
Hierarchy Theorems: If f(n) is a C-constructible function;

C is DSPACE, NSPACE, DTIME, or NTIME; and,

if g(n) is sufficiently smaller than f(n)

Then C[g(n)] is strictly contained in C[f(n)].

g(n) sufficiently smaller than f(n) means:

lim
n→∞

(
g(n)

f(n)

)
= 0 lim

n→∞

(
g(n) log(g(n))

f(n)

)
= 0

C = DSPACE, NSPACE, NTIME C = DTIME

1

Definition 11.1 Function f : N→ N is C-constructible if the map

1n 7→ f(n)

is computable in the complexity class C[f(n)]. �

For example a function f(n) is DSPACE-constructible if the function f(n) can be deterministically computed
from the input 1n, using space at most O[f(n)].

Fact: All reasonable functions greater than or equal to log n are DSPACE-constructible, and all reasonable func-
tions greater than or equal to n are DTIME-constructible.

2

Theorem 11.2 (Space Hierarchy Thm:) If f ≥ log n is space constructible and lim
n→∞

(
g(n)

f(n)

)
= 0, Then

DSPACE[g(n)] ⊂6= DSPACE[f(n)].

Proof: Build DSPACE[f(n)] machine, D, on input: w, n = |w|

1. Mark off 6f(n) tape cells, (f space constructible)

2. Simulate Mw(w) using space 3f(n), time ≤ 23f(n)

3. if (Mw(w) needs more space or time) then return(17)

4. else if (Mw(w) = accept) then reject

5. else accept // (Mw(w) = reject)

space to simulate Mw(w)︸ ︷︷ ︸
3f(n)

counter︸ ︷︷ ︸
3f(n)

3

Claim 11.3 L(D) ∈ DSPACE[f(n)]− DSPACE[g(n)]

Proof: L(D) ∈ DSPACE[f(n)] by construction.

Suppose L(D) ∈ DSPACE[g(n)].

Let L(Mw) = L(D), Mw uses cg(n) space.

Choose N s.t. ∀n > N (cg(n) < f(n)).

Choose w′, Mw′(·) = Mw(·), |w′| > N

On input w′, D successfully simulates Mw′(w
′) in 3f(n) space and 23f(n) time.

w′ ∈ L(D) ⇔ w′ 6∈ L(Mw′) ⇔ w′ 6∈ L(Mw) ⇔ w′ 6∈ L(D)

⇒⇐ �

4

Theorem 11.4 (Ladner) If P 6= NP then there exists an intermediate problem I ∈ NP − P that is not NP
complete.

Proof: Assume that P 6= NP.

We will construct I by a method called “delayed diagonalization”.

The construction will make sure that:

• I is not hard: SAT 6≤ I . R1, R3, R5, . . .

• I is not easy: I 6∈ P. R2, R4, R6, . . .

R2k+1 : “Mk isn’t a DSPACE[k log n] reduction from SAT to I”

R2k+2 : “Mk isn’t a DTIME[knk] recognizer of I”

Observation: If all the Ri’s are met, then we’re done.

5

Conditions to Satisfy: Ri, i = 1, . . .∞

R2k+1 : “Mk isn’t a DSPACE[k log n] reduction from SAT to I”

R2k+2 : “Mk isn’t a DTIME[knk] recognizer of I”

I

SAT

∅
verifying R1 verifying R2 verifying R3 verifying R4

On input w, recursively I(w) does following:

1. do for a total of |w| steps {
2. for i = 1 . . .∞ do {
3. for x = 1 . . .∞ do {
4. if (Ri verified on input x) then next i

5. } } }
6. if (i is even and w ∈ SAT) then ACCEPT
7. else REJECT

Note: In line 4, I simulates itself deterministically. Thus, to check if an input is in SAT it might need exponential
time. Thus, it might only find out exponentially later that condition Ri has been met. That’s why this method is
called delayed diagonalization. The key idea, is that if i is even we are simulating SAT, so if we do this long
enough we cannot be in P, whereas if i is odd then we are rejecting all inputs, so if we do this long enough we
cannot be NP complete. �

6

