
Lecture 19: Circuit Complexity

Real computers are built from gates.

Circuit complexity is a low-level model of computation.

Circuits are directed acyclic graphs. Inputs are placed at the leaves. Signals proceed up toward the root, r.

Straight-line code: gates are not reused.

Let S ⊆ {0, 1}? be a decision problem.

Let, C1, C2, C3, . . . be a circuit family.

Cn has n input bits and one output bit r.

Def: {Ci}i∈N computes S iff for all n and for all w ∈ {0, 1}n,

w ∈ S ⇔ C|w|(w) = 1 .

1

t(n)

b
1b

1

or r

b b
bb

2
2

n
n

and

or

not

and
or

“not” gates are pushed down to bottom

Depth = parallel time

Number of gates = computational work = sequential time

Width = max number of gates at any level = amount of hardware in corresponding parallel machine

2

Circuit Complexity Classes

S ⊆ {0, 1}? is in NC[t(n)], ACt(n), ThCt(n), iff exists uniform circuit family, C1, C2, . . ., s.t.

1. For all w ∈ {0, 1}?, w ∈ S ⇔ C|w|(w) = 1

2. depth(Cn) = O(t(n)); |Cn| ≤ nO(1)

3. The gates of Cn consist of,

bounded fan−in

ThCACNC

^^ k

and, or gates and, or gates threshold gates
unbounded fan−inunbounded fan−in

3

Notation: for i = 0, 1, . . ., NCi = NC[(log n)i];

ACi = AC(log n)i; ThCi = ThC(log n)i

We will see that the following inclusions hold:

AC0 ⊆ ThC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ AC1

AC1 ⊆ ThC1 ⊆ NC2 ⊆ AC2

AC2 ⊆ ThC2 ⊆ NC3 ⊆ AC3

... ⊆
... ⊆

... ⊆
...

Thus:

NC =
∞⋃
i=0

NCi =
∞⋃
i=0

ACi =
∞⋃
i=0

ThCi

4

Uniform means that the map, f : 1n 7→ Cn is very easy. f ∈ F (L); f ∈ F (FO)

t(n)

b
1b

1

or r

b b
bb

2
2

n
n

and

or

not

and
or

Each Ci is an instance of the same program.

5

Prop: Every regular language is in NC1.

Proof: DFA D = 〈Σ, Q, δ, s, F 〉. Build circuits: C1, C2, . . .,

(s) in F ?

δδδδδ δ

f
1n

f1

n/2+1 nf
1 n/2f

n−1 nf1 2f

nfn−1f
n−2f3f2f

nn−1n−2321
w www w

f

w

1 n

fi(q) = δ(q, wi); w ∈ L(D) ⇔ f1n(s) ∈ F �

6

Thm: FO = AC0

Example: ϕ ≡ ∃x∀y ∃z (M(x, y, z))

or

and and and
x=1 x=n-1

or or

z=n-1

or or or or

x=0

y=0 y=0 y=n-1 y=n-1y=0y= n-1

M

x=0
y=0
z=0

M

x=0
y=0

M

x=0

z=0

M

y=0
z=0

M

y=0

M

z=0

M

z=n-1
y=n-1

x=n-1 x=n-1

z=n-1

x=n-1
y=n-1

x=n-1
y=n-1

7

Prop: For i = 0, 1, . . . ,
NCi ⊆ ACi ⊆ ThCi ⊆ NCi+1

Proof: All inclusions except ThCi ⊆ NCi+1 are clear.

MAJ =
{
w ∈ {0, 1}?

∣∣ w has more than |w|/2 “1”s
}
∈ ThC0

Lemma: MAJ ∈ NC1

(and the same for any other threshold gate).

8

Try to build an NC1 circuit for majority by adding the n input bits via a full binary tree of height log n.

Problem: the sums being added have more and more bits; still want to add them in constant depth.

+

++++++++

++++++++++++

> n/2

+

log n

3231876543 xxxxxxxx2xx1

++++

++++

+

9

Solution: Ambiguous Notation

Binary representation; but with digits: 0, 1, 2, 3

3213 = 3 · 23 + 2 · 22 + 1 · 21 + 3 · 20 = 37
3221 = 3 · 23 + 2 · 22 + 2 · 21 + 1 · 20 = 37

Lemma: Ambiguous Notation Addition is in NC0

Example:

carries: 3 2 2 3

3 2 1 3
+ 3 2 1 3

3 2 2 1 0

The carry from column i is determined by columns i and i+ 1: use the largest carry we are sure to get.

10

Translating from ambiguous to binary, is just addition, thus first-order, thus AC0, and thus NC1.

+

++++++++

++++++++++++

log nback to unambiguous

> n/2

+

log n

3231876543 xxxxxxxx2xx1

++++

++++

+

�

11

Arithmetic Hierarchy FO(N) r.e. complete

Halt

co-r.e. complete
FO-SAT FO-VALID
Halt r.e. FO∃(N)co-r.e. FO∀(N)

Recursive

Primitive Recursive

SO(LFP) SO[2n
O(1)

]

SuccinctHornSAT EXPTIME complete

EXPTIME

QSAT PSPACE complete

FO[2n
O(1)

] FO(PFP) SO(TC) SO[nO(1)]
PSPACE

PTIME Hierarchy SO NP complete
SAT

co-NP complete
SAT

NP SO∃co-NP SO∀
NP ∩ co-NP

P complete
Horn-
SAT P

FO[nO(1)]

FO(LFP) SO(Horn)

FO[(log n)O(1)] NC“truly

feasible”FO[log n] AC1

sAC1FO(CFL)

NL2SAT NL comp.FO(TC) SO(Krom)

2COLOR L comp. LFO(DTC)

NC1FO(REGULAR)

ThC0FO(COUNT)

AC0FO LOGTIME Hierarchy

12

