
CS513: Lect. 14: Inductive Definitions, LFP, Datalog and Prolog

14.1 Inductive Definitions

Previously, we saw that there is no first order formula ϕ that expresses the property of graph-
connectedness: “connected” and “path” cannot be expressed inL(Σst graph) where Σst graph = (E2; s, t)
– the vocabulary of graphs with two constants symbols, s and t.

Define the problem REACH to be the set of directed graphs having a path from s to t,

REACH =
{
G ∈ STRUC[Σst graph]

∣∣ s
∗→
G

t
}
.

We know from the handout on Ehrenfeucht-Fraı̈ssé games that expressing dist≤n(x, y), i.e., that
there is a path from x to y of length ≤ n, requires quantifier depth exactly dlog(n)e.

We want to express the path relation, E∗, the reflexive, transitive closure of E. That is E∗ is the
smallest binary relation that is relexive and transitive and contains E. We can define E∗ with the
following inductive definition:

E∗(x, y)
def
= (x = y ∨ E(x, y) ∨ ∃z (E∗(x, z) ∧ E∗(z, y))) (14.1)

Here, we have defined E∗ in terms of itself. We now show how to make sense of such definitions,
assuming that the relation being defined appears only positively: when the formula is in negation
normal form, no “¬”s are applied to the relation being defined.

We can understand Eqn. 14.1 better with the following first-order operator on binary relations:

ϕtc(R, x, y)
def
= (x = y ∨ E(x, y) ∨ ∃z (R(x, z) ∧R(z, y))) (14.2)

Given a graph, G, Eqn. 14.2 defines an operation, ϕG
tc , mapping binary relations on |G| to binary

relations on |G|:

ϕG
tc (R)

def
=

{
(a, b) ∈ |G|2

∣∣ G[a/x, b/y] |= ϕtc(R, x, y)
}

(14.3)

Proposition 14.4 (Positive implies Monotone) If R appears only positively in ϕ(Rk, x1, . . . , xk)
then for any appropriate structure, A, ϕA is a monotone operator on k-ary relations on |A|, that
is, for all such relations R,R′ on A,

R ⊆ R′ ⇒ ϕA(R) ⊆ ϕA(R′) .

Example 14.5 Let us see the effect of the operator ϕG
tc from Eqn. 14.3 as we repeatedly apply it,

starting with the empty relation, ∅, i.e., the relation that is false on every pair of vertices from G.

1

ϕG
tc (∅) =

{
(a, b) ∈ |G|2

∣∣ G, a/x, b/y |= x = y ∨ E(x, y)
}

=
{

(a, b) ∈ |G|2
∣∣ dist≤1(a, b)

}
ϕG

tc (ϕG
tc (∅)) =

{
(a, b) ∈ |G|2

∣∣ dist≤2(a, b)
}

(ϕG
tc)3(∅) =

{
(a, b) ∈ |G|2

∣∣ dist≤4(a, b)
}

(ϕG
tc)4(∅) =

{
(a, b) ∈ |G|2

∣∣ dist≤8(a, b)
}

Note that each time we apply ϕG
tc we double the length of possible paths.

Thus, (ϕG
tc)k(∅) =

{
(a, b) ∈ |G|2

∣∣ dist≤2k−1(a, b)
}

. In particular, since paths in an n-vertex graph
can have length at most n− 1, we have that

(EG)∗ = (ϕG
tc)d1+log(||G||)e(∅) = LFP(ϕG

tc) .

(EG)∗ is the least fixed point of ϕG
tc , i.e., the smallest binary relation, R ⊆ |G|2 such that ϕG

tc (R) =

R. We take that as the meaning of the inductive defintion Eqn. 14.1, i.e, E∗ def
= LFP(ϕtc). �

Definition 14.6 [Least Fixed Point] If ϕ(Rk, x1, . . . , xk) is R-positive then the meaning of the
inductive definition R

def
= ϕ(R) is the least fixed point of ϕ, LFP(ϕ). �

We now show that when ϕ is R-positive, and thus monotone by Prop. 14.4, the least fixed point
always exists.

Theorem 14.7 (Tarski-Knaster Theorem) If ϕ(Rk, x1,xk) is R positive then LFP (ϕ) exists
and can be computed in polynomial time.

Proof: We first show that the process of starting with the emptyset and repeatedly applying ϕ, as
we did in Example 14.5, always gives us a fixed point of ϕ.

Note that ∅ ⊆ ϕ(∅). If ∅ = ϕ(∅) then we are done and ∅ = LFP(ϕ). Otherwise, by monotonicity
of ϕ, ϕ(∅) ⊆ ϕ2(∅). If ϕ(∅) = ϕ2(∅) then we have reached a fixed point. Otherwise, continue the
process:

∅ ⊆ ϕ(∅) ⊆ ϕ2(∅) ⊆ ϕ3(∅) ⊆ · · ·ϕnk

(∅) = ϕnk+1(∅) (14.8)

In every step, either a fixed point is reached or a new k-tuple is added to the relation. A structureA
with an n-element universe has nk possible k-tuples. Therefore, after at most nk iterations, a fixed
point is reached. Let the fixed point be ϕt(∅) where t ≤ nk is minimum such that ϕt = ϕt+1.

Now we want to show that ϕt(∅) is in fact the least fixed point. Let S be a fixed point of ϕ, i.e.,
ϕ(S) = S

Claim: ϕt(∅) ⊆ S.

2

We prove by induction that for all i, ϕi(∅) ⊆ S.

base case: ϕ0(∅) = ∅ ⊆ S.

inductive case: assume that ϕk(∅) ⊆ S.

By monotonicity of ϕ, it follows that ϕ(ϕk(∅)) ⊆ ϕ(S), i.e., ϕk+1(∅) ⊆ S.

Thus, ϕt(∅) ⊆ S and as desired, ϕt(∅) = LFP(ϕ). �

14.2 Datalog

Datalog is a database query language that makes use of positive recursions. The following is an
example of a recursive definition in Datalog.

P (x, y) :− x = y

P (x, y) :− E(x, y)

P (x, y) :− P (x, z), P (z, y)

Note that this Datalog code is equivalent to the inductive definition,

(P (x, y)
def
= x = y ∨ E(x, y) ∨ ∃z (P (x, z) ∧ P (z, y))) .

In particular, the separate lines are “or”-ed together; the comma in a single line is treated as “∧”.
Free variables occuring only on the right-hand side are considered existentially quantified, whereas
free variables that occur on the left side are universally quantified.

Here is another Datalog example. Given the database relation Parent(x, y), we can make the non-
recursive Datalog definition:

Sib(x, y) :−Parent(z, x),Parent(z, y), x 6= y

Here is another recursive definition:

Ancestor(x, y) :− x = y
Ancestor(x, y) :− Parent(x, y)
Ancestor(x, y) :− Ancestor(x, z),Ancestor(z, y)

(14.8)

In Datalog, recursive definitions are implemented exactly as they would be in logic using a Breadth-
first search matching algorithm.

3

14.3 Prolog

Prolog is a programming language older and more complicated than Datalog. In trying to make
Prolog a general-purpose programming language, the designers made some choices which take the
meanings of programs away from what the meaning would be in logic.

In particular, consider the Ancestor query, Ancestor(x, y) :− ?, in Prolog, using the definition of
Ancestor from Eqn. 14.8.

This is meant to return all pairs (a, b) such that a is an ancestor of b. Unfortunately, Prolog uses
a depth-first search matching algorithm. Thus to match Ancestor(x, y) it would first try to match
Ancestor(x, z). To do this, it would first try to match Ancestor(x, z1) and so on, thus going into an
infinite loop and never answering.

On the other hand, Prolog would do the right thing with the alternate definition:

Ancestor(x, y) :− x = y
Ancestor(x, y) :− Parent(x, z),Ancestor(z, y)

(14.8)

4

	Inductive Definitions
	Datalog
	Prolog

