11.1 Compactness Theorem for First Order Logic

Last time we proved Gödel's Completeness Theorem for First Order Logic. The following is a corollary.

Theorem 11.1 (Compactness of FO Logic) Let $\Gamma \subseteq \mathcal{L}(\Sigma)$ be a collection of first order formulas. If Γ is finitely satisfiable (that is, every finite subset of Γ is satisfiable), then Γ is satisfiable.

Proof: We show the contrapositive. Assume that Γ is not satisfiable. Since Γ has no models, it follows vacuously that $\Gamma \models \bot$. Thus, by the Completeness Theorem, $\Gamma \vdash \bot$. Consider the proof by resolution of $\Gamma \vdash \bot$. It takes finitely many clauses from Γ and repeatedly applies substitution and resolution, deriving \Box . Since the process is finite, only some finite subset $\Gamma_0 \subseteq \Gamma$ is used in the proof. Thus $\Gamma_0 \vdash \bot$. By Soundness, this means that $\Gamma_0 \models \bot$. Thus, Γ_0 is not satisfiable, i.e., Γ is not finitely satisfiable,

11.2 Applications of First-Order Compactness

Let $\Sigma_{\text{graph}} = (E^2;)$ be the standard graph vocabulary.

Proposition 11.2 There is no first order formula φ that expresses the property of graph-connectedness. More formally, there does not exist φ such that $Mod(\varphi) = \{G \in STRUC[\Sigma_{graph}] \mid G \text{ is connected}\}$, where $Mod(\varphi)$ is the set of all models satisfying φ .

Proof: Suppose φ_c is a formula expressing graph-connectedness as described above. Let $\Gamma = \{\varphi_c, \operatorname{dist}_{\geq 1}(s, t), \operatorname{dist}_{\geq 2}(s, t), \ldots\}$. Γ is unsatisfiable, because in order to satisfy it, a graph must have two vertices s and t that have $\operatorname{dist}(s, t) \ge n$ for every natural n, while also being connected. But every finite subset of Γ is satisfiable; for example, let $\Gamma_0 = \{\operatorname{dist}_{\geq n_1}(s, t), \operatorname{dist}_{\geq n_2}(s, t), \ldots, \operatorname{dist}_{\geq n_k}(s, t)\}$. Let $N = \max(n_1, n_2, \ldots, n_k)$, and then any model satisfying $\{\operatorname{dist}_{\geq N}(s, t), \varphi_c\}$ satisfies Γ_0 .

Note that for each $k \in \mathbb{Z}^+$, we can write $\operatorname{dist}_{\geq k}(x, y) \stackrel{\text{def}}{=} \neg p_k(x, y)$ in $\mathcal{L}(\Sigma_{\operatorname{graph}})$, where $p_k(x, y)$ says that there is a path of length at most k from x to y:

$$\begin{array}{lll} p_1(x,y) & \stackrel{\text{\tiny def}}{=} & x = y \lor E(x,y) \\ p_{k+1}(x,y) & \stackrel{\text{\tiny def}}{=} & \exists z(p_1(x,z) \land p_k(z,y)) \end{array}$$

By compactness, since every finite subset of Γ is satisfiable, Γ should be satisfiable, so the fact that it is not contradicts our assumption that such a φ_c exists.

As another application, we construct a "non-standard model of arithmetic." We denote by **N** the standard model of arithmetic, with universe $\{0, 1, 2, ...\}$, and $\Sigma_{\#\text{-thy}} = \{\leq; 0, 1, +, *\}$ where all functions and predicates are defined in the expected way. We denote the set of formulas satisfied by this model $Th(\mathbf{N})$ (read "the theory of **N**"), $Th(\mathbf{N}) = \{\varphi \in \mathcal{L}(\Sigma_{\#\text{-thy}}) \mid \mathbf{N} \models \varphi\}$.

Now define $\Gamma = Th(\mathbf{N}) \cup \{0 \le c, 1 \le c, 2 \le c, ...\}$. Here we are using abbreviations: $2 \hookrightarrow 1 + 1, 3 \hookrightarrow 1 + 2, ...$

 Γ is finitely satisfiable, because for any finite subset of formulas we can choose **N** as our model, which will contain some c large enough to satisfy all of the finitely many added formulas. Then by compactness, Γ is satisfiable, so has some model **N**^{*}, which we call a "non-standard model of $Th(\mathbf{N})$." We can think of this model as **N**, along with a new element c larger than any elements of **N**. We must also include elements like $c - 1, c + 1, 2 * c, c^2, \lfloor c/2 \rfloor, \lfloor \sqrt{c} \rfloor$, etc. As $Th(\mathbf{N}) \subseteq \Gamma$, and $\mathbf{N}^* \models \Gamma$, it follows that $\mathbf{N}^* \models Th(\mathbf{N})$, so all "normal" facts about the natural numbers are also satisfied by this model.

This also tells us that any attempt to define a specific model expressing what we think of as the natural numbers is not possible using only first-order axioms, as any such set of axioms is also satisfied by some non-standard model.

One other suprising consequence of competeness is the following

Theorem 11.3 (Löwenheim-Skolem Theorem) For any (countable) vocabulary, Σ , and any $\Gamma \subseteq \mathcal{L}(\Sigma)$, if Γ is satisfiable, then Γ has a countable model.

Proof: As we have seen we can translate Γ to an equi-satisfiable set of universal sentences. It then follows from Herbrand's Theorem that if Γ is satisfiable, then Γ has a Herbrand model, \mathcal{H} . But, $|\mathcal{H}|$ is the set of closed terms of Σ , which is a countable set.

Recall that it is well believed that ZFC formalizes all of standard mathematics. We thus get the surprising corollary:

Corollary 11.4 If ZFC is satisfiable, then ZFC has a countable model, \mathcal{M} .

This is surprising because such a countable model, \mathcal{M} , must contain sets such as the real numbers, **R**, the power set of the reals, $\wp(\mathbf{R})$, etc. These must "really" be countable, even though in \mathcal{M} they seem uncountable.