Lecture 19: Circuit Complexity

Real computers are built from gates.

Circuit complexity is a low-level model of computation.

Circuits are directed acyclic graphs. Inputs are placed at the leaves. Signals proceed up toward the root, 7.
Straight-line code: gates are not reused.

Let S C {0, 1}* be a decision problem.

Let, C, (5, (s, ... be a circuit family.

C,, has n input bits and one output bit 7.
Def: {C;}, N computes S iff for all n and for all w € {0,1}",

weE S = C|w|(w):1.

or N
and
or
and
or o)
0 o t(Il)
O O
ni’t/f' / /
_ . o O O _
b1 b b ™
b b 2 b n

“not” gates are pushed down to bottom

Depth = parallel time
Number of gates = computational work = sequential time
Width = max number of gates at any level = amount of hardware in corresponding parallel machine

Circuit Complexity Classes

S C {0,1}*isin NC[t(n)], ACt(n), ThCt(n), iff exists uniform circuit family, C, Cs, . . ., s.t.

I. Forallw € {0,1}*, weS & C(Cylw)=1
2. depth(C,) = O(t(n)); |Cy,| < n°W

3. The gates of C,, consist of,

NC AC ThC

bounded fan—in unbounded fan—in unbounded fan—in
and, or gates and, or gates threshold gates

5y e @b

Notation: fori = 0,1, ..., NC' = NC|(logn)';

AC' = AC(logn)’; ThC' = ThC(logn)

We will see that the following inclusions hold:

ACY C ThC® C NC!' C L C€ NL C ACt
AC! C ThC! C N(?2 C AC?
AC?2 C ThC? C NC3 C AC3
C C C
Thus:
NC = UNCi — UACi — UThCZ’
=0 =0 =0

Uniform means that the map, f : 1" — C,, is very easy. f € F(L); f € F(FO)

or

and
or

and

or

T
O @)
@) O
O O

Each C; is an instance of the same program.

-

(n)

Prop: Every regular language is in NC'.
Proof: DFA D = (X, Q, 0, s, F'). Build circuits: Cy, Cs, . . .,

f(s)inF?
In

fy f ?fz f3 é’ £,
Wi Y Wy

filg) = 6(q,wi); we LD) & fis)eF

f

n—-1n

Thm: FO = AC°

Example: ¢ = JxVyIz(M(z,y,2))

Prop: For: =0,1,..., ‘
NC' C AC' C ThC® C NC*!

Proof: All inclusions except ThC' C NC**! are clear.

MAJ = {w € {0,1}* | w has more than |w|/2 “1”s} € ThC’

Lemma: MAJ e NC!

(and the same for any other threshold gate).

Try to build an NC! circuit for majority by adding the n input bits via a full binary tree of height log n.

Problem: the sums being added have more and more bits; still want to add them in constant depth.

o
O30

SOOG
T EECEEEE

I ?X4X5 X6 X7X XHX%Z

Solution: Ambiguous Notation

Binary representation; but with digits: 0,1, 2, 3

3213 = 3-22+2-224+1-214+3.2° = 37
3221 = 3-2342-2242.214+1.2° = 37

Lemma: Ambiguous Notation Addition is in NC°

Example:
carries: 3 2 2 3
3 2 1 3
+ 3 2 1 3
32 2 10

The carry from column ¢ is determined by columns ¢ and ¢ + 1: use the largest carry we are sure to get.

10

Translating from ambiguous to binary, is just addition, thus first-order, thus ACY, and thus NC'.

back to unambiguous

logn

ofelele
OB HEHEOEOEOEHEE

X X X3 X4 XS X6 X7 XS)%)1)%2

11

Arithmetic Hierarchy FO(N)

r.e. complete
FO-VALID
Halt

co-r.e. complete
FO-SAT
Halt

co-r.e. FOVY(N) re. FOd(N)

Recursive

Primitive Recursive

SuccinctHornSAT EXPTIME complete

EXPTIME
SO(LFP) SO[2"""]
QSAT PSPACE complete
PSPACE
FO[2"""] FO(PFP) SO(TC) SO[n°W)]
¢o-NP complete PTIME Hierarchy SO NP complete
SAT SAT
co-NP SOV NP SO-
NP N co-NP
O(1) .*""*_ P complete
FO[n®V] “Horn™,
SAT P
FO(LFP) SO(Horn) >
FO[(logn)“] S cruly NC
FO[log n| '." feasible” "-‘ AC!
FO(CFL) SAC!

FOTC) SO(Krom) 24T NLcomp._—" NL

A3

-
~a
"=

FO(DTC) 2COLOR W L
FO(REGULAR) NC!
FO(COUNT) ThC®
FO LOGTIME Hierarchy AC

12

