
CS513: Lect. 13: Undecidability of FO Logic and Gödel’s Incompleteness Thm

Recall that last time we defined recursive and r.e. and we proved that K and HALT are both r.e. and not recursive.

Definition 13.1 A partial, recursive function, f : N → N ∪ {↗} is a function computed by a Turing Machine. A total, recursive
function is a partial, recursive function, f , that happens to be total, i.e, f : N→ N. �

Theorem 13.2 (Fundamental Theorem of r.e. Sets) Let S ⊆ N. T.F.A.E.

1. S is the domain of a partial, recursive function, i.e., for some n ∈ N, S =
{
x ∈ N

∣∣ Mn(x)↓
}

.

2. S = ∅ or S is the range of a total, recursive function, i.e., for some total, recursive Mm(·), S = ∅ or S = Mm(N)

3. S is the range of a partial, recursive function, i.e., for some r ∈ N, S = Mr(N)

4. S is r.e., i.e., for some t ∈ N, S = Wt

13.1 Reductions = Translations

Definition 13.3 For S, T ⊆ {0, 1}?, S is reducible to T (S ≤ T) iff there exists a “very easy to compute” total function f : N →
N, s.t. ∀w ∈ N, (w ∈ S) ⇔ (f(w) ∈ T).

Note: All our reductions, f , will be computable in LOGSPACE and in fact they will be in FO, i.e., first-order definable..

Note: f translates membership questions for S to membership questions for T . Thus, complexity(S) ≤ complexity(T). �

∀w ∈ N, χS(w) = χT (f(w))

∀w ∈ N, (w ∈ S ⇔ f(w) ∈ T)

Sometimes the “⇔” in the definition of reductions makes students think that reductions go both ways, but that is not true, they only go
from S to T . The reason for the “⇔” is that one arrow tells us that if f(w) ∈ T then w ∈ S, and the arrow in the other direction tells us
that if f(w) 6∈ T then w 6∈ S. Thus the answer to the question, “Is f(w) ∈ T ?”, is always the same as the answer to the question, “Is
w ∈ S?”.

Proposition 13.4 K ≤ HALT

Proof: We want to build an easy-to-compute program translator f : N→ N× N such that,

Want: ∀z ∈ N (z ∈ K) ⇔ (f(z) ∈ HALT)

Want: ∀z ∈ N (Mz(z) = 1) ⇔ (ML(f(z))(R(f(z)))) ↓

Here for a pair, z = (a, b), we use the component functions L,R, selecting the left part and the right part, i.e., L(a, b) = a and
R(a, b) = b.

Define f(z) = (A(z), 0) where A(z) is the following Turing Machine program, which on on input x,

1. Delete input, x.

2. run Mz(z)

3. if (Mz(z) == 1): return(17)

4. run forever

1

Thus, if Mz(z) = 1, then MA(z)(0) ↓; and otherwise, MA(z)(0) =↗.

Thus,

z ∈ K ⇔ Mz(z) = 1 ⇔ MA(z)(0) ↓ ⇔ f(z) ∈ HALT

[In the proof of the above series of equivalences, note that if Mz(z) =↗, then MA(z)(0) =↗.] �

Theorem 13.5 (Fundamental Thm. of Reductions) If S ≤ T , then,
1. If T is r.e., then S is r.e..

2. If T is co-r.e., then S is co-r.e..

3. If T is Recursive, then S is Recursive.

Proof: S ≤ T ∧ T ∈ r.e. ⇒ S ∈ r.e.

Let f : S ≤ T , i.e., ∀x(x ∈ S ⇔ f(x) ∈ T), T = Wi.

From Mi, compute the TM Mi′ which on input x does the following: (a). compute f(x); (b) run Mi(f(x))

Mi′ = f Mi

(x ∈ S) ⇔ (f(x) ∈ T) ⇔ (Mi(f(x)) = 1) ⇔ (Mi′(x) = 1)

Therefore, S = Wi′ , and S is r.e. as desired.

In other words, PS = pT ◦ f . We are given the Turing machines that compute the partial recursive function pT and the total recursive
function f . From these, we can easily construct the Turing machine, Mi′ , which computes pS .

Observation 13.6 f : S ≤ T ⇔ f : S ≤ T .

Thus, T ∈ co-r.e. ⇒ T ∈ r.e. ⇒ S ∈ r.e. ⇒ S ∈ co-r.e.

T ∈ Recursive ⇒ (T ∈ r.e. ∧ T ∈ co-r.e.) ⇒

(S ∈ r.e. ∧ S ∈ co-r.e.) ⇒ S ∈ Recursive �

Moral: Suppose S ≤ T . Then,

• If T is easy, then so is S.

• If S is hard, then so is T .

Definition 13.7 Let C ⊆ N. C is r.e.-complete iff

1. C ∈ r.e., and

2. ∀A ∈ r.e. (A ≤ C)

2

�

Intuition: C is a “hardest” r.e. set.

Theorem 13.8 K is r.e. complete.

Proof: We already know that K is r.e.

Let A be an arbitrary r.e. set, i.e., A = Wi for some i.

Wanted: total recursive f , s.t.: ∀n(n ∈ A ⇔ f(n) ∈ K)

Define total, recursivef which on input n computes:

Mf(n) = Erase input Write n Mi

Mf(n) ignores its input and instead runs Mi(n).

n ∈ A ⇔ Mi(n) = 1 ⇔ ∀x(Mf(n)(x) = 1) ⇔ Mf(n)(f(n)) = 1 ⇔ f(n) ∈ K
�

Proposition 13.9 Suppose C is r.e.-complete and:

1. S ∈ r.e., and

2. C ≤ S

then S is r.e.-complete.

Proof: Show: ∀A ∈ r.e. (A ≤ S)

Know: ∀A ∈ r.e. (A ≤ C)

Follows by transitivity of ≤: A ≤ C ≤ S. �

Corollary 13.10 HALT is r.e.-complete.

13.2 Post’s Correspondence Problem (PCP)

Definition 13.11 [Post’s Correspondence Problem (PCP)] An instance of PCP, p = ((x1, y1), . . . , (xr, yr)) is a finite sequence of pairs
of binary strings. The instance p has a solution (p ∈ PCP) iff there exists a finite sequence of indices: i1, . . . , in from {1, . . . , r} such
that xi1xi2 · · ·xin = yi1yi2 · · · yin . The PCP Question is whether can we contruct a pair of equal strings by repeatedly appending pairs
from p. �

Example 13.12 p0 = ((1, 101), (10, 00), (011, 11)) is a positive instance of the Post Correspondence Problem, i.e., p0 ∈ PCP. A
solution is 1323. Note that,

x1x3x2x3 = 1 011 10 011 = 101 11 00 11 = y1y3y2y3 . �

PCP is a very simplified version of the Halting Problem in which Turing machine computations are encoded as binary strings. PCP has
the same complexity at the halting problem, HALT:

Fact: [Post] PCP is r.e. complete. In particular, PCP is r.e. but not recursive.

3

13.3 Undecidability of FO Logic

Recall that FO-VALID is the set of all first-order formulas that are true in all appropriate structures. In his Ph.D. thesis in 1930, Gödel
proved,

Theorem 13.13 [Gödel’s Completeness Thm] There is a complete recursive axiom system for FO Logic. That is, in this system, for all
ϕ ∈ L(Σ), ϕ is a theorem iff ϕ is valid. In symbols,

` ϕ ⇔ ϕ ∈ FO-VALID .

Corollary 13.14 (FO-VALID is r.e.) FO-VALID ∈ r.e..

In Gödel’s original proof, he showed that the axiomitization of FO Logic in Russel and Whitehead’s Principia Mathematica is complete.
In Lecture 10, we proved Thm. 13.13 by showing that Resolution is complete for FO logic.

A year later, in 1931, Gödel proved that there is no recursive and complete axiom system for all of mathermatics (or even for number
theory). If there had been, then it would have meant that MATH and thus also FO-VALID and HALT would all be recursive.

Theorem 13.15 [Gödel’s First Incompleteness Thm.] There is no complete recursive axiom system for all of math, nor even for just
Theory(N) =

{
ϕ ∈ L(Σ#thy)

∣∣ N |= ϕ
}

.

13.4 Unsolvability of FO Logic

We now prove that FO-VALID is not solvable:

Theorem 13.16 (FO Logic is not Recursive) FO-VALID is r.e. complete.

Proof: We follow the proof in the text which shows that PCP ≤ FO-VALID. In particular, we will show that there is a very easy-to-
compute transformation, τ , which translates any PCP problem, p, to an FO formula, τ(p), such that

p ∈ PCP ⇔ τ(p) ∈ FO-VALID (13.16)

Let ΣPCP = (P 2; a, f10 , f
1
1). Let p = ((x1, y1), . . . , (xr, yr)) be an arbitrary instance of PCP.

Notation 13.17 (Schöning)
fjsjs−1...j2j1(x) ↪→ fj1(fj2(· · · (fjs−1(fjs(x))) · · ·)

For example, f110(x) = f0(f1(f1(x))).

We now construct τ(p) = αp ∧ βp → γp so that Eqn 13.16 holds.

αp
def
=

r∧
i=1

P (fxi(a), fyi(a))

βp
def
= ϕ2 = ∀uv (P (u, v) →

r∧
i=1

P (fxi(u), fyi(v)))

γp
def
= ∃z P (z, z)

The intuitive idea behind these formulas is that they mean, “If we start with some pair from p, (αp), and we continue to add any pairs
from p any number of times, (βp), then we can eventually reach a situation where the two strings are equal, (γp).”

More explicitly, a is the starting point, e.g., the empty string, and we are not given that P (a, a) holds.

4

The formula αp says that we may start with any of the pairs (x1, y1), through (xr, yr). For the example of p0 (Ex. 13.12),

αp0

def
= P (f1(a), f101(a)) ∧ P (f10(a), f00(a)) ∧ P (f011(a), f11(a))

The formula βp says that for any position (u, v), that we have reached, we made add any with any of the pairs (x1, y1), through (xr, yr).
Continuing the example of p0,

βp0

def
= ∀uv (P (u, v) → (P (f1(u), f101(v)) ∧ P (f10(u), f00(v)) ∧ P (f011(u), f11(v))))

We now prove Eqn 13.16.

Assume p ∈ PCP. Let A ∈ STRUC[ΣPCP] be arbitrary. We will show that A |= αp ∧ βp → γp.

If A 6|= αp ∧ βp, then A |= τ(p), so we may assume that A |= αp ∧ βp.

Consider the example of p0 (Ex. 13.12) whose solution is 1323. Since A |= αp0
, we have that A |= P (f1(a), f101(a)). Since A |= βp0

,
we can conclude that A |= P (f1011(a), f10111(a)). Applying βp0

again, we have that A |= P (f101110(a), f1011100(a)). Applying βp0
a

third time we get, A |= P (f101110011(a), f101110011(a)).

Now, we have won because A |= γp0
. The witness is z = f101110011(a). Thus, since p ∈ PCP, A |= τ(p). Since A was arbitrary, it

follows that τ(p) ∈ FO-VALID.

Conversely, assume τ(p) ∈ FO-VALID. We construct the standard model we have in mind, S ∈ STRUC[ΣPCP]:

|S| = {0, 1}∗

PS =
{

(u, v) ∈ ({0, 1}∗)2
∣∣ ∃i1, . . . , in (u = fxi1

···xin
(a) ∧ v = fyi1

···yin
(a))

}
a = ε

fS0 =
{

(w,w0)
∣∣ w ∈ {0, 1}?}

fS1 =
{

(w,w1)
∣∣ w ∈ {0, 1}?}

Note that by construction, S |= αp ∧ βp. Thus, S |= γp. But, again by the construction of S, this means that the z asserted to exists in
γp is a winning position for the PCP problem of p, i.e., p ∈ PCP. �

Arithmetic Hierarchy FO(N) r.e. complete

K Halt

co-r.e. complete
FO-SAT FO-VALID

K Halt r.e. FO∃(N)co-r.e. FO∀(N)

Recursive

Primitive Recursive

SO(LFP) SO[2n
O(1)

]

SuccinctHornSAT EXPTIME complete

EXPTIME

QSAT PSPACE complete

FO[2n
O(1)

] FO(PFP) SO(TC) SO[nO(1)]
PSPACE

PTIME Hierarchy SO NP complete
SAT

co-NP complete
SAT

NP SO∃co-NP SO∀

NP ∩ co-NP

P complete
Horn-
SAT

P
FO[nO(1)]

FO(LFP) SO(Horn)

FO[(log n)O(1)] NC“truly

feasible”FO[log n] AC1

sAC1FO(CFL)

NL2SAT NL comp.FO(TC) SO(Krom)

2COLOR L comp. LFO(DTC)

NC1FO(REGULAR)

ThC0FO(COUNT)

AC0FO LOGTIME Hierarchy

6

	Reductions = Translations
	Post's Correspondence Problem (PCP)
	Undecidability of FO Logic
	Unsolvability of FO Logic

