a Turing machine is a single binary string which may be thought of as a natural number, a pair of natural numbers, a triple of natural numbers, etc.

Numbering Turing Machines

Turing machines can be encoded as character strings which can be encoded as **binary strings** which can be encoded as **natural numbers**.

\mathbf{TM}_n	1	2	3	4	
0	$1, 0, \rightarrow$	$3, \sqcup, \rightarrow$	0, 0, -	0, 0, -	
1	$1, 1, \rightarrow$	$4, \sqcup, \rightarrow$	0, 1, -	0, 1, -	
	$2, \sqcup, \leftarrow$	$0, \sqcup, -$	$1, 0, \leftarrow$	$1, 1, \leftarrow$	
\triangleright	$1, \triangleright, \rightarrow$	$0, \triangleright, -$	$0, \triangleright, -$	$0, \triangleright, -$	

ASCII: $1, 0, \rightarrow; 1, 1, \rightarrow; 2, \sqcup, \leftarrow; 1, \triangleright, \rightarrow;; \cdots 0, \triangleright, \{0, 1\}^{\star}: w$ **N**: n

There is a simple, countable listing of all TM's: M_0, M_1, M_2, \cdots

Encoding (transition function to binary string) and Decoding (binary string to transition function) are trivial to compute.

Lecture 2

CS601

Theorem 2.12 There is a Universal Turing Machine U such that,

 $U(P(n,m)) = M_n(m)$

Proof: Given P(n, m), compute n and m. n is a binary string encoding the state table of TM M_n . We can simulate M_n on input m by keeping track of its state, its tape, and looking at its state table, n, at each simulated step.

n \triangleright m \sqcup

Theorem 2.12 is perhaps the most fundamental fact about computation.

HALT = $\{P(n,m) \mid \text{TM } M_n(m) \text{ eventually halts} \}$

Corollary 2.13 (Unsolvability of the Halting Problem) HALT *is not recursive.*

Proof: Suppose HALT were recursive. Then bb(n) would be a total recursive function: Cycle through all *n*-state TMs, M_i , and if $P(i, 0) \in$ HALT, then count the number of 1's in $M_i(0)$. Return the maximum of these.

$$\Rightarrow \Leftarrow$$

Listing All r.e. Sets

Lecture 2

$$W_i = \{n \mid M_i(n) = 1\} = \mathcal{L}(M_i)$$

The set of all r.e. sets = W_0, W_1, W_2, \cdots

n	0	1	2	3	4	5	6	7	8	•••	W_n
0	0	0	0	0	0	0	0	0	0	•••	W_0
1	1	1	1	1	1	1	1	1	1	•••	W_1
2	1	0	1	0	1	0	1	0	1	•••	W_2
3	0	1	0	1	0	1	0	1	0	•••	W_3
4	1	0	0	0	0	0	0	0	0	• • •	W_4
5	0	1	1	0	1	0	0	0	1	• • •	W_5
6	1	0	0	1	0	0	1	0	0	• • •	W_6
7	1	1	0	0	0	0	0	0	0	• • •	W_7
8	0	1	0	0	0	0	0	0	0	•••	W_8
•	•	•	•	•	•	•	•	•	•	• • •	•
-											
	0	1	1	1	0	0	1	0	0	•••	K
	1	0	0	0	1	1	0	1	1	•••	\overline{K}

$$K = \{n \mid M_n(n) = 1\}$$
$$= \{n \mid U(P(n,n)) = 1\}$$
$$= \{n \mid n \in W_n\}$$

Theorem 2.14 K is r.e., but \overline{K} is not r.e.

Proof: $\overline{K} = \{n \mid n \notin W_n\}$

Suppose \overline{K} were r.e. Then for some c,

$$\overline{K} = W_c = \{n \mid M_c(n) = 1\}$$

 $c \in K \iff M_c(c) = 1 \iff c \in W_c \iff c \in \overline{K}$

$$\Rightarrow \Leftarrow$$

Corollary 2.15 $K \in r.e. - Recursive$

