Alternation

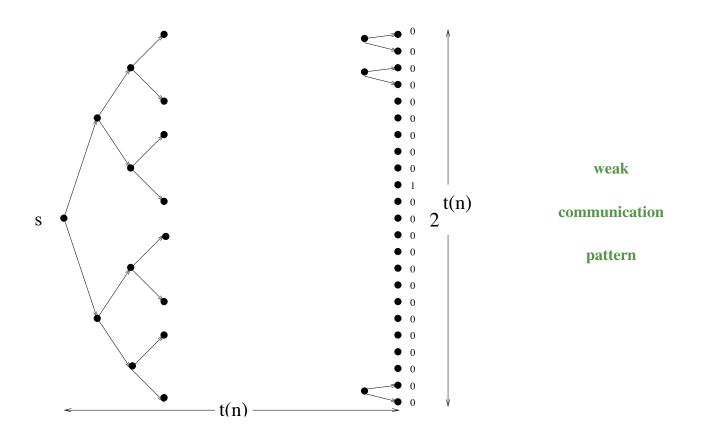
The concept of a nondeterministic acceptor of a boolean query has a long and rich history, going back to various kinds of nondeterministic automata.

It is important to remember that these are fictitious machines: we suspect that they cannot be built.

Open question: NP $? = \text{co-NP} = \{\overline{A} \mid A \in \text{NP}\}$

If one could really build an NP machine, then one could, with a single gate to invert its answer, also build a co-NP machine.

From a practical point of view, the complexity of a problem A and its complement, \overline{A} are identical.

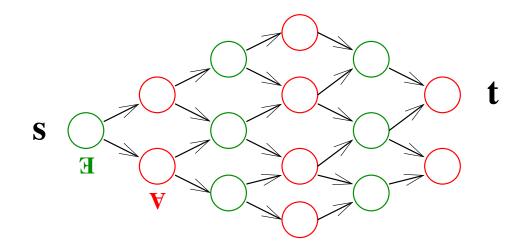


 $Value(ID) \ := \ Value(LeftChild(ID)) \ \lor \ Value(Right(Child(ID)))$

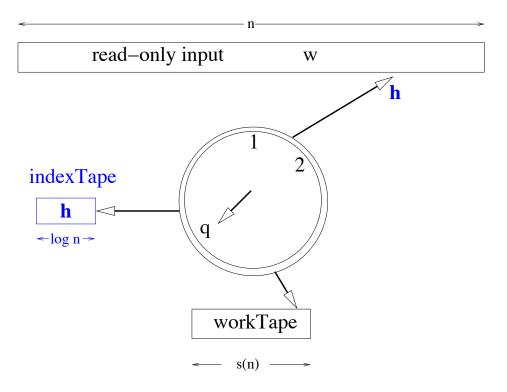
The states of an **alternating Turing machine** are split into: **Existential states** (\exists) and **Universal states** (\forall).

Definition 13.1 An alternating TM in ID₀ accepts iff

- 1. ID_0 is in a final accepting state, or
- 2. ID_0 is in an \exists state and some next ID' accepts, or
- 3. ID₀ is in a \forall state, has at least one next ID, and all next ID's accept.



From now on assume that our Turing machines have a **random access** read-only input. There is an **index tape** which can be written on and read like other tapes. Whenever the value h, written in binary, appears on the index tape, the read head will automatically scan bit h of the input.



Definition 13.2 Let ASPACE[s(n)] and ATIME[t(n)] be the set of problems accepted by alternating TM's using O(s(n)) tape cells, O(t(n)) time, respectively, in any computation path on any input of length n.

Theorem 13.3 [Alternation Thm.] For $s(n) \ge \log n$, and for $t(n) \ge n$,

$$\bigcup_{k=1}^{\infty} \operatorname{ATIME}[(t(n))^{k}] = \bigcup_{k=1}^{\infty} \operatorname{DSPACE}[(t(n))^{k}]$$
$$\operatorname{ASPACE}[s(n)] = \bigcup_{k=1}^{\infty} \operatorname{DTIME}[k^{s(n)}]$$

Corollary 13.4 ASPACE $[\log n] = P$ and ATIME $[n^{O(1)}] = PSPACE$.

Definition 13.5 The monotone, circuit value problem (MCVP) is the subset of CVP in which no negation gates occur. \Box

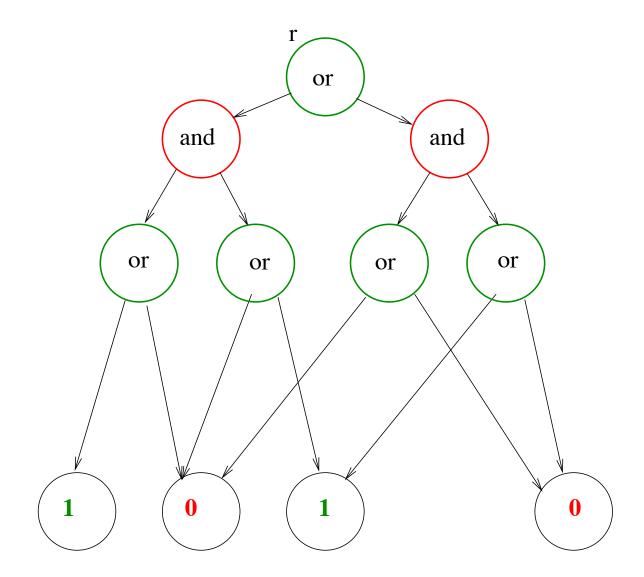
Proposition 13.6 MCVP \in ASPACE[log n].

Proof: Let G be a monotone boolean circuit. For $a \in V^G$, define "EVAL(a)",

- 1. if (InputOn(a)) then accept
- 2. if (InputOff(a)) then reject
- 3. if $(G_{\wedge}(a))$ then universally choose child b of a
- 4. if $(G_{\vee}(a))$ then existentially choose child b of a
- 5. Return(EVAL(*b*))

M simply calls EVAL(r). EVAL(a) returns "accept" iff gate a evaluates to one.

Space used for naming vertices $a, b: O(\log n)$.



The above circuit is a member of MCVP because it just has \land and \lor gates and it evaluates to 1.

Def: The **quantified satisfiability problem** (QSAT) is the set of true formulas of the following form:

$$\Psi = Q_1 x_1 Q_2 x_2 \cdots Q_r x_r (\varphi)$$

For any boolean formula φ on variables \overline{x} ,

$\varphi \in SAT$	\Leftrightarrow	$\exists \overline{x}\left(\varphi\right) \in \mathbf{QSAT}$
$\varphi \not\in \mathbf{SAT}$	\Leftrightarrow	$\forall \overline{x} (\neg \varphi) \in \mathbf{QSAT}$

Thus QSAT logically contains SAT and \overline{SAT} .

Proposition 13.7 QSAT \in ATIME[n].

Proof: Construct ATM, A, on input, $\Phi \equiv$

 $\exists x_1 \quad \forall x_2 \quad \cdots \quad \exists x_{2k-1} \quad \forall x_{2k} \quad \bigwedge_{i=1}^r \quad \bigvee_{j=1}^s \quad \ell_{ij} \\ b_1 \quad b_2 \quad \cdots \quad b_{2k-1} \quad b_{2k} \quad i \quad j \quad \ell_{ij}(b_1, \dots, b_{2k})$

Quantifiers:

- in \exists state, A writes a bit b_1 for x_1 ,
- in \forall state, A writes a bit b_2 for x_2 , and so on.

Boolean operators:

- in \forall state, A chooses i,
- in \exists state, A chooses j

Final state: accept iff $\ell_{ij}(b_1, \ldots, b_{2k})$ is true.

A accepts $\Phi \Leftrightarrow \Phi$ is true.

Theorem 13.8 For any $s(n) \ge \log n$, $\text{NSPACE}[s(n)] \subseteq \text{ATIME}[s(n)^2] \subseteq \text{DSPACE}[s(n)^2]$. **Proof:** $\text{NSPACE}[s(n)] \subseteq \text{ATIME}[s(n)^2]$:

Let N be an NSPACE[s(n)] Turing machine.

Let w be an input to N, n = |w|.

 $w \in \mathcal{L}(N) \quad \Leftrightarrow \quad \mathbf{CompGraph}(N,w) \in \mathbf{REACH}$

 $w \in \mathcal{L}(N) \quad \Leftrightarrow \quad \mathbf{CompGraph}(N,w) \in \mathbf{REACH}$

$$\begin{array}{lll} P(d,x,y) &\equiv & \text{``In CompGraph}(N,w), \operatorname{dist}(x,y) \leq 2^d \text{''} \\ P(d,x,y) &\equiv & \exists z \left(P(d-1,x,z) \land P(d-1,z,y) \right) \end{array}$$

- 1. Existentially: choose middle ID z.
- 2. Universally: (x, y) := (x, z) & (z, y)
- 3. Return(P(d 1, x, y))

$$T(d) = O(s(n)) + T(d-1) = O(d \cdot s(n))$$

$$d = O(s(n))$$

$$T(d) = O((s(n))^{2})$$

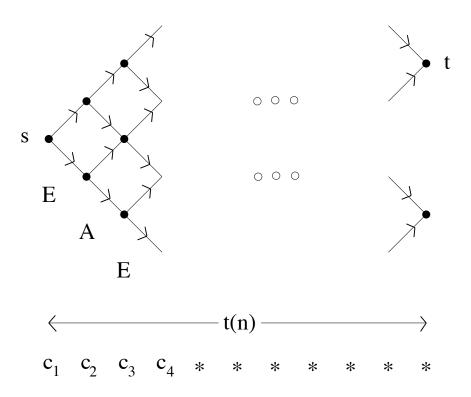
 $\operatorname{ATIME}[t(n)] \subseteq \operatorname{DSPACE}[t(n)]$

Let A be an ATIME[t(n)] machine, input w, n = |w|.

CompGraph(A, w) has depth c(t(n)) and size $2^{c(t(n))}$, for some constant c.

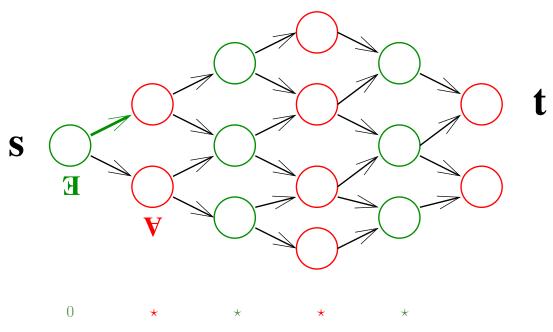
Search this and/or graph systematically using c(t(n)) extra bits of space.

 $\operatorname{ATIME}[t(n)] \subseteq \operatorname{DSPACE}[t(n)]$



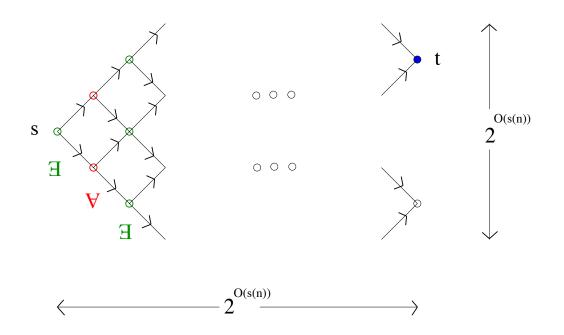
Evaluate computation graph of ATIME[t(n)] machine using t(n) space to cycle through all possible computations of A on input w.

Example: ATIME $[t(n)] \subseteq$ DSPACE[t(n)]



Theorem 13.9 ASPACE $[s(n)] = \text{DTIME}[2^{O(s(n))}]$

Proof: ASPACE $[s(n)] \subseteq$ DTIME $[2^{O(s(n))}]$: Let A be an ASPACE[s(n)] machine, w an input, n = |w|. CompGraph(A(w)) has size $\leq 2^{O(s(n))}$ Marking algorithm evaluates this in DTIME $2^{O(s(n))}$.



DTIME[$2^{O(s(n))}$] \subseteq ASPACE[s(n)]:

Let M be DTIME $[2^{k(s(n))}]$ TM, w an input, n = |w|.

alternating procedure C(t, p, a) accepts iff contents of cell p at time t in M's computation on input w is symbol a.

C(t+1, p, b) holds iff the three symbols a_{-1}, a_0, a_1 in tape positions p - 1, p, p + 1 lead to a "b" in position p in one step of M's computation.

$$C(t+1, p, b) \equiv \bigvee_{\substack{(a_{-1}, a_0, a_1) \stackrel{M}{\to} b}} \bigwedge_{i \in \{-1, 0, 1\}} C(t, p+i, a_i)$$

Space needed is $O(\log 2^{k(s(n))}) = O(s(n))$.

Note that M accepts w iff $C(2^{k(s(n))}, 1, \langle q_f, 1 \rangle)$

	Space 0	1	\bar{s}	n - 1	n		$2^{ks(n)}$
0	$\langle q_0, w_0 \rangle$	w_1	•••	w_{n-1}	\Box	•••	Ш
1	w_0	$\langle q_1, w_1 \rangle$	• • •	w_{n-1}	\Box	• • •	
Time	:	:	:			÷	
\bar{t}		a.	$-1 \ a_0 \ a$	4			
$\bar{t}+1$			b				
	•	÷	÷			÷	
$2^{ks(n)}$	$\langle q_f, 1 \rangle$		•••		\Box	• • •	

$$C(t+1, p, b) \equiv \bigvee_{(a_{-1}, a_0, a_1) \stackrel{M}{\to} b} \bigwedge_{i \in \{-1, 0, 1\}} C(t, p+i, a_i)$$

This completes the proof of the Alternation Thm.

