
Despite Ladner’s Theorem, there are very few natural problems that are:

• Known to be in NP, and

• Not known to be NP-complete, and

• Not known to be in P

Examples:

• Factoring natural numbers

• Graph Isomorphism

• Model Checking the µ-Calculus

PRIME =
{
m ∈ N

∣∣ m is prime
}

Prop: PRIME ∈ NP

Proof:

m ∈ PRIME ⇔ m < 2 ∨

∃xy (1 < x < m ∧ x · y = m)

�

Question: Is PRIME ∈ NP?

Fact 12.1 (Fermat’s Little Thm) Let p be prime and 0 < a < p, then, ap−1 ≡ 1 (mod p).

Z?
n =

{
a ∈ {1, 2, . . . , n− 1}

∣∣ GCD(a, n) = 1
}

Z?
n is the multiplicative group of integers mod n that are relatively prime to n.

Euler’s phi function: ϕ(n) = |Z?
n|

1

Prop: If n = pα1
1 p

α2
2 · · · p

αk
k is the prime factorizaton of n, then

ϕ(n) = n(p1 − 1)(p2 − 1) · · · (pk − 1)/(p1p2 · · · pk)

Euler’s Thm: For any n and any a ∈ Z?
n, aϕ(n) ≡ 1 (modn).

Fact: Let p > 2 be prime. Then Z?
p is a cyclic group of order p− 1. That is,

Z?
p =

{
a, a2, a3, . . . , ap−1

}
m ∈ PRIME ⇔ ∃a ∈ Z?

m (ord(a) = m− 1)

Pratt’s Thm: PRIME ∈ NP.

Proof: Given m,

1. Guess a, 1 < a < m

2. Check am−1 ≡ 1 (modm) by repeated squaring.

3. Guess prime factorization: m− 1 = pα1
1 p

α2
2 · · · p

αk
k

4. Check for 1 ≤ i ≤ k, am−1/pi 6≡ 1(mod m)

5. Recursively check that p1, p2, . . . , pk are prime.

Divide and Conquer NP Algorithm:

T (n) = O(n2) + T (n− 1)

T (n) = O(n3) �

Cor: PRIME and FACTORING are in NP ∩ co-NP.

Proof: PRIME: immediately from Pratt’s Thm.

FACTORING is the problem of given N , find it’s prime factorization: N = pα1
1 p

α2
2 · · · p

αk
k .

Think of this as a decision problem by putting the factorization in a standard form, e.g., p1 < p2 < · · · < pk, and
asking if bit i of the factorization is “1”.

This is in NP ∩ co-NP because an NP or co-NP machine can guess the unique prime factorization, check that it is
correct, and then read bit i. �

2

More Primality Testing

a ∈ Z?
m is a quadratic residue mod m iff, ∃b (b2 ≡ a (modm))

For p prime let,

(
a

p

)
=

{
1 if a is a quadratic residue mod p
−1 otherwise

Generalize to
(
a
m

)
when m is not prime,

(a

mn

)
=

(a
m

)(a
n

)
(a
m

)
=

(
a%m

m

)

Quadratic Reciprocity Thm: [Gauss] For odd a,m,

(a
m

)
=

{ (
m
a

)
if a ≡ 1 (mod 4) or m ≡ 1 (mod 4)

−
(
m
a

)
if a ≡ 3 (mod 4) and m ≡ 3 (mod 4)

(
2

m

)
=

{
1 if m ≡ 1 (mod 8) or m ≡ 7 (mod 8)

−1 if m ≡ 3 (mod 8) or m ≡ 5 (mod 8)

Thus, we can calculate
(
a
m

)
efficiently. For example,

(
107

351

)
= −

(
351

107

)
= −

(
30

107

)
= −

(
2

107

)(
15

107

)
= −

(
107

15

)
= −

(
2

15

)
= −1

107 ≡ 351 ≡ 15 ≡ 3 (mod 4)

107 ≡ 3 (mod 8); 15 ≡ 7 (mod 8)

3

Fact:[Gauss] For p prime, a ∈ Z?
p,

(
a
p

)
≡ a

p−1
2 (mod p).

Fact: If m not prime then,

∣∣∣{a ∈ Z?
m

∣∣ (a
m

)
≡ a

m−1
2 (modm)

}∣∣∣ < m− 1

2

Solovay-Strassen Primality Algorithm:

1. Input is odd number m

2. For i := 1 to k do {

3. choose a < m at random

4. if GCD(a,m) 6= 1 return(“not prime”)

5. if
(
a
m

)
6≡ a

m−1
2 (modm) return(“not prime”)

6. }

7. return(“probably prime”)

Thm:

• If m is prime then Solovay-Strassen(m) returns “probably prime”.

• If m is not prime, then the probability that Solovay-Strassen(m) returns “probably prime” is less than 1/2k.

Cor: PRIME ∈ “Truly Feasible”

Fact: [Agrawal, Kayal, and Saxena, 2002] PRIME ∈ P

Def: A decision problem S is in BPP (Bounded Probabilistic Polynomial Time) iff there is a probabilistic,
polynomial-time algorithm A such that for all inputs w,

if (w ∈ S) then Prob(A(w) = 1) ≥ 2

3

if (w 6∈ S) then Prob(A(w) = 1) ≤ 1

3

4

Prop: If S ∈ BPP then there is a probabilistic, polynomial-time algorithm A′ such that for all n and all inputs w
of length n,

if (w ∈ S) then Prob(A′(w) = 1) ≥ 1− 1

2n

if (w 6∈ S) then Prob(A′(w) = 1) ≤ 1

2n

Proof: Iterate A polynomially many times and answer with the majority. Probability the mean is off by 1
3

de-
creases exponentially with n — Chernoff bounds. �

Is BPP equal to P???

Probably, because pseudo-random number generators are good.

Is randomness ever useful?

Yes: Theory of Games and Economic Behavior, by John Von Neumann, and Oskar Morgenstern, Princeton uni-
versity press, 1944.

Colonel Kelly:

Which base to inspect?

If we randomize, then our opponent cannot know what we will do.

5

UREACH =
{
G, undirected

∣∣ s ?
→
G
t
}

s

TT

TT

TT

TT
TH

TH
TH

TH

HT

HT

HT

HT
HH

HH

HH

HH
T

T

TT

H

H
H

H

T

H t

f

e

d

c

b

a

s

Fact 12.2 Consider a random walk in a connected undirected graph G. Let T (i) be the expected number of steps
until we have reached all vertices, assuming we start at vertex i. Then, T (i) ≤ 2m(n − 1), where n = |V |,
m = |E|.

Corollary 12.3 UREACH ∈ BPL.

Definition 12.4 A universal traversal sequence for graphs on n nodes, is a sequence of instructions, q =
a1a2a3 · · · at ∈ {1, . . . , n − 1}?, such that for any undirected graph on n nodes, if we start at s in G and follow
q, then we will visit every vertex in the connected component of s. �

Fact 12.5 Undirected graphs with n vertices have universal traversal sequences of length O(n3).

Fact 12.6 (Reingold, 2004) UREACH ∈ L

Proof idea: derandomization of universal traversal sequences using expander graphs. �

Corollary 12.7 Symmetric-L = L

6

