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Merlin-Arthur games (MA) [Babai]

Decision problem: D; input string: x

Merlin — Prover — chooses the polynomial-length string Π that Maximizes the chances of convincing Arthur
that x is an element of D.

Arthur — Verifier — computes the Average value of his possible computations on Π, x. Arthur is a polynomial-
time, probabilistic Turing machine.

Definition 13.1 We say that Arthur accepts D iff the following conditions hold:

1. If x ∈ D, there exists a proof Πx, such that Arthur accepts for every random string σ,

Prσ
[
ArthurΠx(x, σ) = Accept

]
= 1

2. If x 6∈ D, for every proof Π, Arthur rejects for most of the random strings σ,

Prσ
[
ArthurΠ(x, σ) = Accept

]
<

1

2

�

Proposition 13.2 NP ⊆ MA.

By adding randomness to the verifier, we can greatly restrict its computational power and the number of bits of Π
that it needs to look at, while still enabling it to accept all of NP.

Verifier Arthur is (r(n), q(n))-restricted iff Arthur always uses at most O(r(n)) random bits and examines at
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most O(q(n)) bits of its proof, Π.

Let PCP[r(n), q(n)] be the set of boolean queries that are accepted by (r(n), q(n))-restricted verifiers.

MAX-3-SAT: given a 3CNF formula, find a truth assignment that maximizes the number of true clauses.

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

∧(x2 ∨ x3 ∨ x5) ∧ (x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4 ∨ x5)

Proposition 13.3 MAX-3-SAT has a polynomial-time ε = 1
2

approximation algorithm.

Proof: Be greedy: choose the literal that occurs most often and make it true; repeat. �

Had Been Open for Years: Assuming NP 6= P is there some ε, 0 < ε < 1, s.t. MAX-3-SAT has no PTIME
ε-approximation algorithm?

Theorem 13.4 ( PCP Theorem [ALMSS) NP = PCP[log n, 1]

Corollary 13.5 If P 6= NP, Then ∃ε . 0 < ε < 1, MAX-3-SAT has no ptime, ε-approximation algorithm.

Theorem 13.6 ([Hastad]) In the PCP theorem, looking at 3 bits of the proof are necessary and sufficient. Thus,
the best possible PTIME approximation ration for MAX-3-SAT is 1

8
(and this is acheivable).
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Cryptography

B
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One-Time Pad: p ∈ {0, 1}n; m ∈ {0, 1}n

E(p, x) = p⊕ x

D(p, x) = p⊕ x

D(p, E(p,m)) = p⊕ (p⊕m) = m

p 0 1 1 0 0 1 0 1 0 1
m 0 0 0 0 1 1 1 1 0 0

E(p,m) 0 1 1 0 1 0 1 0 0 1
D(p, E(p,m)) 0 0 0 0 1 1 1 1 0 0

Thm: If p is chosen at random and known only to A and B Then E(p,m) provides no information to E about
m except perhaps its length.

Better not use p more than once!

Public-Key Cryptography

Idea: [Diffie, Hellman, 1976] Using computational complexity, I may be able to publish a key for sending secret
messages to me, that are intractable to decode. Example: Diffie-Hellman key exchange.

Realization: [Rivest, Shamir, Adleman, 1976] This is the Public-Key Algorithm that is used today in the SSL
algorithm that lets your browser generate a key to send an order to Amazon.com without, we believe, divulging
any useful information about your credit card number, or what you bought.

3



RSA

B chooses p, q n-bit primes, e, s.t. GCD(e, ϕ(pq)) = 1;

B publishes: pq, e; keeps p, q secret.

Using Euclid’s algorithm,B computes d, k, s.t. ed+ kϕ(pq) = 1 [ϕ(pq) = (p− 1)(q − 1)].

[Break message into pieces shorter than 2n bits]

EB(x) ≡ xe (mod pq)
DB(x) ≡ xd (mod pq)

DB(EB(m)) ≡ (me)d (mod pq)
≡ m1−kϕ(pq) (mod pq)
≡ m · (mϕ(pq))−k (mod pq)
≡ m (mod pq)
≡ EB(DB(m)) (mod pq)

For sufficiently large n, [n ≥ 300 bits is fine in 2005],

It is widely believed that: EB(m) divulges no useful information about m to anyone not knowing p, q, or d.

Message signing:

Let m = “B promises to give A $10 by 5/17/05.”

Let m′ = m ◦ r where r is nonce or current date and time

It is widely believed that: DB(m′) could be produced only by B. Thus it can be used as a contract signed by
B.

Useful for proving authenticity
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Interactive Proofs

[Goldwasser, Micali, Rackoff], [Babai]

Decision problem: D; input string: x

Two players:

Prover — Merlin is computationally all-powerful. Wants to convince Verifier that x ∈ D.

Verifier — Arthur: probabilistic polynomial-time TM. Wants to know the truth about whether x ∈ D.

Input = x; n = |x|; t = nO(1)

0. Arthur has x Merlin has x

1. flip σ1, compute m1 −→
2. ←− m2

3. flip σ3, compute m3 −→
4. ←− m4

...
...

...

2t. ←− m2t

2t+ 1. flip σ2t+1, accept or reject

Def: D ∈ IP iff there is a PTIME interactive protocol

1. If x ∈ D, then there exists a strategy for Merlin

Prob{Arthur accepts x} = 1

2. If x 6∈ D, then for all strategies for Merlin

Prob{Arthur accepts x} <
1

2

Observation: As for BPP, by iterating we can make probability of error exponentially small.

Def: MA is the set of decision problems admitting two step proofs where Merlin moves first.

AM is the set of decision problems admitting two step proofs where Arthur moves first. For k ≥ 2,

AM[k] = ArthurMerlinArthur · · ·︸ ︷︷ ︸
k

�
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Fact: [Babai] For all k ≥ 2, AM[k] = AM.

= = PSPACEP

BPP

NP

MA AM

BP(NP)

AM[poly] 

Fact: [Goldwasser & Sipser] The power of interactive proofs is unchanged if Merlin knowns Arthur’s coin
tosses. For all k,

• IP[k] = AM[k]

• IP = AM[nO(1)]

Graph Isomorphism ∈ NP; Is it in co-NP?

Input = G0, G1, n = ||G0|| = ||G1||

0. Arthur has G0, G1 Merlin has G0, G1

1. flip κ : {1, . . . , r} → {0, 1}
flip π1, . . . , πr ∈ Sn

π1(Gκ(1)), . . . , πr(Gκ(r)) −→
2. ←− m2 ∈ {0, 1}r

3. accept iff κ = m2

Prop: Graph Isomorphism ∈ co-AM

Proof: If G0 6∼= G1, then Arthur will accept with probability 1.

If G0
∼= G1, then Arthur will accept with probability ≤ 2−r. �

proof that IP ⊆ PSPACE: Evaluate the game tree.
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Fact 13.7 [Goldwasser,Sipser] The power of interactive proofs is unchanged if M knowns A’s coin tosses. For
all k,

IP[k] = AM[k]; IP = AM[nO(1)]

Graph Non-Isomorphism ∈ AM

Input = G0, G1, n = ||G0|| = ||G1||

0. A has G0, G1 M has G0, G1

1. flip κ : {1, . . . , r} → {0, 1}
flip π1, . . . , πr ∈ Sn

π1(Gκ(1)), . . . , πr(Gκ(n)) −→
2. ←− m2 ∈ {0, 1}r

3. accept iff κ = m2

Proposition 13.8 Graph Non-Isomorphism ∈ AM

Proof: If G0 6∼= G1, then A will accept with probability 1.

If G0
∼= G1, then A will accept with probability ≤ 2−r. �

Corollary 13.9 If Graph Isomorphism is NP-complete then PH collapses to Σp
2.
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