Theorem 14.1 Shamir's Theorem: IP = PSPACE

Proof: IP ⊂ PSPACE: Evaluate the game tree.

For M's moves choose the Maximum value over its possible messages: $m_0 = 0^{p(n)}, \dots, c_{2^{p(n)}-1} = 1^{p(n)}$

For A's moves choose the Average value over its possible coin tosses: $c_0 = 0^{r(n)}, \dots, c_{2^{r(n)}-1} = 1^{r(n)}$.

There are polynomially many moves and each move has a polynomial-length label, so polynomial space suffices for the stack.

Show $QSAT \in IP$

$$\varphi \equiv \forall x \exists y (x \lor y) \land \forall z ((x \land z) \lor (y \land \bar{z})) \lor \exists w (z \lor (y \land \bar{w}))$$

Formula φ is *simple* iff no occurrence of a variable is separated by more than one universal quantifier from its point of quantification.

Lemma 14.2 Any quantified boolean formula can be transformed in logspace to an equivalent, simple formula.

Proof: Suppose that x is quantified before $\forall y$ and used after $\forall y$

$$\varphi = \cdots Qx \cdots \forall y \psi(x)$$

Right after the $\forall y$, rename x,

$$\varphi' = \cdots Qx \cdots \forall y \exists x' ((x \wedge x') \vee (\bar{x} \wedge \overline{x'})) \wedge \psi(x')$$

This needs to be done fewer than $|\varphi|^2$ times.

From now on we may assume that φ is simple and all \neg 's are pushed all the way inside.

Arithmetization of formulas

Define f: boolean formulas \rightarrow polynomials.

x = 1 means x is true; x = 0 means x is false.

$$f(\bar{x}) = 1 - x$$

$$f(\alpha \wedge \beta) = f(\alpha) \cdot f(\beta)$$

$$f(\alpha \vee \beta) = f(\alpha) + f(\beta)$$

$$f(\forall x(\alpha(x))) = \prod_{i=0}^{1} f(\alpha(i))$$

$$f(\exists x(\alpha(x))) = \sum_{i=0}^{1} f(\alpha(i))$$

Lemma 14.3 Let φ be a closed, quantified boolean formula with all "¬"s pushed to variables. Then,

$$\varphi \in \mathbf{QSAT} \quad \Leftrightarrow \quad f(\varphi) > 0$$

M must prove to A that $f(\varphi) > 0$

Lemma 14.4 Let $n = |\varphi|$ If $f(\varphi) \neq 0$, then there is a prime $p, 2^n s.t.$

$$f(\varphi) \quad \not\equiv \quad 0 \pmod{p}$$

M must prove to A that $f(\varphi) \not\equiv 0 \pmod{p}$

At step 1, M sends p to A and says,

"I will now prove to you that $f(\varphi) \not\equiv 0 \pmod{p}$!"

Example:

$$\varphi \equiv \forall x \exists y (x \lor y) \land \forall z ((x \land z) \lor (y \land \bar{z}))$$

$$\lor \exists w (z \lor (y \land \bar{w}))$$

$$f(\varphi) = \prod_{x} \sum_{y} ((x+y) \cdot \prod_{z} ((x \cdot z) + (y \cdot (1-z)))$$

$$+ \sum_{w} (z + (y \cdot (1-w)))$$

$$f_{1}(x) = \sum_{y} ((x+y) \cdot \prod_{z} ((x \cdot z) + (y \cdot (1-z)))$$

$$+ \sum_{w} (z + (y \cdot (1-w)))$$

$$= 2x^{2} + 8x + 6$$

Note, $f_1 \in \mathbf{Z}[x]$ has degree $\leq 2n$ because φ is simple. There is at most one "\[\int\]" affecting x.

$$f(\varphi) = f_1(0) \cdot f_1(1)$$

$$96 = 6 \cdot 16$$

$$\varphi = (\forall x)(\exists y)\psi$$
$$f(\varphi) = \prod_{x=0}^{1} f_1(x)$$

1. M sends to A:

- p
- a proof that p is prime
- v_0 where $v_0 \equiv f(\varphi) \pmod{p}$
- coefficients of g_1 , where $g_1 \equiv f_1 \pmod{p}$

2. **A**

- checks that $g_1(0) \cdot g_1(1) \equiv v_0 \pmod{p}$
- chooses random $r_1 \in \mathbf{Z}_p$
- computes $v_1 \equiv g_1(r_1) \pmod{p}$
- sends r_1 to M

M must prove to A that $f_1(r_1) \equiv v_1 \pmod{p}$

M must prove to **A** that $f_1(r_1) \equiv v_1 \pmod{p}$

Lemma 14.5 *If* $g_1 \not\equiv f_1 \pmod{p}$ *, then*

$$\operatorname{Prob}[g_1(r_1) \equiv f_1(r_1) \pmod{p}] \leq \frac{2n}{p} < \frac{2n}{2^n}$$

Proof: Since g_1 and f_1 each have degree 2n, so does $g_1 - f_1$.

But a degree d polynomial has at most d zeros. Thus, with r chosen at random, $\text{Prob}[(g_1 - f_1)(r) \equiv 0 \pmod{p}] \leq \frac{2n}{r}$

Thus, in one double round, we have removed one quantifier from φ .

Key idea: replace the universal boolean quantifier:

$$\forall x (f_1(x) = g_1(x))$$

with a random quantifier

$$(\text{for most } r)(f_1(r) = g_1(r))$$

M must prove to A that $f_1(r_1) \equiv v_1 \pmod{p}$

$$\varphi = (\forall x)(\exists y)\psi$$

$$f(\varphi) = \prod_{x=0}^{1} f_1(x)$$

$$f_1(r_1) = \sum_{y=0}^{1} f_2(y)$$

- 3. M sends to A:
 - coefficients of g_2 , where $g_2 \equiv f_2 \pmod{p}$
- 4. **A**
- checks that $g_2(0) + g_2(1) \equiv v_1 \pmod{p}$
- chooses random $r_2 \in \mathbf{Z}_p$
- computes $v_2 \equiv g_2(r_2) \pmod{p}$
- sends r_2 to \mathbf{M}

M must prove to **A** that
$$f_2(r_2) \equiv v_2 \pmod{p}$$

After n steps, all the variables are eliminated and A should accept iff $f_n(r_n) = v_n$.

The probability of M getting away with a lie is at most $n\left(\frac{2n}{2^n}\right)$.

Shamir's Theorem is proved.

Milad's Question: We argued that the variables are all 0 or 1, so the value of $f(\varphi)$ is nonnegative; and positive iff φ is true. However, in the proof, we substitute the value r_i for x_i where r_i could be much greater than 1. Why doesn't this cause a problem in the proof?