Lecture 17: NC! and Barrington’s Theorem

’ CS601: Branching Programs Lecture 17

Theorem 17.1 The set of problems accepted by uniform (polynomial size) branching programs is DSPACE|log n).

BranchingPrograms = L

Proof:

BranchingPrograms C L: just keep track of where you are!
L C BranchingPrograms:

Let M be a DSPACE]|log n] Turing machine.

The computation graph of M on some variable input x; - - - z,, is a branching program! U

\ CS601: Bounded Width BPs Lecture 17

X X X

0 O—
O— OO O
O O wid
(O “ OaRe
O—0 O—0O

Proposition 17.2 The set of problems accepted by uniform, bounded-width branching programs is contained in
NCh.

Proof: This is similar to the proof that REACH € sAC!. However, instead of n choices to guess the middle
point, there are only a bounded number of choices. U

Bounded Width Branching Programs look very much like finite automata.
MAJ = {w € {0,1}" | w contains more than [w|/2 “1”s}
Natural Conjecture:

MAIJ ¢ Bounded Width BPs

CS601: Permutation Groups Lecture 17

S5 is the permutation group on 5 objects.

a = (12345), B = (13542) € S;

[, 8] = apa'p7!
= (12345)(13542)(54321)(24531)

= (13254)

Definition 17.3 A width 5 Branching Program, B, 5-cycle recognizes S iff for some 5-cycle o,

e Forz e S,B(z)=0

e Forz ¢ S,B(x)=e

Lemma 174 Let S; = {z € {0,1}" | z; = 1}.

S; can be 5-cycle recognized.

Lemma 17.5 If S is 5-cycle recognized, then so is S

O Q)

O O

Lemma 17.6 If S is 5-cycle recognized using 5-cycle o, then S can be 5-cycle recognized using 5-cyle .

Proof: Every two 5-cycles are conjugates, i.e.,

(FeSs)(T =0"00)

Lemma 17.7 If S and T can be 5-cycle recognized by branching programs B and C, then S N'T can be 5-cycle
recognized by a branching program of size 2(|B| + |C/)

Proof:
B C B! ¢!

Theorem 17.8 (Barrington’s Theorem)

Bounded Width Branching Programs = NC!

Proof:
Given an NC! circuit, simulate it using the above lemmas.
We multiply the size of the branching programs by 4 as we go up one level.

Total size is 49Ucgn) = pO1)

r
or N
and
or
and
or 0O)
o o logn
O O
n‘:t/f' / /
_ . O O O _
b1 b b
b b 2 b n
1 2 n

