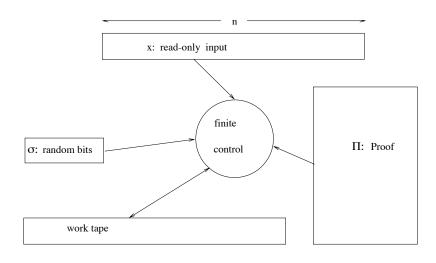
Interactive Proofs



Merlin-Arthur games (MA) [Babai]

Decision problem: D; input string: x

Merlin — Prover — chooses the polynomial-length string Π that **Maximizes** the chances of convincing Arthur that x is an element of D.

Arthur — Verifier — computes the Average value of his possible computations on Π , x. Arthur is a polynomialtime, probabilistic Turing machine.

Definition 13.1 We say that **Arthur accepts** *D* iff the following conditions hold:

1. If $x \in D$, there exists a proof Π_x , such that Arthur accepts for every random string σ ,

$$Pr_{\sigma}\left[\operatorname{Arthur}^{\Pi_{x}}(x,\sigma) = Accept\right] = 1$$

2. If $x \notin D$, for every proof Π , Arthur rejects for most of the random strings σ ,

$$Pr_{\sigma}\left[\mathbf{Arthur}^{\Pi}(x,\sigma) = Accept\right] < \frac{1}{2}$$

Proposition 13.2 NP \subseteq MA.

By adding randomness to the verifier, we can greatly restrict its computational power and the number of bits of Π that it needs to look at, while still enabling it to accept all of NP.

Verifier Arthur is (r(n), q(n))-restricted iff Arthur always uses at most O(r(n)) random bits and examines at

most O(q(n)) bits of its proof, Π .

Let PCP[r(n), q(n)] be the set of boolean queries that are accepted by (r(n), q(n))-restricted verifiers.

MAX-3-SAT: given a 3CNF formula, find a truth assignment that maximizes the number of true clauses.

$$(x_1 \lor x_2 \lor \overline{x_3}) \land (x_1 \lor x_4 \lor \overline{x_5}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_4})$$
$$\land (\overline{x_2} \lor x_3 \lor x_5) \land (\overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_4} \lor x_5)$$

Proposition 13.3 MAX-3-SAT has a polynomial-time $\epsilon = \frac{1}{2}$ approximation algorithm.

Proof: Be greedy: choose the literal that occurs most often and make it true; repeat.

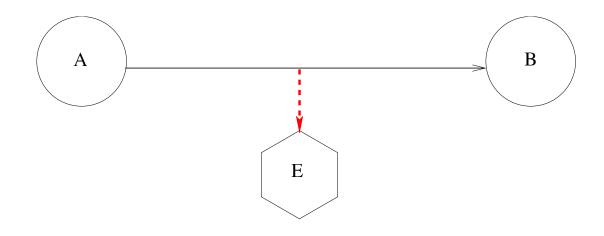
Had Been Open for Years: Assuming NP \neq P is there some ϵ , $0 < \epsilon < 1$, s.t. MAX-3-SAT has no PTIME ϵ -approximation algorithm?

Theorem 13.4 (PCP Theorem [ALMSS) $NP = PCP[\log n, 1]$

Corollary 13.5 If $P \neq NP$, Then $\exists \epsilon . 0 < \epsilon < 1$, MAX-3-SAT has no ptime, ϵ -approximation algorithm.

Theorem 13.6 ([Hastad]) In the PCP theorem, looking at 3 bits of the proof are necessary and sufficient. Thus, the best possible PTIME approximation ration for MAX-3-SAT is $\frac{1}{8}$ (and this is acheivable).

Cryptography



One-Time Pad: $p \in \{0, 1\}^n$; $m \in \{0, 1\}^n$

 $E(p, x) = p \oplus x$ $D(p, x) = p \oplus x$

$$D(p, E(p, m)) = p \oplus (p \oplus m) = m$$

<i>p</i>	0	1	1	0	0	1	0	1	0	1
m	0	0	0	0	1	1	1	1	0	0
E(p,m)	0	1	1	0	1	0	1	0	0	1
D(p, E(p, m))	0	0	0	0	1	1	1	1	0	0

Thm: If p is chosen at random and known only to A and B Then E(p, m) provides no information to E about m except perhaps its length.

Better not use *p* **more than once!**

Public-Key Cryptography

Idea: [Diffie, Hellman, 1976] Using computational complexity, I may be able to publish a key for sending secret messages to me, that are intractable to decode. Example: Diffie-Hellman key exchange.

Realization: [Rivest, Shamir, Adleman, 1976] This is the Public-Key Algorithm that is used today in the SSL algorithm that lets your browser generate a key to send an order to Amazon.com without, **we believe**, divulging any **useful** information about your credit card number, or what you bought.

RSA

B chooses p, q n-bit primes, e, s.t. $\text{GCD}(e, \varphi(pq)) = 1$;

B publishes: pq, e; keeps p, q secret.

Using Euclid's algorithm, B computes d, k, s.t.

$$ed + k\varphi(pq) = 1$$

[Break message into pieces shorter than 2n bits]

$$\begin{array}{rcl}
E_B(x) &\equiv & x^{\mathrm{e}} & (\mod pq) \\
D_B(x) &\equiv & x^{\mathrm{d}} & (\mod pq) \\
D_B(E_B(m)) &\equiv & (m^e)^d & (\mod pq) \\
&\equiv & m^{1-k\varphi(pq)} & (\mod pq) \\
&\equiv & m \cdot (m^{\varphi(pq)})^{-k} & (\mod pq) \\
&\equiv & m & (\mod pq) \\
&\equiv & E_B(D_B(m)) & (\mod pq)
\end{array}$$

For sufficiently large n, $[n \ge 300 \text{ bits is fine in } 2005]$,

It is widely believed that: $E_B(m)$ divulges no useful information about m to anyone not knowing p, q, or d.

Message signing:

Let m = "B promises to give A \$10 by 5/17/05."

Let $m' = m \circ r$ where r is nonce or current date and time

It is widely believed that: $D_B(m')$ could be produced only by B. Thus it can be used as a contract signed by B.

Useful for proving authenticity

Interactive Proofs

[Goldwasser, Micali, Rackoff], [Babai]

Decision problem: D; input string: x

Two players:

Prover — Merlin is computationally all-powerful. Wants to convince Verifier that $x \in D$.

Verifier — Arthur: probabilistic polynomial-time TM. Wants to know the truth about whether $x \in D$.

Input =
$$x$$
; $n = |x|$; $t = n^{O(1)}$

0.	Arthur has <i>x</i>	Merlin has x
1.	flip σ_1 , compute $m_1 \longrightarrow$	
2.		$\leftarrow m_2$
3.	flip σ_3 , compute $m_3 \longrightarrow$	
4.		$\leftarrow m_4$
: : :	÷	÷
2t.		$\leftarrow m_{2t}$

2t+1. flip σ_{2t+1} , accept or reject

Def: $D \in IP$ iff there is a PTIME interactive protocol

1. If $x \in D$, then there exists a strategy for Merlin

Prob{Arthur accepts x} = 1

2. If $x \notin D$, then for all strategies for Merlin

Prob{Arthur accepts
$$x$$
} < $\frac{1}{2}$

Observation: As for BPP, by iterating we can make probability of error exponentially small.

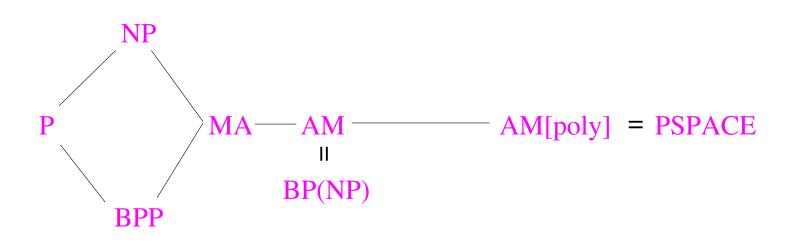
Def: MA is the set of decision problems admitting two step proofs where Merlin moves first.

AM is the set of decision problems admitting two step proofs where Arthur moves first. For $k \ge 2$,

$$AM[k] = ArthurMerlinArthur...$$

5

Fact: [Babai] For all $k \ge 2$, AM[k] = AM.



Fact: [Goldwasser & Sipser] The power of interactive proofs is unchanged if Merlin knowns Arthur's coin tosses. For all k,

- IP[k] = AM[k]
- IP = $AM[n^{O(1)}]$

Graph Isomorphism \in NP; Is it in co-NP?

Input = $G_0, G_1, \quad n = ||G_0|| = ||G_1||$

0. Arthur has G_0, G_1 Merlin has G_0, G_1 1. flip $\kappa : \{1, \dots, r\} \rightarrow \{0, 1\}$ flip $\pi_1, \dots, \pi_r \in S_n$ $\pi_1(G_{\kappa(1)}), \dots, \pi_r(G_{\kappa(r)}) \longrightarrow$ 2. $\leftarrow m_2 \in \{0, 1\}^r$ 3. accept iff $\kappa = m_2$

Prop: Graph Isomorphism \in co-AM

Proof: If $G_0 \not\cong G_1$, then **Arthur** will accept with probability 1.

If $G_0 \cong G_1$, then Arthur will accept with probability $\leq 2^{-r}$.

proof that IP \subseteq PSPACE: Evaluate the game tree.

Fact 13.7 [Goldwasser,Sipser] The power of interactive proofs is unchanged if M knowns A's coin tosses. For all k,

 $\mathbf{IP}[k] = \mathbf{AM}[k]; \qquad \mathbf{IP} = \mathbf{AM}[n^{O(1)}]$

Graph Non-Isomorphism \in AM

Input = $G_0, G_1, n = ||G_0|| = ||G_1||$

0. A has G_0, G_1 M has G_0, G_1 1. flip $\kappa : \{1, \dots, r\} \rightarrow \{0, 1\}$ flip $\pi_1, \dots, \pi_r \in S_n$ $\pi_1(G_{\kappa(1)}), \dots, \pi_r(G_{\kappa(n)}) \longrightarrow$ 2. $\leftarrow m_2 \in \{0, 1\}^r$ 3. accept iff $\kappa = m_2$

Proposition 13.8 *Graph Non-Isomorphism* \in AM

Proof: If $G_0 \not\cong G_1$, then **A** will accept with probability 1. If $G_0 \cong G_1$, then **A** will accept with probability $\leq 2^{-r}$.

Corollary 13.9 If Graph Isomorphism is NP-complete then PH collapses to Σ_2^p .