Despite Ladner’s Theorem, there are very few natural problems that are:

e Known to be in NP, and
e Not known to be NP-complete, and

e Not known to be in P

Examples:

e Factoring natural numbers
e Graph Isomorphism
e Model Checking the p-Calculus

PRIME = {m eN ‘ m is prime}

Prop: PRIME € NP

Proof:

m € PRIME & m<2 V

Jy(l<z<m A z-y=m)

Question: Is PRIME € NP?

Fact 12.1 (Fermat’s Little Thm)  Let p be prime and 0 < a < p, then, a?~' = 1 (mod p).

Z, = {ae{l,2,...,n—1} | GCD(a,n) =1}

Z is the multiplicative group of integers mod n that are relatively prime to n.

Euler’s phi function: ¢(n) = |Z;|



Prop: If n = p{"'p5? - - - p.* is the prime factorizaton of n, then

pn) = npr—Dp2—1) - (pxr = 1)/(prp2- - pi)

Euler’s Thm: For any n and any a € Z%, a*™ =1 (modn).
Fact: Let p > 2 be prime. Then Z; is a cyclic group of order p — 1. That is,

z, = {a,aQ,aB’, . ,ap’l}

m € PRIME & da€Z; (ord(a) =m—1)

Pratt’s Thm: PRIME & NP.

Proof: Given m,

1. Guessa,l1 <a<m

2. Check a™ ! =1 (modm) by repeated squaring.

3. Guess prime factorization: m — 1 = p{*p3? - pp*
4. Check for 1 <i <k, a™ /Pt £ 1( mod m)
5

. Recursively check that pq, po, . . ., pi are prime.

Divide and Conquer NP Algorithm:

Cor: PRIME and FACTORING are in NP N co-NP.

Proof: PRIME: immediately from Pratt’s Thm.
FACTORING is the problem of given NN, find it’s prime factorization: N = p{*p5? - - - pp*.

Think of this as a decision problem by putting the factorization in a standard form, e.g., p1 < py < - -+ < pg, and
asking if bit ¢ of the factorization is “1”.

This is in NP M co-NP because an NP or co-NP machine can guess the unique prime factorization, check that it is
correct, and then read bit <. O



More Primality Testing

a € 77, is a quadratic residue mod m iff, 3b(b* = a (modm))
For p prime let,
( a ) - { 1 if a is a quadratic residue mod p

—1 otherwise

Generalize to ( ) when m is not prime,

a
m

Quadratic Reciprocity Thm: [Gauss] For odd a, m,

a B (%) ifa=1(mod4) or m =1 (mod4)
<E> | = (®) ifa=3(mod4) and m = 3 (mod4)

(2) 1 ifm=1(mod8) or m=7(mod8)
B —1 ifm=3(mod8) or m =5 (mod?8)

Thus, we can calculate () efficiently. For example,
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107 = 3 (mod 8); 15 = 7 (mod 8)



Fact:[Gauss] For p prime, a € Z7, <%> ="z (modp).

Fact: If m not prime then,

{acZ, | (ﬂ) =a 2 (modm)}) <

m

Solovay-Strassen Primality Algorithm:

1. Input is odd number m
2. Fori:=1tok do{
3. choose a < m at random

4. if GCD(a, m) # 1 return(“not prime”)

5. if (£) # a™z (mod m) return(“not prime”)
6. }
7. return(“probably prime”)

Thm:

e If m is prime then Solovay-Strassen(m) returns “probably prime”.

e If m is not prime, then the probability that Solovay-Strassen(m) returns “probably prime” is less than 1/2".

Cor: PRIME € “Truly Feasible”

Fact: [Agrawal, Kayal, and Saxena, 2002] PRIME € P

Def: A decision problem S is in BPP (Bounded Probabilistic Polynomial Time) iff there is a probabilistic,
polynomial-time algorithm A such that for all inputs w,

if (w e S) then Prob(A(w) =1) >

if (w¢S) then Prob(A(w) =1) <



Prop: If S € BPP then there is a probabilistic, polynomial-time algorithm A’ such that for all n and all inputs w

of length n,

1
if (we S) then Prob(A'(w)=1)>1— o

if (w ¢ S) then Prob(A'(w) =1) < 2%

Proof: Iterate A polynomially many times and answer with the majority. Probability the mean is off by % de-
creases exponentially with n — Chernoff bounds. 0

Is BPP equal to P??7?
Probably, because pseudo-random number generators are good.
Is randomness ever useful?

Yes: Theory of Games and Economic Behavior, by John Von Neumann, and Oskar Morgenstern, Princeton uni-
versity press, 1944.

Colonel Kelly:

Which base to inspect?

If we randomize, then our opponent cannot know what we will do.



UREACH = {G, undirected | s 5 t}

Fact 12.2 Consider a random walk in a connected undirected graph G. Let T (i) be the expected number of steps
until we have reached all vertices, assuming we start at vertex i. Then, T(i) < 2m(n — 1), where n = |V
m = |E|.

’

Corollary 12.3 UREACH €< BPL.

Definition 12.4 A universal traversal sequence for graphs on n nodes, is a sequence of instructions, ¢ =
ajasagz---a; € {1,...,n — 1}*, such that for any undirected graph on n nodes, if we start at s in G and follow
q, then we will visit every vertex in the connected component of s. U

Fact 12.5 Undirected graphs with n vertices have universal traversal sequences of length O(n?).
Fact 12.6 (Reingold, 2004) UREACH € L

Proof idea: derandomization of universal traversal sequences using expander graphs. U

Corollary 12.7 Symmetric-L = L



