CS601 Introduction Lecture 1

In-depth introduction to main models, concepts of theory of com-
putation:

e Automata Theory: warm-up and review

e Computability: what can be computed in principle

e Logic: how can we express our requirements

e Complexity: what can be computed in practice

Concrete
Mathematical

Problem _——

Model

Formal Models of Compu-
tation:

o FA = Regular Language  deep understanding of for-
e PDA = CFL mal models of computation

e TM = all powerful com- proofs are important
puter

e logical formula



CS601

Turing Machines

Lecture 1

M =(Q,%,9,s)

(): finite set of states; s € ()

>2: finite set of symbols; >, LI € X
QXY — (QU{L}) x X X {+, —, -}
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CS601 TM History Lecture 1

Hilbert’s Program [1900]: Give a complete axiomization of all of
mathematics!

Such a complete axiomization would have provided a mechanical
procedure to churn out exactly all true statements in mathematics.

This led to active interest in 1930’s in the question: “What is a
mechanical procedure?”

Church: Lambda calculus Godel: Recursive function
Kleene: Formal system Markov: Markov algorithm
Post: Post machine Turing: Turing machine

Fact: The above models are all exactly equivalent.

(And they are also equivalent to what is computable by any ap-
propriate formal model of a real computer that has added to it a
potentially unbounded amount of secondary storage.)

Church’s Thesis: The intuitive idea of “effectively computable”
1s captured by the precise definition of computable by any of the
above models.



Why is the Turing machine as powerful as any other compu-
tational model?

Intuitive answer: Imagine any computational device. It has:

e Finitely many states
e Ability to scan limited amount per step: one page at a time
e Ability to print limited amount per step: one page at a time

e Next state determined by current state and page currently be-
ing read

Note: Without the potentially infinite supply of tape cells, paper,
extra disks, extra tapes, etc. we have just a (potentially huge)
finite state machine.

The PC on your desk, with 20 GB of hard disk 1s a finite state
machine with over 2100:000.000.000 ggateg!

This 1s better modeled as a TM with a bounded number of states,
and a potentially infinite tape.



CS601 Palindromes Lecture 1

Definition 1.1 A string w € >* is a palindrome iff it is the same
as its reversal, i.e., w = w™. L]

Examples of palindromes:

e 101

e 1101001011

e ABLE WAS I ERE I SAW ELBA

e A MAN A PLAN A CANAL PANAMA

Proposition 1.2 The set of PALINDROMES (over a fixed alpha-
bet, >.) is a recursive set.

Proof: [Verbal sketch:]
>|A/B/ILIE/E/L B A|LU

[]

Fact 1.3 Time O(n?) is necessary and sufficient for a one-tape
Turing machine to accept the set, PALINDROMES.

Proof: Sufficiency is obvious. To prove necessity do problems
2.8.4, 2.8.5 from [Papadimitriou, Computational Complexity]. L]



CS601 MuliTape Turing Machines Lecture 1

Definition 1.4 A k-tape Turing machine, M = (Q, 3,9, s)

(): finite set of states; s € ()

>2: finite tape alphabet;
5: Q@ x P = (QU{h}) x (L x {+,—, -}

Proposition 1.5 PALINDROMES can be accepted in
DTIME(n| on a 2-tape TM.



Proof: (that PALINDROMES € DTIME][n])
5//A|B|L|E[E[L|B|A[U] [BI[U

> A|B/L/E|E L |B|A||U| |>]L




