
Lecture 17: NC1 and Barrington’s Theorem

CS601: Branching Programs Lecture 17

1

x1

x5

x2

x5

x2

x2

x1

x1
x

2

s

t

x

x

x

x

x

5

5

2

2

1

Theorem 17.1 The set of problems accepted by uniform (polynomial size) branching programs is DSPACE[log n].

BranchingPrograms = L

Proof:

BranchingPrograms ⊆ L: just keep track of where you are!

L ⊆ BranchingPrograms:

Let M be a DSPACE[log n] Turing machine.

The computation graph of M on some variable input x1 · · ·xn is a branching program! �

2

CS601: Bounded Width BPs Lecture 17

x1 x5 x2

ts

width

Proposition 17.2 The set of problems accepted by uniform, bounded-width branching programs is contained in
NC1.

Proof: This is similar to the proof that REACH ∈ sAC1. However, instead of n choices to guess the middle
point, there are only a bounded number of choices. �

3

Bounded Width Branching Programs look very much like finite automata.

MAJ =
{
w ∈ {0, 1}?

∣∣ w contains more than |w|/2 “1”s
}

Natural Conjecture:

MAJ 6∈ Bounded Width BPs

4

CS601: Permutation Groups Lecture 17

S5 is the permutation group on 5 objects.

α = (12345), β = (13542) ∈ S5

[α, β] = αβα−1β−1

= (12345)(13542)(54321)(24531)

= (13254)

5

Definition 17.3 A width 5 Branching Program, B, 5-cycle recognizes S iff for some 5-cycle σ,

• For x ∈ S, B(x) = σ

• For x 6∈ S, B(x) = e

�

Lemma 17.4 Let Si =
{
x ∈ {0, 1}n

∣∣ xi = 1
}

.

Si can be 5-cycle recognized.

Lemma 17.5 If S is 5-cycle recognized, then so is S

−1ix

B

σ

6

Lemma 17.6 If S is 5-cycle recognized using 5-cycle σ, then S can be 5-cycle recognized using 5-cyle τ .

Proof: Every two 5-cycles are conjugates, i.e.,

(∃θ ∈ S5)(τ = θ−1σθ)

�

Lemma 17.7 If S and T can be 5-cycle recognized by branching programs B and C, then S ∩ T can be 5-cycle
recognized by a branching program of size 2(|B|+ |C|)

Proof:
B C B−1 C−1

�

7

Theorem 17.8 (Barrington’s Theorem)

Bounded Width Branching Programs = NC1

Proof:

Given an NC1 circuit, simulate it using the above lemmas.

We multiply the size of the branching programs by 4 as we go up one level.

Total size is 4O(logn) = nO(1)

b
1b

1

log n

r

b b
bb

2
2

n
n

and

or

not

and
or

or

�

8

