
CS601 The Partial Function Computed by a TM Lecture 2

M(w) ≡


y if M on input “.wt” eventually

halts with output “.yt”

↗ otherwise

Σ0 ≡ Σ− {.,t}; Usually, Σ0 = {0, 1}; w, y ∈ Σ?
0

Definition 2.1 Let f : Σ?
0 → Σ?

0 be a total or partial function. We
say that f is a partial, recursive function iff ∃ TMM (f = M(·)),
i.e., ∀w ∈ Σ?

0(f (w) = M(w)). �

Remark 2.2 There is an easy to compute 1:1 and onto map be-
tween {0, 1}? and N [Exercise]. Thus we can think of the contents
of a TM tape as a natural number and talk about f : N → N
being a recursive function.

If the partial, recursive function f is total, i.e., f : N→ N then we
say that f is a total, recursive function. A partial function that is
not total is called strictly partial.

1

CS601 Some Recursive Functions Lecture 2

Proposition 2.3 The following functions are recursive. They are
all total except for peven.

copy(w) = ww

σ(n) = n + 1

plus(n,m) = n + m

mult(n,m) = n×m
exp(n,m) = nm (we let exp(0, 0) = 1)

χeven(n) =

{
1 if n is even
0 otherwise

peven(n) =

{
1 if n is even
↗ otherwise

Proof: Exercise: please convince yourself that you can build TMs
to compute all of these functions! �

2

Recursive Sets = Decidable Sets = Computable Sets

Definition 2.4 Let S ⊆ Σ?
0 or S ⊆ N.

S is a recursive set iff the function χS is a (total) recursive func-
tion,

χS(x) =

{
1 if x ∈ S
0 otherwise

Examples: The following sets are recursive:

•
{

2n
∣∣ n ∈ N

}
,
{

2n + 1
∣∣ n ∈ N

}
•
{
p ∈ N

∣∣ n is prime
}

• N, ∅
• 0?, in fact, every regular set is recursive.

•
{

0n1n
∣∣ n ∈ N

}
, in fact, every CFL is recursive.

•
{

0n
2 ∣∣ n ∈ N

}

3

S is a recursive set iff the function χS is a (total) recursive func-
tion,

χS(x) =

{
1 if x ∈ S
0 otherwise the characteristic function of S

Definition 2.5 S is a recursively enumerable set (S is r.e.) iff
the function pS is a (partial) recursive function,

pS(x) =

{
1 if x ∈ S
↗ otherwise the polite characteristic function of S

Proposition 2.6 If S is recursive then S is r.e.

Proof: Suppose S is recursive and let M be the TM computing
χS. Build M ′ computing the following function:

M ′(x) =

{
1 if M(x) = 1
↗ otherwise = pS(x)

�

4

CS601 Recursive = r.e. ∩ co-r.e. Lecture 2

C a class of sets, define co-C the class of sets whose complements
are in C, co-C =

{
S
∣∣ S ∈ C

}
.

Define:

rS(x) =

{
↗ if x ∈ S
0 otherwise the rude characteristic function of S

Observation 2.7 S is co-r.e. iff rS is a partial recursive function.

Theorem 2.8 S is recursive iff S and S are both r.e.

Thus, Recursive = r.e. ∩ co-r.e.

Proof: If S ∈ Recursive then χS is a recursive function.

Thus so is χS(x) = 1− χS(x)

Thus, S and S are both recursive and thus both r.e.

5

Suppose S ∈ r.e. ∩ co-r.e.

pS = M(·); rS = M ′(·).

Run M and M ′ in parallel – sometimes called dovetailing:

Define T = M ||M ′ on input x:

1. for n := 1 to∞ {
2. run M(x) for n steps.

3. if M(x) = 1 in n steps then return(1)

4. run M ′(x) for n steps.

5. if M ′(x) = 0 in n steps then return(0)}

Thus, T (·) = χS and thus S ∈ Recursive. �

6

CS601 Busy Beaver Function Lecture 2

Definition 2.9 The busy beaver function bb(n) is the maximum
number of one’s that an n state TM with alphabet Σ = {0, 1} can
leave on its tape and halt when started on the all 0 tape. �

Note: In this example, to be consistent with literature, e.g., Hopcroft
article1, we are taking our tape alphablet Σ = {0, 1}.

Note that bb(n) is well defined:

There are only finitely many n-state TMs, with Σ = {0, 1}.

M0 M1 M2 M3 . . . M289 M290 . . . M3042 M3043 . . . Mt(n)

Some finite subset of these eventually halt on input 0.

M1 M3 M289 M3043

One of these prints the max # of 1’s = bb(n).

1 17 22, 961 407

1John Hopcroft, “Turing Machines” Scientific American, May 1984.

7

q1 q2 q3
0 q2, 1,→ q3, 0,→ q3, 1,←
1 h, 1,− q2, 1,→ q1, 1,←

bb(3) ≥ 6

q1 0 0 0 0 0 0 0

q2 0 1 0 0 0 0 0

q3 0 1 0 0 0 0 0

q3 0 1 0 1 0 0 0

q3 0 1 1 1 0 0 0

q1 0 1 1 1 0 0 0

q2 1 1 1 1 0 0 0

q2 1 1 1 1 0 0 0

q2 1 1 1 1 0 0 0

q2 1 1 1 1 0 0 0

q3 1 1 1 1 0 0 0

q3 1 1 1 1 0 1 0

q3 1 1 1 1 1 1 0

q1 1 1 1 1 1 1 0

h 1 1 1 1 1 1 0

8

CS601 How quickly does bb(n) grow as n gets large? Lecture 2

Is bb(n) ∈ O(n2) ?

O(n3) ?

O(2n) ?

O(n!) ?

O(22
n
) ?

O(hyperexp(n)) ?

O(hyperexp(hyperexp(n))) ?

hyperexp(n) = 2
2·
··2
}
n

9

CS601 Some Values of bb(n) Lecture 2

States Max # of 1’s Lower Bound for bb(n)
3 bb(3) 6
4 bb(4) 12
5 bb(5) 17
6 bb(6) 35
7 bb(7) 22, 961
8 bb(8) 392 ∼ 7.9× 1043

10

Theorem 2.10 Let f : N→ N be a total, recursive function.

lim
n→∞

(
f (n)

bb(n)

)
= 0

That is, bb(n) is eventually bigger than any total, computable
function!

Proof:
Let g(n) = n · (1 + maxi≤n f (i)). Note: g is total, recursive.

Note: lim
n→∞

(
f (n)

g(n)

)
= 0

We’ll show that, bb(n) ≥ g(n), for all sufficiently large n.

11

g(n) is computed by some k-state TM.

For any n, let TM Cn = print n︸ ︷︷ ︸
dlog ne

compute g︸ ︷︷ ︸
k

binary
to unary︸ ︷︷ ︸

17

Cn has dlog ne + k + 17 states.

Cn prints g(n) 1’s.

For n ≥ dlog ne + k + 17 states,

bb(n) ≥ bb(dlog ne + k + 17) ≥ g(n)

�

12

CS601 Pairing Function Lecture 2

Fact 2.11 (Cantor) The pairing function P (i, j) = (i+j)(i+j+1)
2 +i

is a 1:1 correspondence between N×N and N : P : N×N 1:1
→

onto
N.

P (L(w), R(w)) = w

L(P (i, j)) = i

R(P (i, j)) = j

We can use the pairing function to think of a natural number as a
pair of natural numbers.

Thus, the input to a Turing machine is a single binary string which
may be thought of as a natural number, a pair of natural numbers,
a triple of natural numbers, etc.

13

CS601 Numbering Turing Machines Lecture 2

Turing machines can be encoded as character strings which can
be encoded as binary strings which can be encoded as natural
numbers.

TMn 1 2 3 4
0 1, 0,→ 3,t,→ 0, 0,− 0, 0,−
1 1, 1,→ 4,t,→ 0, 1,− 0, 1,−
t 2,t,← 0,t,− 1, 0,← 1, 1,←
. 1, .,→ 0, .,− 0, .,− 0, .,−

ASCII: 1, 0,→; 1, 1,→; 2,t,←; 1, .,→; ; · · · 0, .,−
{0, 1}? : w

N : n

There is a simple, countable listing of all TM’s: M0,M1,M2, · · ·

Encoding (transition function to binary string) and

Decoding (binary string to transition function) are trivial to com-
pute.

14

CS601 Universal Turing Machine Lecture 2

Theorem 2.12 There is a Universal Turing MachineU such that,

U(P (n,m)) = Mn(m)

Proof: Given P (n,m), compute n and m. n is a binary string
encoding the state table of TM Mn. We can simulate Mn on input
m by keeping track of its state, its tape, and looking at its state
table, n, at each simulated step.

n . m t
�

Theorem 2.12 is perhaps the most fundamental fact about compu-
tation.

HALT =
{
P (n,m)

∣∣ TM Mn(m) eventually halts
}

Corollary 2.13 (Unsolvability of the Halting Problem) HALT
is not recursive.

Proof: Suppose HALT were recursive. Then bb(n) would be a
total recursive function: Cycle through all n-state TMs, Mi, and
if P (i, 0) ∈ HALT, then count the number of 1’s in Mi(0). Return
the maximum of these.

⇒⇐ �

15

CS601 Listing All r.e. Sets Lecture 2

Wi =
{
n
∣∣ Mi(n) = 1

}
= L(Mi)

The set of all r.e. sets = W0,W1,W2, · · ·

n 0 1 2 3 4 5 6 7 8 · · · Wn

0 0 0 0 0 0 0 0 0 0 · · · W0

1 1 1 1 1 1 1 1 1 1 · · · W1

2 1 0 1 0 1 0 1 0 1 · · · W2

3 0 1 0 1 0 1 0 1 0 · · · W3

4 1 0 0 0 0 0 0 0 0 · · · W4

5 0 1 1 0 1 0 0 0 1 · · · W5

6 1 0 0 1 0 0 1 0 0 · · · W6

7 1 1 0 0 0 0 0 0 0 · · · W7

8 0 1 0 0 0 0 0 0 0 · · · W8
...
...

...
...

...
...

...
...

...
... · · · ...

0 1 1 1 0 0 1 0 0 · · · K
1 0 0 0 1 1 0 1 1 · · · K

K =
{
n
∣∣ Mn(n) = 1

}
=
{
n
∣∣ U(P (n, n)) = 1

}
=
{
n
∣∣ n ∈ Wn

}
16

Theorem 2.14 K is r.e., but Kis not r.e.

Proof: K =
{
n
∣∣ n 6∈ Wn

}
Suppose K were r.e. Then for some c,

K = Wc =
{
n
∣∣ Mc(n) = 1

}

c ∈ K ⇔ Mc(c) = 1 ⇔ c ∈ Wc ⇔ c ∈ K

⇒⇐ �

Corollary 2.15 K ∈ r.e.− Recursive

17

Arithmetic Hierarchy FO(N) r.e. complete
Halt

co-r.e. complete
Halt

FO∃(N)
r.e.

FO∀(N)
co-r.e.

Recursive

Primitive Recursive

SO[2n
O(1)

] EXPTIME

QSAT PSPACE complete
FO[2n

O(1)

] SO[nO(1)] PSPACE

PTIME Hierarchy SO NP complete
SAT

co-NP complete
SAT

SO∃ NPSO∀co-NP
NP ∩ co-NP

P complete
Horn-
SAT P

FO[nO(1)]

FO(LFP)

FO[logO(1) n] NC“truly

feasible”FO[log n] AC1

sAC1FO(CFL)

NL2SAT NL comp.FO(TC)

2COLOR L comp. LFO(DTC)

NC1FO(REGULAR)

ThC0FO(COUNT)

AC0FO LOGTIME Hierarchy

18

