Tarski's Definition of Truth

In first-order logic with equality, we always have that $=^{\mathcal{A}} = \{\langle a, a \rangle \mid a \in |A|\}$ where $|A| = U_{\mathcal{A}}$ = the universe of \mathcal{A} . That is, the equality predicate symbol, "=", must always be interpreted as true equality:

$$\mathcal{A} \models t_1 = t_2 \quad \Leftrightarrow \quad t_1^{\mathcal{A}} = t_2^{\mathcal{A}} \; .$$

For $\mathcal{A} \in \operatorname{STRUC}[\Sigma], t \in \operatorname{term}(\Sigma), \varphi \in \mathcal{L}(\Sigma)$ we give the following inductive definitons of $t^{\mathcal{A}}$ and $\mathcal{A}(\varphi)$:

term base: for $x_i \in \text{var}, x_i^{\mathcal{A}}$ is already given. (Each structure has a default value for each variable.)

term inductive: $(f_i(t_1,\ldots,t_{r_i}))^{\mathcal{A}} = f_i^{\mathcal{A}}(t_1^{\mathcal{A}},\ldots,t_{r_i}^{\mathcal{A}})$

truth base: $\mathcal{A}(R_i(t_1,\ldots,t_{a_i})) = \text{if } \langle t_1^{\mathcal{A}},\ldots,t_{a_i}^{\mathcal{A}} \rangle \in R_i^{\mathcal{A}} \text{ then } 1 \text{ else } 0$

truth inductive:

- 1. $\mathcal{A}(\neg \alpha) = 1 \mathcal{A}(\alpha)$
- 2. $\mathcal{A}(\alpha \lor \beta) = \max(\mathcal{A}(\alpha), \mathcal{A}(\beta))$
- 3. $\mathcal{A}(\exists x_i(\alpha)) = \max_{a \in |\mathcal{A}|} ((\mathcal{A}, x_i/a)(\alpha))$

 $(\mathcal{A}, x_i/a)$ is the same structure as \mathcal{A} with the single exception that $x_i^{(\mathcal{A}, x_i/a)} = a$, i.e., the default value of x_i in $(\mathcal{A}, x_i/a)$ is $a \in |\mathcal{A}|$.

Game-Theoretic Definition of Truth

The truth of a first-order formula corresponds to a two-person game: $\mathcal{G}(\mathcal{A}, \varphi)$ is the game on structure \mathcal{A} , formula φ . Assume that φ is in **negation normal form**, i.e., the quantifiers are \forall, \exists , the propositional connectives are \land, \lor, \neg and all \neg 's have been pushed inside as far as possible using the de Morgan laws, so the only occurences of \neg 's are directly in front of atomic formulas. The truth game has two players named Dumbledore (**D**) and Gandalf (**G**). D is trying to prove that $\mathcal{A} \models \varphi$ and **G** is trying to prove that $\mathcal{A} \models \neg \varphi$.

In $\mathcal{G}(\mathcal{A}, \varphi)$,

game base: If φ is atomic, then if $\mathcal{A} \models \varphi$ then D wins, else **G** wins

game inductive:

- 1. If $\varphi = \alpha \lor \beta$, then D chooses one of the disjuncts: $\psi \in \{\alpha, \beta\}$ and the next position is $\mathcal{G}(\mathcal{A}, \psi)$.
- 2. If $\varphi = \alpha \land \beta$, then **G** chooses one of the conjuncts: $\psi \in \{\alpha, \beta\}$ and the next position is $\mathcal{G}(\mathcal{A}, \psi)$.
- 3. If $\varphi = \exists x_i(\psi)$, then D chooses an element $e \in |\mathcal{A}|$ and the next position is $\mathcal{G}((\mathcal{A}, x_i/e), \psi)$.
- 4. If $\varphi = \forall x_i(\psi)$, then **G** chooses an element $a \in |\mathcal{A}|$ and the next position is $\mathcal{G}((\mathcal{A}, x_i/a), \psi)$.

Theorem: For any vocabulary Σ , formula $\varphi \in \mathcal{L}(\Sigma)$ in negation normal form, and structure $\mathcal{A} \in \text{STRUC}[\Sigma]$, Tarski's definition of truth, and the game theoretic definition of truth are equivalent, i.e,

 $\mathcal{A} \models \varphi \iff D \text{ has a winning strategy for } \mathcal{G}(\mathcal{A}, \varphi) \text{ and,} \\ \mathcal{A} \not\models \varphi \iff \mathbf{G} \text{ has a winning strategy for } \mathcal{G}(\mathcal{A}, \varphi).$

Proof: This can be proved by induction on φ . It would be a good exercise for you to fill in the details.