Despite Ladner's Theorem, there are very few natural problems that are:

- Known to be in NP, and
- Not known to be NP-complete, and
- Not known to be in P

Examples:

- Factoring natural numbers
- Graph Isomorphism
- Model Checking the μ -Calculus

PRIME = $\{m \in \mathbf{N} \mid m \text{ is prime}\}$

Prop: $\overline{PRIME} \in NP$

Proof:

$$m \in \overline{\text{PRIME}} \iff m < 2 \quad \lor \\ \exists xy \left(1 < x < m \land x \cdot y = m \right)$$

Question:	Is PRIME \in	NP?
-----------	----------------	-----

Fact 12.1 (Fermat's Little Thm) Let p be prime and 0 < a < p, then, $a^{p-1} \equiv 1 \pmod{p}$.

$$\mathbf{Z}_{n}^{\star} = \{a \in \{1, 2, \dots, n-1\} \mid \text{GCD}(a, n) = 1\}$$

 Z_n^{\star} is the multiplicative group of integers mod n that are relatively prime to n.

Euler's phi function: $\varphi(n) = |\mathbf{Z}_n^{\star}|$

Prop: If $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ is the prime factorizaton of n, then $\varphi(n) = n(p_1 - 1)(p_2 - 1) \cdots (p_k - 1)/(p_1 p_2 \cdots p_k)$

Euler's Thm: For any n and any $a \in \mathbf{Z}_n^{\star}$, $a^{\varphi(n)} \equiv 1 \pmod{n}$. **Fact:** Let p > 2 be prime. Then \mathbf{Z}_p^{\star} is a cyclic group of order p - 1. That is, $\mathbf{Z}_n^{\star} = \{a, a^2, a^3, \dots, a^{p-1}\}$

 $m \in \mathsf{PRIME} \quad \Leftrightarrow \quad \exists a \in \mathbf{Z}_m^\star \, (\mathrm{ord}(a) = m - 1)$

Pratt's Thm: $PRIME \in NP$.

- 1. Guess a, 1 < a < m
- 2. Check $a^{m-1} \equiv 1 \pmod{m}$ by repeated squaring.
- 3. Guess prime factorization: $m-1 = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$
- 4. Check for $1 \le i \le k$, $a^{m-1/p_i} \not\equiv 1 \pmod{m}$
- 5. Recursively check that p_1, p_2, \ldots, p_k are prime.

Divide and Conquer NP Algorithm:

$$T(n) = O(n^2) + T(n-1)$$
$$T(n) = O(n^3)$$

Cor: PRIME and FACTORING are in NP \cap co-NP.

Proof: PRIME: immediately from Pratt's Thm.

FACTORING is the problem of given N, find it's prime factorization: $N = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$.

Think of this as a decision problem by putting the factorization in a standard form, e.g., $p_1 < p_2 < \cdots < p_k$, and asking if bit *i* of the factorization is "1".

This is in NP \cap co-NP because an NP or co-NP machine can guess the unique prime factorization, check that it is correct, and then read bit *i*.

More Primality Testing

 $a \in \mathbf{Z}_m^{\star}$ is a quadratic residue mod m iff, $\exists b \, (b^2 \equiv a \, (\text{mod } m))$

For p prime let,

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 1 & \text{if } a \text{ is a quadratic residue mod } p \\ -1 & \text{otherwise} \end{cases}$$

Generalize to $\left(\frac{a}{m}\right)$ when m is not prime,

$$\begin{pmatrix} \frac{a}{mn} \end{pmatrix} = \begin{pmatrix} \frac{a}{m} \end{pmatrix} \begin{pmatrix} \frac{a}{n} \end{pmatrix}$$
$$\begin{pmatrix} \frac{a}{m} \end{pmatrix} = \begin{pmatrix} \frac{a \% m}{m} \end{pmatrix}$$

Quadratic Reciprocity Thm: [Gauss] For odd *a*, *m*,

$$\left(\frac{a}{m}\right) = \begin{cases} \left(\frac{m}{a}\right) & \text{if } a \equiv 1 \pmod{4} \text{ or } m \equiv 1 \pmod{4} \\ -\left(\frac{m}{a}\right) & \text{if } a \equiv 3 \pmod{4} \text{ and } m \equiv 3 \pmod{4} \end{cases}$$

$$\left(\frac{2}{m}\right) = \begin{cases} 1 & \text{if } m \equiv 1 \pmod{8} \text{ or } m \equiv 7 \pmod{8} \\ -1 & \text{if } m \equiv 3 \pmod{8} \text{ or } m \equiv 5 \pmod{8} \end{cases}$$

Thus, we can calculate $\left(\frac{a}{m}\right)$ efficiently. For example,

$$\begin{pmatrix} \frac{107}{351} \end{pmatrix} = -\left(\frac{351}{107}\right) = -\left(\frac{30}{107}\right)$$
$$= -\left(\frac{2}{107}\right)\left(\frac{15}{107}\right) = -\left(\frac{107}{15}\right)$$
$$= -\left(\frac{2}{15}\right) = -1$$

$$107 \equiv 351 \equiv 15 \equiv 3 \pmod{4}$$

$$107 \equiv 3 \pmod{8}; \qquad 15 \equiv 7 \pmod{8}$$

Fact: [Gauss] For p prime, $a \in \mathbb{Z}_p^{\star}$, $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$. **Fact:** If m not prime then,

$$\left|\left\{a\in \mathbf{Z}_m^\star \ \left| \ \left(\frac{a}{m}\right)\equiv a^{\frac{m-1}{2}}\,(\mathrm{mod}\,m)\right\}\right|\ <\ \frac{m-1}{2}$$

Solovay-Strassen Primality Algorithm:

- 1. Input is odd number m
- 2. For i := 1 to k **do** {
- 3. choose a < m at random
- 4. **if** $GCD(a, m) \neq 1$ **return**("not prime")

5. **if**
$$\left(\frac{a}{m}\right) \not\equiv a^{\frac{m-1}{2}} \pmod{m}$$
 return("not prime")

- 6. }
- 7. return("probably prime")

Thm:

- If m is prime then Solovay-Strassen(m) returns "probably prime".
- If m is not prime, then the probability that Solovay-Strassen(m) returns "probably prime" is less than $1/2^k$.

Cor: PRIME \in "Truly Feasible"

Fact: [Agrawal, Kayal, and Saxena, 2002] $PRIME \in P$

Def: A decision problem S is in BPP (Bounded Probabilistic Polynomial Time) iff there is a probabilistic, polynomial-time algorithm A such that for all inputs w,

if
$$(w \in S)$$
 then $\operatorname{Prob}(A(w) = 1) \ge \frac{2}{3}$
if $(w \notin S)$ then $\operatorname{Prob}(A(w) = 1) \le \frac{1}{3}$

Prop: If $S \in BPP$ then there is a probabilistic, polynomial-time algorithm A' such that for all n and all inputs w of length n,

if
$$(w \in S)$$
 then $\operatorname{Prob}(A'(w) = 1) \ge 1 - \frac{1}{2^n}$
if $(w \notin S)$ then $\operatorname{Prob}(A'(w) = 1) \le \frac{1}{2^n}$

Proof: Iterate A polynomially many times and answer with the majority. Probability the mean is off by $\frac{1}{3}$ decreases exponentially with n — Chernoff bounds.

Is BPP equal to P???

Probably, because pseudo-random number generators are good.

Is randomness ever useful?

Yes: Theory of Games and Economic Behavior, by John Von Neumann, and Oskar Morgenstern, Princeton university press, 1944.

Colonel Kelly:

Which base to inspect?

If we randomize, then our opponent cannot know what we will do.

UREACH =
$$\{G, \text{ undirected } | s \stackrel{\star}{\underset{d}{\leftarrow}} t\}$$

Fact 12.2 Consider a random walk in a connected undirected graph G. Let T(i) be the expected number of steps until we have reached all vertices, assuming we start at vertex i. Then, $T(i) \leq 2m(n-1)$, where n = |V|, m = |E|.

Corollary 12.3 UREACH \in BPL.

Definition 12.4 A universal traversal sequence for graphs on n nodes, is a sequence of instructions, $q = a_1a_2a_3 \cdots a_t \in \{1, \ldots, n-1\}^*$, such that for any **undirected** graph on n nodes, if we start at s in G and follow q, then we will visit every vertex in the connected component of s.

Fact 12.5 Undirected graphs with n vertices have universal traversal sequences of length $O(n^3)$.

Fact 12.6 (Reingold, 2004) $UREACH \in L$

Proof idea: derandomization of universal traversal sequences using expander graphs.

Corollary 12.7 Symmetric-L = L