
CS513 & 613: Lect. 11: Consequences of Completeness Fall, 2021

11.1 Compactness Theorem for First Order Logic

Last time we proved Gödel’s Completeness Theorem for First Order Logic. The following is a corollary.

Theorem 11.1 (Compactness of FO Logic) Let Γ ⊆ L(Σ) be a collection of first order formulas. If Γ is finitely
satisfiable (that is, every finite subset of Γ is satisfiable), then Γ is satisfiable.

Proof: We show the contrapositive. Assume that Γ is not satisfiable. Since Γ has no models, it follows vacuously that
Γ |= ⊥. Thus, by the Completeness Theorem, Γ ` ⊥. Consider the proof by resolution of Γ ` ⊥. It takes finitely
many clauses from Γ and repeatedly applies substitution and resolution, deriving �. Since the process is finite, only
some finite subset Γ0 ⊆ Γ is used in the proof. Thus Γ0 ` ⊥. By Soundness, this means that Γ0 |= ⊥. Thus, Γ0 is not
satisfiable, i.e., Γ is not finitely satisfiable, �

11.2 Applications of First-Order Compactness

Let Σgraph = (E2; ) be the standard graph vocabulary.

Proposition 11.2 There is no first order formula ϕ that expresses the property of graph-connectedness. More formally,
there does not exist ϕ such that Mod(ϕ) =

{
G ∈ STRUC[Σgraph]

∣∣ G is connected
}

, where Mod(ϕ) is the set of all
models satisfying ϕ.

Proof: Suppose ϕc is a formula expressing graph-connectedness as described above. Let
Γ = {ϕc, dist≥1(s, t), dist≥2(s, t), . . .}. Γ is unsatisfiable, because in order to satisfy it, a graph must have two
vertices s and t that have dist(s, t) ≥ n for every natural n, while also being connected. But every finite subset of Γ
is satisfiable; for example, let Γ0 = {dist≥n1

(s, t), dist≥n2
(s, t), . . . , dist≥nk

(s, t)}. Let N = max(n1, n2, . . . , nk),
and then any model satisfying {dist≥N (s, t), ϕc} satisfies Γ0.

Note that for each k ∈ Z+, we can write dist≥k(x, y)
def
= ¬pk(x, y) in L(Σgraph, where pk(x, y) says that there is a path

of length at most k from x to y:

p1(x, y)
def
= x = y ∨ E(x, y)

pk+1(x, y)
def
= ∃z(p1(x, z) ∧ pk(z, y))

By compactness, since every finite subset of Γ is satisfiable, Γ should be satisfiable, so the fact that it is not contradicts
our assumption that such a ϕc exists. �

As another application, we construct a “non-standard model of arithmetic.” We denote by N the standard model of
arithmetic, with universe {0, 1, 2, . . .}, and Σ#-thy = {≤; 0, 1,+, ∗} where all functions and predicates are defined in
the expected way. We denote the set of formulas satisfied by this model Th(N) (read “the theory of N”), Th(N) ={
ϕ ∈ L(Σ#-thy)

∣∣ N |= ϕ
}

.

Now define Γ = Th(N) ∪ {0 ≤ c, 1 ≤ c, 2 ≤ c, . . .}. Here we are using abbreviations: 2 ↪→ 1 + 1, 3 ↪→ 1 + 2, . . ..

Γ is finitely satisfiable, because for any finite subset of formulas we can choose N as our model, which will contain
some c large enough to satisfy all of the finitely many added formulas. Then by compactness, Γ is satisfiable, so has
some model N∗, which we call a “non-standard model of Th(N).”
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We can think of this model as N, along with a new element c larger than any elements of N. We must also include
elements like c − 1, c + 1, 2 ∗ c, c2, bc/2c, b

√
cc, etc. As Th(N) ⊆ Γ, and N∗ |= Γ, it follows that N∗ |= Th(N), so

all “normal” facts about the natural numbers are also satisfied by this model.

This also tells us that any attempt to define a specific model expressing what we think of as the natural numbers is not
possible using only first-order axioms, as any such set of axioms is also satisfied by some non-standard model.

One other suprising consequence of competeness is the following

Theorem 11.3 (Löwenheim-Skolem Theorem) For any (countable) vocabulary, Σ, and any Γ ⊆ L(Σ), if Γ is satisfi-
able, then Γ has a countable model.

Proof: As we have seen we can translate Γ to an equi-satisfiable set of universal sentences. It then follows from
Herbrand’s Theorem that if Γ is satisfiable, then Γ has a Herbrand model, H. But, |H| is the set of closed terms of Σ,
which is a countable set. �

Recall that it is well believed that ZFC formalizes all of standard mathematics. We thus get the surprising corollary:

Corollary 11.4 If ZFC is satisfiable, then ZFC has a countable model,M.

This is surprising because such a countable model,M, must contain sets such as the real numbers, R, the power set
of the reals, ℘(R), etc. These must “really” be countable, even though inM they seem uncountable.
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