Finite Model Theory and Descriptive Complexity

Consider the input (the object we are working on) to be a finite logical structure, e.g., a binary string, a graph, a relational database . . .

Definition 10.1 FO is the set of first-order definable decision problems on finite structures. \Box

Let
$$S \subseteq STRUC_{fin}[\Sigma]$$
.

$$S \in \mathrm{FO} \quad \text{iff} \quad \text{for some } \varphi \in \mathcal{L}(\Sigma) \quad S \ = \ \left\{ \mathcal{A} \in \mathrm{STRUC}_{\mathrm{fin}}[\Sigma] \ \middle| \ \mathcal{A} \models \varphi \right\}$$

FO is a complexity class: the set of all first-order definable decision problems.

Addition

$$Q_+: \operatorname{STRUC}[\Sigma_{AB}] \quad o \quad \operatorname{STRUC}[\Sigma_s]$$

$$\begin{array}{lll} C(i) & \equiv & \exists j>i \left(A(j) \wedge B(j) \ \wedge \ (\forall k.j>k>i) (A(k) \vee B(k))\right) \\ \\ Q_+(i) & \equiv & A(i) \ \oplus \ B(i) \ \oplus \ C(i) \\ \\ Q_+(k) & \in & \mathrm{FO} \end{array}$$

Encode structure $\mathcal{A} \in STRUC_{\mbox{fin}}[\Sigma]$ as binary string: bin(\$\mathcal{A}\$).

Example:

- binary strings: $bin(A_w) = w$
- graphs: $G=(\{1,\ldots,n\},E,s,t)$ $bin(G)=a_{11}a_{12}\ldots a_{nn}s_1s_2\ldots s_{\log n}t_1\ldots t_{\log n}$

Thm: FO \subseteq L = DSPACE[log n]

Proof: Given: $\varphi \equiv \exists x_1 \forall x_2 \cdots \forall x_{2k} (\psi)$

Build DSPACE[$\log n$] TM M s.t.,

$$\mathcal{A} \models \varphi \qquad \Leftrightarrow \qquad M(\mathrm{bin}(\mathcal{A})) = 1$$

By induction on k.

Base case: k = 0.

$$\varphi \equiv E(s,t)$$

$$\varphi \equiv s \leq t$$

Inductive step:
$$\varphi \equiv \exists x_1 \forall x_2 (\varphi'); \quad \varphi' \equiv \exists x_3 \forall x_4 \cdots \forall x_{2k} (\psi)$$

By inductive assumption, there is logspace TM M^\prime ,

$$\mathcal{A} \models \varphi' \qquad \Leftrightarrow \qquad M'(\mathrm{bin}(\mathcal{A})) = 1$$

Modify M' by adding $2\lceil \log n \rceil$ worktape cells.

Worktape of
$$M$$
: x_1 x_2 Worktape of M'

M cycles through all values of x_1 until it finds one such that for all x_2 , M' accepts.

Second-Order Logic, consists of first-order logic, plus new relation variables over which we may quantify.

 $\exists A^r(\varphi)$: For some r-ary relation A, φ holds.

SO is the set of second-order expressible problems.

SO∃ is the set of second-order existential problems.

$$\Phi_{3\text{-color}} \equiv \exists R^1 \exists Y^1 \exists B^1 \forall x \left[\left(R(x) \lor Y(x) \lor B(x) \right) \right.$$

$$\land \forall y \left(E(x,y) \rightarrow \neg \left(R(x) \land R(y) \right) \land \neg \left(Y(x) \land Y(y) \right) \land \neg \left(B(x) \land B(y) \right) \right) \right]$$

SAT is the set of boolean formulas in conjunctive normal form (CNF) that admit a satisfying assignment.

$$\Phi_{\text{SAT}} \equiv \exists S^1 \, \forall t \, \exists x \, (C(t) \, \rightarrow \, (P(t,x) \wedge S(x)) \, \vee \, (N(t,x) \wedge \neg S(x)))$$

 $C(t) \equiv$ "t is a clause; otherwise t is a variable."

 $P(t,x) \equiv$ "Variable x occurs positively in clause t."

 $N(t,x) \equiv$ "Variable x occurs negatively in clause t."

CLIQUE is the set of pairs $\langle G, k \rangle$ such that G is a graph having a complete subgraph of size k.

Let Inj(f) mean that f is an injective function, i.e., 1:1

$$\begin{split} & \operatorname{Inj}(f) & \equiv & \forall xy \, (f(x) = f(y) \, \, \rightarrow \, \, x = y) \\ & \Phi_{\text{CLIQUE}} & \equiv & \exists f^1. \operatorname{Inj}(f) \forall xy ((x \neq y \wedge f(x) < k \wedge f(y) < k) \rightarrow E(x,y)) \end{split}$$

Fagin's Thm: $NP = SO\exists$.

Proof: NP \supseteq SO \exists :

Given SO \exists sentence: $\Phi \equiv \exists R_1^{r_1} \ldots \exists R_k^{r_k} \psi \in \mathcal{L}(\Sigma)$

Build NP machine N s.t. for all $\mathcal{A} \in \mathrm{STRUC}_{\mathrm{fin}}[\Sigma]$,

$$\mathcal{A} \models \Phi \quad \Leftrightarrow \quad N(\operatorname{bin}(\mathcal{A})) = 1 \tag{10.2}$$

 $\mathcal{A} \in \mathrm{STRUC}_{\mbox{fin}}[\Sigma],$ $n = \|\mathcal{A}\|,$ $N(\mbox{bin}(\mathcal{A}))$ nondeterministically:

 $\begin{array}{cccc} \text{write binary string of length} & n^{r_1} & \text{representing} & R_1, \\ & n^{r_2} & \text{representing} & R_2, \\ & \cdots & & \cdots, \\ & n^{r_k} & \text{representing} & R_k. \end{array}$

 $\mathcal{A}' = (\mathcal{A}, R_1, R_2, \dots, R_k);$ N accepts iff $\mathcal{A}' \models \psi$.

$$FO \subseteq L \subseteq NP$$

 $\mathrm{NP}\subseteq \mathrm{SO}\exists \mathrm{:}\ \mathrm{Let}\ N\ \mathrm{be\ an\ NTIME}[n^k]\ \mathrm{TM}.$

To Write: SO∃ sentence:
$$\Phi \equiv \exists C_0^{2k} \dots C_{g-1}^{2k} \Delta^k (\varphi)$$

meaning: "
$$\exists$$
 accepting computation \overline{C} , \triangle of N ."

To Show:
$$\mathcal{A} \models \Phi \iff N(\mathsf{bin}(\mathcal{A})) = 1$$

Fact: If have numeric relations and constants:

$$\leq$$
, Suc, min, max ordering, successor, min elt., max elt.,

Then
$$\varphi$$
 is universal: $\varphi \equiv \forall x_1 \cdots x_t (\alpha), \qquad \alpha \text{ quantifier free}$

Fix
$$\mathcal{A}$$
, $n = \|\mathcal{A}\|$

Possible contents of a computation cell for N:

$$\Gamma = \{\gamma_0, \dots, \gamma_{g-1}\} = (Q \times \Sigma) \cup \Sigma$$

 $C_i(s_1,\ldots,s_k,t_1,\ldots,t_k)$ means cell \bar{s} at time \bar{t} is symbol γ_i

 $\Delta(\bar{t})$ means the $\bar{t}+1^{\rm st}$ step of the computation makes choice "1"; otherwise it makes choice "0".

	Space	1	_	1			k 1	,
	0	<u> </u>	\bar{s}	n-1	n		$n^{k} - 1$	Δ
0	$\langle q_0, w_0 \rangle$	w_1	• • •	w_{n-1}	Ш	• • •		δ_0
1	w_0	$\langle q_1, w_1 \rangle$	• • •	w_{n-1}	Ш	• • •	Ш	δ_1
Time	:	: 	:			÷		
$ar{t}$		a_{-}	a_0	a_1				δ_t
$\bar{t}+1$			b					δ_{t+1}
	:	:	:			:		
$n^k - 1$	$\langle q_f, 1 \rangle$	Ш		Ш	Ш	• • •	Ш	

Accepting computation of N on input $w_0w_1\cdots w_{n-1}$

Write first-order sentence, $\varphi(\overline{C}, \Delta)$, saying that \overline{C}, Δ codes a valid accepting computation of N.

$$\varphi \equiv \alpha \wedge \beta \wedge \eta \wedge \zeta$$

$$\alpha \equiv \text{row } 0 \text{ codes input bin}(A)$$

$$\beta \equiv \forall \bar{s}, \bar{t}, i \neq j \left(\neg (C_i(\bar{s}, \bar{t}) \land C_i(\bar{s}, \bar{t})) \right)$$

 $\eta \equiv \forall \overline{t} ((\text{row } \overline{t} + 1 \text{ follows from row } \overline{t} \text{ via move } \Delta(\overline{t}) \text{ of } N))$

 $\zeta \equiv \text{last row of computation is accept ID}$

$$\mathcal{A} \models \Phi \quad \Leftrightarrow \quad N(\operatorname{bin}(\mathcal{A})) = 1$$

$$\Phi \equiv \exists C_0^{2k} C_1^{2k} \cdots C_{g-1}^{2k} \Delta^k(\varphi)$$

$$\equiv \text{``}\exists \text{ an accepting compution: } N(\text{me}) = 1\text{''}$$

 $\alpha \equiv \text{row } 0 \text{ codes input bin}(A)$

Assume Σ has only single unary relation symbol, R.

$$\gamma_0 = 0; \ \gamma_1 = 1; \ \gamma_2 = \sqcup; \ \gamma_3 = \langle q_0, 0 \rangle; \ \gamma_4 = \langle q_0, 1 \rangle$$

$$\alpha \equiv R(0) \to C_4(\bar{0}, \bar{0})$$

$$\wedge \neg R(0) \to C_3(\bar{0}, \bar{0})$$

$$\wedge \forall i > 0 (R(i) \to C_1(\bar{0}i, \bar{0}))$$

$$\wedge \neg R(i) \to C_0(\bar{0}i, \bar{0}))$$

$$\wedge \forall \bar{s} \geq n (C_2(\bar{s}, \bar{0}))$$

Most interesting case: η

 a_{-1}, a_0, a_1 leads to b via move δ of N:

$$\langle a_{-1}, a_0, a_1, \delta \rangle \xrightarrow{N} b$$

$$\begin{array}{ll} \eta_1 & \equiv & \forall \bar{t} \,.\, \bar{t} < \overline{\textit{max}} \ \, \forall \bar{s} \,.\, \bar{0} < \bar{s} < \overline{\textit{max}} \ \, \bigwedge_{\langle a_{-1}, a_0, a_1, \delta \rangle \xrightarrow{N} b} \left(\neg^{\delta} \Delta(\bar{t}) \ \, \lor \right. \\ \\ & \neg C_{a_{-1}}(\bar{s}-1, \bar{t}) \lor \neg C_{a_0}(\bar{s}, \bar{t}) \lor \neg C_{a_1}(\bar{s}+1, \bar{t}) \lor C_b(\bar{s}, \bar{t}+1) \right) \end{array}$$

Here \neg^{δ} is \neg if $\delta = 1$ and it is the empty symbol if $\delta = 0$.

$$\eta \equiv \eta_0 \wedge \eta_1 \wedge \eta_2$$

where η_0 and η_2 encode the same information when $\bar{s} = \overline{0}$ and \overline{max} respectively.

co-r.e. complete Halt	Arithmetic Hierarchy FO(N)	r.e. complete Halt							
co-r.e.	FO∀(N) Recursive	r.e.							
Primitive Recursive									
	$\mathbf{SO}[2^{n^{O(1)}}]$	EXPTIME							
$FO[2^{n^{O(1)}}]$	QSAT PSPACE complete $SO[n^{O(1)}]$	PSPACE							
co-NP complete	PTIME Hierarchy SO	NP complete SAT							
co-NP	$\begin{array}{c} SO \\ NP \cap co\text{-}NP \end{array}$	NP							
$FO[n^{O(1)}]$ $FO(LFP)$	Horn- SAT	P							
$FO[\log^{O(1)} n]$	"truly"	NC							
$FO[\log n]$	feasible"	\mathbf{AC}^1							
FO(CFL)		\mathbf{sAC}^1							
FO(TC)	2SAT NL comp.	NL							
FO(DTC)	2COLOR L comp.	L							
FO(REGULAR)		\mathbf{NC}^1							
FO(COUNT)		\mathbf{ThC}^0							
FO	LOGTIME Hierarchy	\mathbf{AC}^0							