Hierarchy Theorems: If f(n) is a C-constructible function;

C is DSPACE, NSPACE, DTIME, or NTIME; and,

if g(n) is sufficiently smaller than f(n)

Then C[g(n)] is strictly contained in C[f(n)].

g(n) sufficiently smaller than f(n) means:

. (gn)\ _ _(g(n)log(g(n))\ _
R ()
C = DSPACE, NSPACE, NTIME C = DTIME

Definition 11.1 Function f : N — N is C-constructible if the map

1" = f(n)
is computable in the complexity class C[f(n)]. O
For example a function f(n) is DSPACE-constructible if the function f(n) can be deterministically computed

from the input 1", using space at most O[f(n)].

Fact: All reasonable functions greater than or equal to log n are DSPACE-constructible, and all reasonable func-
tions greater than or equal to n are DTIME-constructible.

Theorem 11.2 (Space Hierarchy Thm:)

DSPACE([g(n)] % DSPACE|f(n)].

Proof: Build DSPACE|f(n)] machine, D, on input: w, n = |w|

1. Mark off 6 f(n) tape cells, (f space constructible)
2. Simulate M, (w) using space 3 f(n), time < 23/(")

3. if (M, (w) needs more space or time) then return(17)

4. elseif (M, (w) = accept) then reject

5.

else accept

Il (M, (w) = reject)

If f > logn is space constructible and

space to simulate M,,(w)

counter

~

>

-~

3f(n)

lim
n—oo

Claim 11.3 £(D) € DSPACE[f(n)] — DSPACE|[g(n)]

Proof: L£(D) € DSPACE|f(n)] by construction.
Suppose L(D) € DSPACE|g(n)].

Let £L(M,) = L(D), M,, uses cg(n) space.
Choose N s.t. VYn > N (cg(n) < f(n)).

Choose w', My (-) = My(-), |[w'| > N

On input w’, D successfully simulates M, (w') in 3f(n) space and 23/ time.

w' e L(D) & w &L My) e wgLM, & wdL(D)

==

Theorem 11.4 (Ladner) If P # NP then there exists an intermediate problem I € NP — P that is not NP
complete.

Proof: Assume that P = NP.

b

We will construct I by a method called “delayed diagonalization™.

The construction will make sure that:

e [isnothard: SAT £ 1. Ry, R3, R, . ..

e [isnoteasy: [¢P. Ry, Ry, Rg, . ..

Rok11 : “Mj, isn’t a DSPACE|k log n| reduction from SAT to [”
Ropyo 1 “My, isn’t a DTIME[kn*] recognizer of I

Observation: If all the R;’s are met, then we’re done.

Conditions to Satisfy: R;,, i=1,...00
Rogy1 : “Mjy, isn’t a DSPACE][k log n| reduction from SAT to I”
Rop o 1 “M,, isn’t a DTIME[kn*] recognizer of I”

SAT

() ——
verifying R, verifying R, verifying R verifying R,

On input w, recursively /(w) does following:

. do for a total of |w| steps {
: fori =1...00 do {

forz=1...00 do {

-1}
. if (2 is even and w € SAT) then ACCEPT

1
2
3
4, if (R; verified on input z) then next ¢
5
6
7. else REJECT

Note: In line 4, I simulates itself deterministically. Thus, to check if an input is in SAT it might need exponential
time. Thus, it might only find out exponentially later that condition R; has been met. That’s why this method is
called delayed diagonalization. The key idea, is that if ¢ is even we are simulating SAT, so if we do this long
enough we cannot be in P, whereas if 7 is odd then we are rejecting all inputs, so if we do this long enough we
cannot be NP complete. 0

