
CS513: Lect. 12: Decidablity and Undecidability

Today we shall look at the undecidability of First-Order logic. The textbook proves that FO-VALID is undecidable
by reducing PCP (Post’s Correspondence Problem) to FO-VALID. But in today’s class, we introduce and explain the
notions of decidability and undecidability.

Definition 12.1 [decision problem, characteristic function] A decision problem, S ⊆ {0, 1}∗, is a computational
problem whose input can be encoded as a binary string and whose output is either yes or no. We can identify the
decision problem, S, with its characteristic function:

χS(w) =

{
1 if w ∈ S
0 if w /∈ S

Types of inputs: There is a natural and efficiently computable 1:1 and onto map between {0, 1}? and the set of natural
numbers, N. Thus, we may think of our decision problems S as subsets of N instead of as binary strings, if we so
choose. Similarly, it is easy to encode pairs of binary strings as binary strings, so we may think of our inputs as pairs
of binary strings, S ⊆ {0, 1}? × {0, 1}?, or as pairs of natural numbers, S ⊆ N× N?, etc. �

Example 12.2 Primality testing, PRIME = {2, 3, 5, . . .}, is a polynomial-time decision problem, i.e., PRIME ∈ P. �

Remark 12.3 Every problem in Computer Science can be thought of as a set of decision problems: on input w,
produce output b1(w) b2(w) · · · b`(w). The difficulty of the problem can be understood in terms of the complexity of
the hardest of these decision problems. Thus, in complexity and computability, problems are decision problems and
complexity classes are sets of decision problems. �

Definition 12.4 [decidability] S is decidable iff there is a program (Turing machine) that computes its characteristic
function, χS . Other words equivalent to decidable are computable, solvable and recursive. By the definition of χS ,
this program must always halt and output either 0 or 1. A problem is undeciable iff it is not decidable. �

History: The history of undecidability starts with Hilbert’s challenge in 1901 to show that all of math is decidable. In
a few decades after that, several mathematicians around the world came up with independent definitions of what an
algorithm or “effective procedure” is:

• Church: lambda calculus,

• Gödel: recursive functions,

• Kleene: formal systems,

• Markov: Markov algorithms (a rewrite system),

• Turing: Turing machines, and

• Post: Post machines

All of these were proved to have the exact same power as each other. The Church-Turing Thesis asserts that this
formal model, i.e., “Turing computability”, exactly captures the intuitive notion of effective computablity. Here we
are ignoring running-time and memory requirements, as long as they are finite. This is a well-believed thesis. Note
that it is not provable because it involves an undefined, intuitive notion.

It is possible to encode all of mathematics in the first-order logic of set-theory. Thus we may define the problem of
mathematics as follows,

MATH =
{
ϕ ∈ L(Σset)

∣∣ ϕ is true
}
.

1

Hilbert believed that MATH is decidable and he wanted logicians to prove this.

Definition 12.5 [recursive enumerability] S ⊆ {0, 1}∗ is recursively enumerable (r.e.) if and only if its partial or polite
characteristic function is computable:

PS(w) =

{
1 if w ∈ S
↗ if w /∈ S

The symbol, “ ↗ ”, means undefined. Thus, if a program, M , computes PS and w ∈ S, then on input w, M will
eventually halt and output 1. However, if w 6∈ S, then M will never answer. �

Note that recursive and recursively enumerable are properties of problems. We can also define the sets of all recursive
and recursively enumerable problems. These are the complexity classes at the top of our diagram of computability and
complexity:

Recursive def
=

{
S ⊆ {0, 1}∗

∣∣ S is recursive
}

r.e. def
=

{
S ⊆ {0, 1}∗

∣∣ S is recursively enumerable
}

Lemma 12.6 Recursive ⊆ r.e.

Proof: We need to show that for all S, S ∈ Recursive ⇒ S ∈ r.e.. Suppose that S ∈ Recursive. This means that χS

is computed by some Turing Machine MS . We shall use MS to construct a new Turing Machine M ′S which computes
PS .

M ′S(x) := if (MS(x) == 1) then return(1) else run forever

�

Definition 12.7 [co-r.e.] The complementary class of r.e. is co-r.e. def
=

{
S
∣∣ S ∈ r.e.

}
. �

Theorem 12.8 Recursive = r.e. ∩ co-r.e..

Proof: We have already seen that Recursive ⊆ r.e.. We can similarly show that Recursive ⊆ co-r.e.. Therefore,
Recursive ⊆ r.e. ∩ co-r.e.. We now show the other direction: r.e. ∩ co-RE ⊆ Recursive.

Suppose that S ∈ r.e. ∩ co-r.e.. Let TM’s M1,M0 compute PS , PS , respectively. Define TM MS which does the
following: On input, w, run M1(w) and M0(w) in parallel. If M1(w) ever halts and returns 1, then return(1). If
M0(w) ever halts and returns 1, then return(0). Note that for every w, exactly one of these events will occur. Thus MS

computes χS . Thus S ∈ Recursive. �

12.1 Constructing a set K which is r.e. but not Recursive.

Note that every Java program, or equivalently every TM, can be encoded by a binary string. We can thus list them out
in lexicographic order: all valid TM’s encoded in 1 bit, all valid TM’s encoded in 2 bits, all valid TM’s encoded in 3
bits, We write this listing as M0,M1,M2, · · · .

Remark 12.9 It is a rather interesting and powerful idea that all the possible algorithmic ideas of all time are on this
list: M0,M1,M2, · · · . �

Even though it is now considered obvious, on of the most interesting and important theorems in computer science was
proved by Turing in his original 1936 paper:

2

Theorem 12.10 (Universal Turing Machine [Turing, 1936]) There exists a universal TM, U , such that for all pro-
grams n ∈ N and inputs w ∈ N, U(n,w) = Mn(w), i.e. on input (n,w), U computes exactly what the nth TM,
Mn, does on input w.

Definition 12.11 [Wi, the ith r.e. set] For each TM, Mi, define Wi, the set of strings accepted by TM Mi,

Wi
def
= L(Mi) =

{
w
∣∣ Mi(w) = 1

}
.

�

Proposition 12.12 A set, S, is r.e. iff S = Wi for some i ∈ N.

To construct a set that is r.e. but not recursive, Turing used diaglonalization (the method that Cantor used to prove that
R is uncountable).

Let us list out all the r.e. sets graphically. Instead of thinking of the sets as containing binary strings, think of them
as containing natural numbers. Thus we list a set, Wi, by an infinite sequence of 0’s and 1’s indicating whether
0 ∈Wi, 1 ∈Wi,

n 0 1 2 3 4 5 6 7 8 · · · Wn

0 0 0 0 0 0 0 0 0 0 · · · W0

1 1 1 1 1 1 1 1 1 1 · · · W1

2 1 0 1 0 1 0 1 0 1 · · · W2

3 0 1 0 1 0 1 0 1 0 · · · W3

4 1 0 0 0 0 0 0 0 0 · · · W4

5 0 0 1 1 0 1 0 1 0 · · · W5

6 1 0 0 1 0 0 1 0 0 · · · W6

7 1 1 0 0 0 0 0 0 0 · · · W7

8 0 1 0 0 0 0 0 0 0 · · · W8

...
...

...
...

...
...

...
...

...
... · · ·

...

0 1 1 1 0 1 1 0 0 · · · K
1 0 0 0 1 0 0 1 1 · · · K

Define the diagonal set and its complement:

K =
{
n
∣∣ Mn(n) = 1

}
=

{
n
∣∣ n ∈Wn

}
K =

{
n
∣∣ Mn(n) 6= 1

}
=

{
n
∣∣ n 6∈Wn

}
Proposition 12.13 K ∈ co-r.e.− r.e.

Proof: K is r.e. since PK is computed by the TM which on input n simulates Mn(n) and returns 1 iff Mn(n) returns
1. Thus K is co-r.e..

Suppose for the sake of a contradiction that K ∈ r.e.. Then by Prop. 12.12, K = Wc for some c ∈ N. However, by
the definition of K,

c ∈ K ⇔ c 6∈Wc ⇔ c 6∈ K .

This is a contradiction. Thus, K is not r.e. �

3

Define the halting problem HALT def
=
{

(n,w)
∣∣ Mn(w)↓

}
whereMn(w)↓means that TMMn on inputw eventually

converges, i.e., halts and thus provides an output. Thus,

Mn(x)↓ ⇔ Mn(x) ∈ N ⇔ Mn(x) 6=↗

Theorem 12.14 (Unsolvability of the halting problem) HALT is not recursive.

Proof: Suppose for the sake of a contradiction that HALT were recursive and the TM MH computes χHALT. Then,
using MH we can build a TM to compute K as follows: on input n run MH(n, n). If it says 1, then we know that
Mn(n) eventually halts, so run it. If it returns 1 then return 1, otherwise return 0. If MH(n, n) = 0 then n 6∈ K, so
return 0. Since K is not recursive, neither is HALT. �

Remark 12.15 To Hilbert’s great disappointment, Church, Gödel and Turing proved that MATH is not decidable and
in fact, MATH 6∈ r.e.. Why does this follow from Thm. 12.14? �

Arithmetic Hierarchy FO(N) r.e. complete

K Halt

co-r.e. complete
FO-SAT FO-VALID

K Halt r.e. FO∃(N)co-r.e. FO∀(N)

Recursive

Primitive Recursive

SO(LFP) SO[2n
O(1)

]

SuccinctHornSAT EXPTIME complete

EXPTIME

QSAT PSPACE complete

FO[2n
O(1)

] FO(PFP) SO(TC) SO[nO(1)]
PSPACE

PTIME Hierarchy SO NP complete
SAT

co-NP complete
SAT

NP SO∃co-NP SO∀

NP ∩ co-NP

P complete
Horn-
SAT

P
FO[nO(1)]

FO(LFP) SO(Horn)

FO[(log n)O(1)] NC“truly

feasible”FO[log n] AC1

sAC1FO(CFL)

NL2SAT NL comp.FO(TC) SO(Krom)

2COLOR L comp. LFO(DTC)

NC1FO(REGULAR)

ThC0FO(COUNT)

AC0FO LOGTIME Hierarchy

5

	Constructing a set K which is r.e. but not Recursive.

