
Chapter 4

Inductive Definitions

First-order logic is not rich enough to express most interesting computations. A

useful and natural way to increase the expressive power of first-order logic is to

add the power to define new relations by induction. In this chapter we formalize the

notion of inductive definitions via the least fixed point operator (LFP). We prove

that first-order logic extended by the least fixed point operator captures exactly

polynomial-time.

4.1 Least Fixed Point

A useful way to increase the power of first-order logic without jumping all the way

up to second order logic is to add the power to define new relations by induction.

Many such inductively defined relations are not first-order expressible.

One useful example of a relation that is not first-order expressible, but can be

defined inductively, is transitive closure. Recall the vocabulary τg = 〈E2, s, t〉 of

graphs. We can define the reflexive, transitive closure E∗ of E as follows. Let R
be a binary relation variable and consider the formula,

ϕ1.1(R,x, y) ≡ x = y ∨ ∃z(E(x, z) ∧R(z, y)) (1.1)

The formula ϕ1.1 formalizes an inductive definition ofE∗. This may be more

suggestively written as follows,

E∗(x, y) ≡ x = y ∨ ∃z(E(x, z) ∧E∗(z, y)) (1.2)

73

74 CHAPTER 4. INDUCTIVE DEFINITIONS

For any structure A with vocabulary τg, ϕ1.1 induces a map from binary

relations on the universe of A to binary relations on the universe of A,

ϕA
1.1(R) =

{
〈a, b〉

∣∣ A |= ϕ1.1(R, a, b)
}

Such a map is called monotone if for all R,S,

R ⊆ S ⇒ ϕA(R) ⊆ ϕA(S).

The relation symbol R appears only positively in ϕ1.1, i.e., within an even number

of negation symbols. It follows that ϕA
1.1 is monotone. Let (ϕA

1.1)
r denote ϕA

1.1
iterated r times. With ϕ1.1 defined as in Equation (1.1), A any graph, and r ≥ 0,

observe that,

(ϕA
1.1)(∅) =

{
〈a, b〉 ∈ |A|2

∣∣ distance(a, b) ≤ 0
}

(ϕA
1.1)

2(∅) =
{
〈a, b〉 ∈ |A|2

∣∣ distance(a, b) ≤ 1
}

and in general,

(ϕA
1.1)

r(∅) =
{
〈a, b〉 ∈ |A|2

∣∣ distance(a, b) ≤ r − 1
}

Thus, for n = ||A||, then (ϕA
1.1)

n(∅) = E∗ = the least fixed point of ϕA
1.1,

i.e., the minimal relation T such that ϕA
1.1(T) = T . This is a general situation, as

we now show in the finite version of the Knaster-Tarski Theorem.

Theorem 4.3 Let R be a new relation symbol of arity k, and let ϕ(R,x1, . . . , xk)
be a monotone first-order formula. Then for any finite structure A, the least fixed

point of ϕA exists. It is equal to (ϕA)r(∅) where r is minimal so that (ϕA)r(∅) =
(ϕA)r+1(∅). Furthermore, letting n = ||A||, we have r ≤ nk.

Proof Consider the sequence

∅ ⊆ (ϕA)(∅) ⊆ (ϕA)2(∅) ⊆ (ϕA)3(∅) ⊆ · · · (1.4)

The containment follows because ϕA is monotone. If (ϕA)i+1(∅) strictly contains

(ϕA)i(∅), then it must contain at least one new k-tuple from |A|. Since there are at

most nk such k-tuples, for some r ≤ nk, (ϕA)r(∅) = (ϕA)r+1(∅), i.e, (ϕA)r(∅)
is a fixed point of ϕA.

4.1. LEAST FIXED POINT 75

Let S be any other fixed point of ϕA. We show by induction that (ϕA)i(∅) ⊆
S for all i. The base case is that,

(ϕA)0(∅) = ∅ ⊆ S .

Inductively, suppose that (ϕA)i(∅) ⊆ S. Since ϕA is monotone,

(ϕA)i+1(∅) = ϕA((ϕA)i(∅)) ⊆ ϕA(S) = S .

Thus, (ϕA)r(∅) ⊆ S and (ϕA)r(∅) is the least fixed point of ϕA as claimed. �

If R occurs only positively in ϕ, i.e., within an even number of nega-

tion symbols, then ϕ is monotone. Theorem 1.3 tells us that any R-positive

formula ϕ(Rk, x1, . . . , xk) determines a least fixed point relation. We write

(LFPRkx1...xk
ϕ) to denote this least fixed point. The least fixed point operator

(LFP) thus formalizes the definition of new relations by induction. The subscript

“Rkx1 . . . xk” explicitly tells us which relation and domain variables we are tak-

ing the fixed point with respect to. When the choice of variables is clear, these

subscripts may be omitted.

As an example, (LFPRxyϕ1.1) denotes the reflexive, transitive closure of the

edge relation E. Thus boolean query REACH is expressible as:

REACH ≡ (LFPRxyϕ1.1)(s, t)

Definition 4.5 Define FO(LFP), the language of first-order inductive definitions,

by adding a least fixed point operator (LFP) to first-order logic. Ifϕ(Rk, x1, . . . , xk)
is anRk-positive formula in FO(LFP), then (LFPRkx1...xk

ϕ) may be used as a new

k-ary relation symbol denoting the least fixed point of ϕ. �

Example 4.6 In Definition 3.23 we gave an inductive definition of alternating

paths. We then defined boolean query REACHa to be the set of graphs having

an alternating path from s to t. (See Figure 1.7 which shows a graph that satisfies

REACHa.)

We now give a first-order inductive definition of the alternating path property,

Pa,

ϕap(P, x, y) ≡ x = y ∨ [(∃z)(E(x, z) ∧ P (z, y)) ∧

(A(x) → (∀z)(E(x, z) → P (z, y)))]

Thus,

76 CHAPTER 4. INDUCTIVE DEFINITIONS

t

A A

s

Figure 1.7: A graph satisfying the boolean query REACHa.

Pa = (LFPPxyϕap) and REACHa = (LFPPxyϕap)(s, t) �

Recall that REACHa is complete for P via first-order reductions, Theorem

3.26. It follows from Example 1.6 and from the following exercise that FO(LFP)
contains all the polynomial-time boolean queries.

Exercise 4.8 Show that FO(LFP) is closed under first-order reductions.

Hint: this is a special case of Meta-Proposition 3.11. You have to show that if

Q is a k-ary first-order query and Φ ∈ FO(LFP), then Q̂(Φ) ∈ FO(LFP). This is

clear once you observe that

Q̂(LFPRa,x1,...,xa
α) ≡ (LFPRka,x1

1
...xk

1
,...,x1

a...x
k
a
Q̂(α)) �

Now that we have formalized inductive definitions, we feel free to write them

in the intuitive form of Equation (1.2) rather than as (LFPRx,y ϕ1.1). It is often

convenient to define several relations by simultaneous induction. The following

exercise shows that there is no harm in doing this.

Exercise 4.9 Suppose ψ(ȳ, S, T) and ϕ(x̄, S, T) are first order formulas that are

positive in S and T. Let r0 = arity(S) = |ȳ| and r1 = arity(T) = |x̄|. For any

4.1. LEAST FIXED POINT 77

structure A define the relations Iω0 and Iω1 by simultaneous induction:

I00 = I01 = ∅
ā ∈ In0 ⇔ A |= ψ(ā, In−1

0 , In−1
1)

b̄ ∈ In1 ⇔ A |= ϕ(b̄, In−1
0 , In−1

1)

Iωb =

∞⋃

n=1

Inb , b = 0, 1

Show that both Iω0 and Iω1 are expressible in FO(LFP).

Hint: Assume that there are distinct constants c0 6= c1.1 Assume that r0 ≤ r1.

Define a single new relation U of arity 1 + r1 so that U(c0, ȳ, ū) refers to S(ȳ),
with ū an (r1 − r0)-tuple of dummy variables and U(c1, x̄) refers to T (x̄). �

We next show that FO(LFP) — the closure of first-order logic under the power

to inductively define new relations — describes exactly the set of all polynomial-

time computable boolean queries.

Theorem 4.10 Over finite, ordered structures,

FO(LFP) = P

Proof (⊆): Let A be an input structure, let n = ||A||, and let (LFPRx1...xk
ϕ) be

a fixed-point formula. By Theorem 1.3, we know that this fixed point evaluated

on A is (ϕA)n
k

(∅). This amounts to evaluating the first-order query ϕ at most nk

times. We have seen in Theorem 3.1 that first-order queries may be evaluated in L,

thus easily in P.

(⊇): Since FO(LFP) includes query REACHa, which is complete for P via

first-order reductions, and FO(LFP) is closed under first-order reductions, FO(LFP)
includes all polynomial-time queries. �

Theorem 1.10 equates polynomial time — one of the most important com-

plexity classes — with FO(LFP) — the closure of first-order logic under the power

to make inductive definitions. The latter is very natural from a descriptive point

of view. This theorem thus increases our intuition that polynomial time is a class

1For example, 0 and max would do for ordered structures of size greater than one. If no constants

are available, then one can quantify two distinct elements u, v and use u in place of c0 and v in place

of c1. If the universe has size only one, then any formula is trivial, and that case can be dealt with

separately; see Proviso 1.15.

78 CHAPTER 4. INDUCTIVE DEFINITIONS

whose fundamental nature goes beyond the machine models with which it is usu-

ally defined.

The use of ordering in Theorem 1.10 is required in the proof that REACHa is

complete via ≤fo. Stripped of its numeric relations including ordering, FO(LFP)
does not describe all polynomial-time properties. For example, we will see that it

cannot even express the parity of its universe. (The rôle of ordering is described

extensively in Chapter 12.)

To conclude this section we note that the above proof leads to the following

normal form theorem for language FO(LFP) over ordered structures. The language

FO(LFP) allows the application of a complicated series of nested fixed points in-

cluding extra quantifications and negations. The normal form theorem says that

any such formula is equivalent to a single fixed point applied to a first-order for-

mula. Such a normal form theorem makes it easier to understand exactly what can

be expressed in language FO(LFP). The same result holds without ordering, but

the proof is more subtle (Theorem 9.6).

Corollary 4.11 Let ϕ be any formula in language FO(LFP). There exists a first-

order formula ψ and a tuple of constants c̄ such that over finite, ordered structures,

ϕ ≡ (LFPψ)(c̄)

Proof The completeness of REACHa for P means that every polynomial-time

query is expressible as Q̂(REACHa) for some first-order query Q. Now, in Exam-

ple 1.6 we saw that,

REACHa = (LFPϕap)(s, t)

Thus, an arbitrary polynomial-time query is expressible as,

Q̂(REACHa) = (LFP Q̂(ϕap))Q̂(s, t) (1.12)

Since the first-order reductions used in Theorem 3.26 replace the constants s
and t by k-tuples of the constants 0 and max — see Equation (3.19) — the form of

Equation (1.12) is as desired. �

4.2. THE DEPTH OF INDUCTIVE DEFINITIONS 79

4.2 The Depth of Inductive Definitions

The number of iterations until an inductive definition closes is called its depth2. We

will see that inductive depth is an important complexity measure, corresponding to

parallel time (Theorem 5.2).

Definition 4.13 Let ϕ(R,x1, . . . , xk) be an R-positive formula, where R is a rela-

tion symbol of arity k, and let A be a structure of size n. Define the depth of ϕ in

A, in symbols |ϕA|, to be the minimum r such that

A |=
(
ϕr(∅) ↔ ϕr+1(∅)

)

As we saw in the proof of Theorem 1.3, |ϕA| ≤ nk. Define the depth of ϕ as a

function of n equal to the maximum depth of ϕ in A for any structure A of size n:

|ϕ|(n) = max
||A||=n

{|ϕA|} �

Remark 4.14 The inductive definition ϕ1.1 given in Equation (1.1) has depth

|ϕ|(n) = n. However, the following alternate inductive definition of E∗ has depth

|ϕtc|(n) = ⌈log n⌉+ 1.

ϕtc(R,x, y) ≡ x = y ∨ E(x, y) ∨ ∃z(R(x, z) ∧R(z, y)) (1.15)

In computer science, the depth of an inductive definition corresponds to the

depth of the stack needed to evaluate a recursive definition, that is, the depth of

nesting of recursive calls. We will see in Theorem 5.2 that this also corresponds to

the parallel time needed to evaluate such a recursive definition.

Definition 4.16 Let IND[f(n)] be the sublanguage of FO(LFP) in which only

fixed points of first-order formulas ϕ for which |ϕ| is O[f(n)] are included. For

example, REACH is expressible as (LFPRxy ϕtc) and is thus in IND[log n]. Note

also that,

FO(LFP) =

∞⋃

k=1

IND[nk] . �

2In the logic literature where structures are usually infinite this is called the closure ordinal.

80 CHAPTER 4. INDUCTIVE DEFINITIONS

The facts that REACH ∈ IND[log n], REACH is complete for NL via first-

order reductions (Theorem 3.16), and IND[log n] is closed under first-order reduc-

tions imply

Proposition 4.17 NL ⊆ IND[log n]

We will see in Theorem 5.22 that IND[log n] is equal to AC1, a well-studied

complexity class. As another example, the inductive definition of REACHa in

Example 1.6 has depth equal to the length of the longest path from s to t in the

graph.

In the following exercise you are asked to show that the numeric relations

BIT, PLUS, and TIMES, are all definable in IND(woBIT)[log n], that is, via first-

order inductive definitions that use only the numeric relation ≤. This shows that

the descriptive class IND[log n] is somewhat more robust than IND[1] = FO and

has a more general definition. This is a general pattern: the more powerful the

language, the less important exactly which numeric relations are included.

Exercise 4.18 Show that BIT ∈ IND(woBIT)[log n], i.e., relation BIT is definable

by a depth log n induction just from ≤.

[Hint: by successive inductive definitions, show that PLUS and then TIMES

are definable in IND(woBIT)[log n]. The result will then follow by Theorem 1.17.]

�

Exercise 4.19 Recall that PARITY ⊂ STRUC[τs] is the set of binary strings with

an odd number of 1’s (Example 2.12).

1. Show that PARITY ∈ IND[log n].

2. For a more challenging problem, show that PARITY ∈ IND[log n/ log log n].
This requires BIT. [Hint: divide the n bit input string into ⌊log n⌋ pieces.

The string has odd parity iff an odd number of the pieces have odd parity.

You may use Lemma 1.18 for the fact that the parity of a log n bit string is

first-order.]

We see in Chapter 6 that PARITY 6∈ IND(woBIT)[o(log n)]. We also see in

Corollary 13.8 that with BIT, [log n/ log log n] is optimal. �

4.3. ITERATING FIRST-ORDER FORMULAS 81

4.3 Iterating First-Order Formulas

Theorem 1.3 shows that for any first-order inductive definition ϕ(R,x1, . . . , xk),
the least fixed point of ϕ amounts to iterating ϕ at most nk times. Thus, in some

sense, LFP is a polynomial iteration operator. This is even more apparent when

we put the inductive definitions into the following normal form. Then the effect

of the least-fixed-point operator is to iterate a certain block of restricted quanti-

fiers a polynomial number of times. (Recall our notation for restricted quantifiers:

(∀x.M)(ψ) means (∀x)(M → ψ) and (∃x.M)(ψ) means (∃x)(M ∧ ψ).)

Lemma 4.20 Let ϕ be an R-positive first-order formula. Then ϕ can be written in

the following form,

ϕ(R,x1, . . . , xk) ≡ (Q1z1.M1) . . . (Qszs.Ms)(∃x1 . . . xk.Ms+1)R(x1, . . . , xk) .(1.21)

where the Mi’s are quantifier-free formulas in which R does not occur.

Proof By induction on the complexity of ϕ. We assume that all negations have

been pushed all the way inside. There are two base cases: If ϕ ≡ R(v1, . . . , vk),
then,

ϕ ≡ (∃z1, . . . , zk.M1)(∃x1, . . . , xk.M2)R(x1, . . . , xk)

M1 ≡ z1 = v1 ∧ · · · ∧ zk = vk

M2 ≡ x1 = z1 ∧ · · · ∧ xk = zk

If ϕ is quantifier free and R does not occur in ϕ, then,

ϕ ≡ (∀z.¬ϕ)(∃x1, . . . , xk.x1 6= x1)R(x1, . . . , xk) .

In the inductive cases ϕ = (∃v)ψ and ϕ = (∀v)ψ, we simply put the new

quantifier (∃v) or (∀v) in front of the quantifier block for ψ.

The remaining cases for ∧ and ∨ are similar to each other. Suppose that

ϕ = α ∧ β and

α ≡ (Q1y1.N1) . . . (Qtyt.Nt)(∃x1 . . . xk.Nt+1)R(x1, . . . , xk)

β ≡ (Q1z1.M1) . . . (Qszs.Ms)(∃x1 . . . xk.Ms+1)R(x1, . . . , xk)

where we may assume that the y’s and z’s are disjoint, and we can add dummy

variables and quantifiers to assure that the form of the two quantifier blocks are

82 CHAPTER 4. INDUCTIVE DEFINITIONS

identical. Let

QB1 ≡ (Q1y1.N
′
1) . . . (Qtyt.N

′
t) ,

QB2 ≡ (Q1z1.M
′
1) . . . (Qszs.M

′
s) .

where,

N ′
i ≡ Ni ∨ b = 1; and M ′

i ≡ Mi ∨ b = 0

Let ψ(ū/x̄) denote the formula ψ with variables u1, . . . , uk substituted for

x1, . . . , xk and define the quantifier-free formulas,

S ≡ (b = 0 ∧Nt+1(ū/x̄)) ∨ (b = 1 ∧Ms+1(ū/x̄)) ,

T ≡ (u1 = x1 ∧ . . . ∧ uk = xk) .

Recall that bool(b) means that b = 0 or b = 1, that is, b is a boolean variable

(Definition 1.16). We can now write ϕ in the desired form,

ϕ ≡ (∀b.bool(b))(QB1)(QB2)(∃ū.S)(∃x̄.T)R(x1, . . . , xk) �

Note that in Equation (1.21), the requantification of the xi’s means that these

variables may occur free inM1 . . .Ms, but they are bound inMs+1 andR(x1, . . . , xk).
The same variables may now be requantified. Let us write QB to denote the quan-

tifier block (Q1z1.M1) . . . (Qszs.Ms)(∃x1 . . . xk.Ms+1). Thus, in particular, for

any structure A, and any r ∈ N,

A |=
(
(ϕA)r(∅)

)
↔

(
[QB]rfalse

)
.

Here [QB]r means QB literally repeated r times. It follows immediately that

if t = |ϕ|(n) and A is any structure of size n then

A |=
(
LFPϕ

)
↔

(
[QB]tfalse

)
.

Example 4.22 We show how to write the inductive definition of transitive closure

in the normal form of Lemma 1.20.

Recall the definition of transitive closure from Equation (1.15),

ϕtc(R,x, y) ≡ x = y ∨ E(x, y) ∨ (∃z)(R(x, z) ∧R(z, y))

4.3. ITERATING FIRST-ORDER FORMULAS 83

First, code the base case using a dummy universal quantification,

ϕtc(R,x, y) ≡ (∀z.M1)(∃z)(R(x, z) ∧R(z, y))

M1 ≡ ¬(x = y ∨ E(x, y))

Note that there are no free occurrences of z within the scope of the (∀z.M1)
quantifier. Next, use universal quantification to replace the two occurrences of R
with a single one:

ϕtc(R,x, y) ≡ (∀z.M1)(∃z)(∀uv.M2)R(u, v)

M2 ≡ (u = x ∧ v = z) ∨ (u = z ∧ v = y) .

Finally, requantify x and y. We have transformed Equation (1.15), into the

normal form of Lemma 1.20,

M3 ≡ (x = u ∧ y = v)

ϕtc(R,x, y) ≡ (∀z.M1)(∃z)(∀uv.M2)(∃xy.M3)R(x, y) (1.23)

�

Define the quantifier block,

QBtc ≡ (∀z.M1)(∃z)(∀uv.M2)(∀xy.M3) .

Equation (1.23) tells us that an application of the operator ϕtc corresponds

exactly to the writing of QBtc,

ϕtc(R,x, y) ≡ [QBtc]R(x, y)

It follows that for any r,

ϕr
tc(∅) ≡ [QBtc]

r(false) .

84 CHAPTER 4. INDUCTIVE DEFINITIONS

We have thus demonstrated a syntactic uniformity for the inductive definition

of REACH. For any structure A ∈ STRUC[τg],

A ∈ REACH ⇔ A |= (LFPϕtc)(s, t)

⇔ A |=
(
[QBtc]

⌈1+log ||A||⌉
)

false(s/x, t/y)

We now define FO[t(n)] to be the set of properties defined by quantifier blocks

iterated t(n) times. (This is the same as being iterated O(t) times since a quantifier

block may be any constant size.) Even though such expressions grow as a function

of the size of their inputs, they use only the variables in the quantifier block. That

is, the number of variables is a fixed constant independent of the size of the input.

Definition 4.24 A set S ⊆ STRUC[τ] is a member of FO[t(n)] iff there exist

quantifier free formulas Mi, 0 ≤ i ≤ k, from L(τ), a tuple c̄ of constants and a

quantifier block,

QB =
[
(Q1x1.M1) . . . (Qkxk.Mk)

]

such that for all A ∈ STRUC[τ],

A ∈ S ⇔ A |=
(
[QB]t(||A||)M0

)
(c̄/x̄)

�

The reason for the substitution of constants is that the quantifier block QB

may contain some free variables that must be substituted to build a sentence. See

Example 1.22 which shows that REACH ∈ FO[log n].

Combining Lemma 1.20 and Definition 1.24, we see that,

Lemma 4.25 For all t(n) and all classes of finite structures,

IND[t(n)] ⊆ FO[t(n)] .

A converse of Lemma 1.25 also holds, but we put off its proof until the next

chapter.

Exercise 4.26 Write an inductive definition showing that CVP, the circuit value

problem (Definition 2.27) is describable in FO(LFP). The depth of your inductive

4.3. ITERATING FIRST-ORDER FORMULAS 85

definition should be equal to the depth of the circuit, i.e., the length of the longest

path from root to leaf. �

Exercise 4.27 Write a sentence in FO(wo≤)(LFP) meaning that a graph is two-

colorable, i.e., each vertex may be colored red or blue in such a way that no two

adjacent vertices are the same color. [Hint: one way to do this is to first simultane-

ously define the relations OPath(x, y) and EPath(x, y) meaning that there is a path

of odd length, respectively even length, from x to y. A graph is two-colorable iff it

has no cycles of odd length.] �

Historical Notes and Suggestions for Further Reading

Moschovakis has written a thorough and excellent book on inductive definitions,

[Mos74]. Although its main focus is infinite structures, our treatment of inductive

definitions follows the approach set out in that book. In particular, Exercise 1.9

and Lemma 1.20 are from [Mos74].

The Knaster-Tarski Theorem (Theorem 1.3) originally appeared in [Tar55].

Ajtai and Gurevich proved that over finite structures, not every monotone formula

has an equivalent positive formula [AG87]. Theorem 1.10 is due to Vardi and

Immerman [I82, Var82].

86 CHAPTER 4. INDUCTIVE DEFINITIONS

	Inductive Definitions
	Least Fixed Point
	The Depth of Inductive Definitions
	Iterating First-Order Formulas

