Hierarchy Theorems: If f(n) is a C-constructible function;

C is DSPACE, NSPACE, DTIME, or NTIME; and,

if g(n) is sufficiently smaller than f(n)

Then $\mathbf{C}[g(n)]$ is strictly contained in $\mathbf{C}[f(n)]$.

g(n) sufficiently smaller than f(n) means:

 $\lim_{n \to \infty} \left(\frac{g(n)}{f(n)} \right) = 0$ C = DSPACE, NSPACE, NTIME

$$\lim_{n \to \infty} \left(\frac{g(n) \log(g(n))}{f(n)} \right) = 0$$
$$\mathbf{C} = \mathbf{DTIME}$$

Definition 11.1 Function $f : \mathbf{N} \to \mathbf{N}$ is **C-constructible** if the map

$$1^n \mapsto f(n)$$

is computable in the complexity class $\mathbf{C}[f(n)]$.

For example a function f(n) is DSPACE-constructible if the function f(n) can be deterministically computed from the input 1^n , using space at most O[f(n)].

Fact: All reasonable functions greater than or equal to $\log n$ are DSPACE-constructible, and all reasonable functions greater than or equal to n are DTIME-constructible.

Theorem 11.2 (Space Hierarchy Thm:) If $f \ge \log n$ is space constructible and $DSPACE[g(n)] \subsetneq DSPACE[f(n)].$

$$\lim_{n \to \infty} \left(\frac{g(n)}{f(n)} \right) = 0, \text{ Then}$$

Proof: Build DSPACE[f(n)] machine, D, on input: w, n = |w|

- 1. Mark off 6f(n) tape cells, (f space constructible)
- 2. Simulate $M_w(w)$ using space 3f(n), time $\leq 2^{3f(n)}$
- 3. if $(M_w(w))$ needs more space or time) then return(17)
- 4. else if $(M_w(w) = accept)$ then reject
- 5. else accept // $(M_w(w) = reject)$

space to simulate $M_w(w)$	counter
3f(n)	3f(n)

Claim 11.3 $\mathcal{L}(D) \in \text{DSPACE}[f(n)] - \text{DSPACE}[g(n)]$

Proof: $\mathcal{L}(D) \in \text{DSPACE}[f(n)]$ by construction.

Suppose $\mathcal{L}(D) \in \text{DSPACE}[g(n)].$

Let $\mathcal{L}(M_w) = \mathcal{L}(D)$, M_w uses cg(n) space.

Choose N s.t. $\forall n > N (cg(n) < f(n))$.

Choose $w', M_{w'}(\cdot) = M_w(\cdot), |w'| > N$

On input w', D successfully simulates $M_{w'}(w')$ in 3f(n) space and $2^{3f(n)}$ time.

$$w' \in \mathcal{L}(D) \Leftrightarrow w' \notin \mathcal{L}(M_{w'}) \Leftrightarrow w' \notin \mathcal{L}(M_w) \Leftrightarrow w' \notin \mathcal{L}(D)$$

 $\Rightarrow \Leftarrow$

Theorem 11.4 (Ladner) If $P \neq NP$ then there exists an intermediate problem $I \in NP - P$ that is not NP complete.

Proof: Assume that $P \neq NP$.

We will construct I by a method called "delayed diagonalization".

The construction will make sure that:

- *I* is **not hard**: SAT $\leq I$. R_1, R_3, R_5, \ldots
- I is not easy: $I \notin \mathbf{P}$. R_2, R_4, R_6, \ldots

 R_{2k+1} : " M_k isn't a DSPACE $[k \log n]$ reduction from SAT to I" R_{2k+2} : " M_k isn't a DTIME $[kn^k]$ recognizer of I"

Observation: If all the R_i 's are met, then we're done.

Conditions to Satisfy: R_i , $i = 1, ... \infty$

 R_{2k+1} : " M_k isn't a DSPACE $[k \log n]$ reduction from SAT to I" R_{2k+2} : " M_k isn't a DTIME $[kn^k]$ recognizer of I"

On input w, recursively I(w) does following:

- 1. do for a total of |w| steps {
- 2. **for** $i = 1...\infty$ **do** {
- 3. **for** $x = 1...\infty$ **do** {
- 4. **if** $(R_i \text{ verified on input } x)$ **then** next i
- 5. } } }
- 6. if (*i* is even and $w \in SAT$) then ACCEPT
- 7. else REJECT

Note: In line 4, I simulates itself deterministically. Thus, to check if an input is in SAT it might need exponential time. Thus, it might only find out exponentially later that condition R_i has been met. That's why this method is called delayed diagonalization. The key idea, is that if i is even we are simulating SAT, so if we do this long enough we cannot be in P, whereas if i is odd then we are rejecting all inputs, so if we do this long enough we cannot be NP complete.