CS601 The Partial Function Computed by a TM Lecture 2

[y if M on input “bwl” eventually

Mw) = { halts with output “>yLJ”

\ ' otherwise
Yo = ¥ —{r,U}; Usually, >y = {0, 1}; w,y € X

Definition 2.1 Let f : X5 — X7 be a total or partial function. We
say that f is a partial, recursive function iff 3 TM M (f = M(+)),
e, Yw e X5(f(w)= Mw)).]

Remark 2.2 There is an easy to compute 1:1 and onto map be-
tween {0, 1}* and N [Exercise]. Thus we can think of the contents
of a TM tape as a natural number and talk about f : N — N
being a recursive function.

If the partial, recursive function f is total, i.e., f : N — N then we
say that f is a total, recursive function. A partial function that is
not total is called strictly partial.

CS601 Some Recursive Functions Lecture 2

Proposition 2.3 The following functions are recursive. They are
all total except for peyen.

copy(w) = ww
on) =n+1
plus(n,m) = n+m
multin,m) = n xXm
exp(n,m) = n" (we let exp(0,0) = 1)
) = L Spernie

A otherwise

(n) = { 1 ifniseven

Proof: Exercise: please convince yourself that you can build TMs
to compute all of these functions! []

Recursive Sets = Decidable Sets = Computable Sets

Definition 2.4 Let .S C >50or S C N.

S 1s a recursive set iff the function Y 1s a (total) recursive func-

tion,
1 ifx e s
0 otherwise

xs(@) = {

Examples: The following sets are recursive:

o{2n ‘ nEN}, {2n+1 ‘ nEN}

e {p €N | nisprime}

eN, ()

e 0%, 1n fact, every regular set 1s recursive.

o {O”l” } n €N }, in fact, every CFL i1s recursive.
S {0”2 } n e N}

S is a recursive set iff the function y g is a (total) recursive func-
tion,

1 ifze S o .
xs(z) = { 0 otherwise the characteristic function of S

Definition 2.5 S is a recursively enumerable set (S is r.e.) iff
the function pg is a (partial) recursive function,

1 ifzesS

ps(x) = { A otherwise the polite characteristic function of S

Proposition 2.6 If S is recursive then S is r.e.

Proof: Suppose S is recursive and let M be the TM computing
Xs. Build M’ computing the following function:

M'(z)

{1 if M(z)=1 _ ps()

' otherwise

CS601 Recursive = re. N co-r.e. Lecture 2

C aclass of sets, define co-C the class of sets whose complements
arein C, co-C = {S ‘ S € C}.

Define:

re(xr) = S iz e S the rude characteristic function of S
0 otherwise

Observation 2.7 S is co-r.e. iff rs is a partial recursive function.

Theorem 2.8 S is recursive iff S and S are both r.e.

Thus, Recursive = r.e. N co-r.e.

Proof: If S € Recursive then Y is a recursive function.
Thus so is xg(x) = 1 — xs(x)

Thus, S and S are both recursive and thus both r.e.

Suppose S € r.e. N co-r.e.
ps=M(-); rs=M{)
Run M and M’ in parallel — sometimes called dovetailing:

Define T' = M| M’ on input x:

1. for n :=1to oo {

2. run M (z) for n steps.

3. if M(x) =1inn steps then return(l)
4. run M'(x) for n steps.

5. if M'(x) = 0in n steps then return(0)}

Thus, T'(-) = x5 and thus S € Recursive.]

CS601 Busy Beaver Function Lecture 2

Definition 2.9 The busy beaver function bb(n) is the maximum
number of one’s that an n state TM with alphabet > = {0, 1} can
leave on its tape and halt when started on the all O tape. L]

Note: In this example, to be consistent with literature, e.g., Hopcroft
articlel] we are taking our tape alphablet &> = {0, 1}.

Note that bb(n) is well defined:

There are only finitely many n-state TMs, with ¥ = {0, 1}.

My My My Mz ... Magg Mgy ... Msoaz Mszpaz .. Myp)
Some finite subset of these eventually halt on input 0.
M, M3 Mgy M3043
One of these prints the max # of 1’s = bb(n).
1 17 22 961 407

!John Hopcroft, “Turing Machines” Scientific American, May 1984.

7

el elHeol el el el ool ol ool ol el e
OOOOOOOOOO@llll
@111111;11111111
00000@111111111
- Q4 © © ©9 -4 Q4 9@ 9 N @ N @ o
ST - o T ettt 7 7 ™
%1717

| =

S

%0717

M| N

S

T o)

S~ | — A

s< D

S | — e

CS601

How quickly does bb(n) grow as n gets large?

Lecture 2

[sbb(n) € O

O(hyperexp(n))

?

?

O(hyperexp(hyperexp(n))) ?

2
27 tn
hyperexp(n) = 2 }

CS601 Some Values of bb(n) Lecture 2

States | Max # of 1’s | Lower Bound for bb(n)
3 bb(3) 6
4 bb(4) |12
5 bb(5) 17
6 bb(6) 35
7 bb(7) | 22,961
8 bb(8) 392 ~ 7.9 x 10%

10

Theorem 2.10 Let f : N — N be a total, recursive function.

i (bﬁ%) = 0

That is, bb(n) is eventually bigger than any total, computable
function!

Proof:

Let g(n) =n - (1 + max;<, f(7)). Note: ¢ is total, recursive.

Note: lim (M) 0

We’ll show that, bb(n) > g(n), for all sufficiently large n.

11

g(n) is computed by some k-state TM.

For any n, let TM C, = print n | compute g t(l)) lﬁlﬁgy
logn 3 7

C), has [logn]| + k + 17 states.
C', prints g(n) 1’s.

For n > [logn]| + k + 17 states,

bb(n) > bb([logn|+k+17) > g(n)

12

CS601 Pairing Function Lecture 2

Fact 2.11 (Cantor) The pairing function P(i, j) = G)(?‘j SRV

is a 1:1 correspondence between NxNand N : P :NxN “/ N.

onto

We can use the pairing function to think of a natural number as a
pair of natural numbers.

Thus, the input to a Turing machine is a single binary string which

may be thought of as a natural number, a pair of natural numbers,
a triple of natural numbers, etc.

13

CS601 Numbering Turing Machines

Lecture 2

Turing machines can be encoded as character strings which can
be encoded as binary strings which can be encoded as natural
numbers.

™, 1 2 3 4
0 1,0,— 3,4,—]0,0,— 10,0, —
1 |1,1,—|4U,—=]0,1,— 0,1, —
L2, 0, — | 1,0, 1,1, «
> | 1L,>,— 0,0, — 0,>,— | 0,>, —
ASCIIL: 1,0,—;1,1,—;2,U,¢<—1,>,—;; -+ 0,>, —
{01} w
N: n
There 1s a simple, countable listing of all TM’s: My, My, Mo, - - -

Encoding (transition function to binary string) and

Decoding (binary string to transition function) are trivial to com-

pute.

14

CS601 Universal Turing Machine Lecture 2

Theorem 2.12 There is a Universal Turing Machine U such that,

UP(n,m)) = My(m)

Proof: Given P(n,m), compute n and m. n is a binary string
encoding the state table of TM M,,. We can simulate M,, on input
m by keeping track of its state, its tape, and looking at its state
table, n, at each simulated step.

n > m ||

[]

Theorem [2.12|1s perhaps the most fundamental fact about compu-
tation.

HALT = {P(n,m) | TM M,(m) eventually halts }

Corollary 2.13 (Unsolvability of the Halting Problem) HALT
LS not recursive.

Proof: Suppose HALT were recursive. Then bb(n) would be a
total recursive function: Cycle through all n-state TMs, M;, and
if P(i,0) € HALT, then count the number of 1’s in M;(0). Return
the maximum of these.

= <= L]

15

Lecture 2

Listing All r.e. Sets

CS601

Wo, Wi, Wa, - -

The set of all r.e. sets

Wi,

K
K

W

Wi
W
W

0[O - — O o
Mo O - O O oloo S
6011000“00 — O
0o - o - oo oo o
+ o~ — Oo0o]—- o oo o —
no oo o o o — O
N — oo o oo — O
—ol—=lo o - o — — — O
OO0 —H H O —H O —H — O o
LI A N M < 10O O - 0

nEWn}

16

{n

Theorem 2.14 K is r.e., but Kis not r.e.

Proof: K = {n|n¢gw,}

Suppose K were r.e. Then for some c,

K = W, = {n| M(n)=1}

cceK & Mfc)=1 & ceW,. & ce K

==

Corollary 2.15 K € r.e. — Recursive

17

co-r.e. complete

FOV(N)

Arithmetic Hierarchy FO(N)

Recursive

FO4(N)

r.e. complete
Halt

Primitive Recursive

SO[2"""] EXPTIME
QSAT PSPACE complete
FO[2"""] SO[nOM)] PSPACE
co-NP complete PTIME Hierarchy SO NP complete

SAT . SAT

co-NP SOV 50 NP

NP N co-NP
0(1) ,+° "%, P complete

Fo [n] ."Horn-* P

FO(LFP)

FO[log®Y n] '." “truly “._ NC
FO[log n| . feasible” % AC!
FO(CFL) sAC!

FO(TC) 2SAT NL comp. NL
FO(DTC) :" 2COLOR M L
FO(REGULAR) NC!
FO(COUNT) ThC?
FO LOGTIME Hierarchy ACY

18

