16.1 CTL*

CTL* stands for Computation Tree Logic. This is sometimes called "branching-time logic" as opposed to LTL which considers all possible linear paths from some initial state.

We will see that LTL and CTL are proper subsets of CTL*.

In CTL^{*}, we have both path formulas and state formulas.

16.2 Syntax and Semantics of CTL*

Syntax of State Formulas:

base case: If $p \in AP$, then p is a state formula.

inductive cases: if α , β are state formulas and φ is a path formula, then the following are state formulas:

 $\neg \alpha, \quad \alpha \lor \beta, \quad \mathbf{E}\varphi, \quad \mathbf{A}\varphi$

Syntax of Path Formulas:

If α is a state formula and φ and ψ are path formulas, then the following are path formulas:

 $\alpha, \neg \varphi, (\varphi \lor \psi), \mathbf{X}\varphi, \mathbf{F}\varphi, \mathbf{G}\varphi, (\varphi \mathbf{U}\psi)$

- / \

Semantics of State Formulas:

$$\begin{split} (\mathcal{T},s) &\models p \quad \Leftrightarrow \quad p \in L(s) \\ (\mathcal{T},s) &\models \neg \alpha \quad \Leftrightarrow \quad (\mathcal{T},s) \not\models \alpha \\ (\mathcal{T},s) &\models (\alpha \lor \beta) \quad \Leftrightarrow \quad (\mathcal{T},s) \models \alpha \quad \text{or} \quad (\mathcal{T},s) \models \beta \\ (\mathcal{T},s) &\models \mathbf{E}\varphi \quad \Leftrightarrow \quad \text{there exists path } \pi, \pi[0] = s, \quad (\mathcal{T},\pi) \models \varphi \\ (\mathcal{T},s) &\models \mathbf{A}\varphi \quad \Leftrightarrow \quad \text{for all } \pi \text{ such that } \pi[0] = s, \quad (\mathcal{T},\pi) \models \varphi \\ \text{For } \alpha \text{ a state formula,} \quad (\mathcal{T},\pi) \models \alpha \quad \Leftrightarrow \quad (\mathcal{T},\pi[0]) \models \alpha \end{split}$$

Semantics of Path Formula : (same as in LTL)

$$\begin{aligned} (\mathcal{T},\pi) &\models \neg \alpha \text{ iff } (\mathcal{T},\pi) \not\models \alpha \\ (\mathcal{T},\pi) &\models (\alpha \lor \beta) \text{ iff } (\mathcal{T},\pi) \models \alpha \text{ or } (\mathcal{T},\pi) \models \beta \\ (\mathcal{T},\pi) &\models \mathbf{X}\alpha \text{ iff } \pi^1 \models \alpha \\ (\mathcal{T},\pi) &\models \mathbf{G}\alpha \text{ iff } \forall i \ge 0 \ (\mathcal{T},\pi^i) \models \alpha \\ (\mathcal{T},\pi) &\models \mathbf{F}\alpha \text{ iff } \exists i \ge 0 \ (\mathcal{T},\pi^i) \models \alpha \\ (\mathcal{T},\pi) &\models (\alpha \mathbf{U}\beta) \text{ iff } \exists i \ge 0 \ ((\mathcal{T},\pi^i) \models \beta \land \forall j < i \ (\mathcal{T},\pi^j) \models \alpha) \end{aligned}$$

 $F\varphi \equiv \neg G \neg \varphi$ $F\varphi \equiv \top U\varphi$ $A\varphi \equiv \neg E \neg \varphi$ $E\varphi \equiv \neg A \neg \varphi$ $AX\varphi \equiv \neg EX \neg \varphi$ $AG\varphi \equiv \neg EF \neg \varphi$

16.3 CTL

Emerson and Clarke defined CTL as the following subset of the state formulas of CTL*:

Syntax of CTL:

base case: If $p \in AP$, then p is a CTL formula.

inductive cases: if α, β are CTL formulas, then so are:

 $\neg \alpha$, $\alpha \lor \beta$, **EX** α , **EF** α , **EG** α , **E**(α **U** β), **AX** α , **AF** α , **AG** α , **A**(α **U** β)

Thus, CTL formulas are formed by pairing path quantifiers: E, A, with temporal operators: X, F, G, U in all possible ways.

Theorem 16.1 (Emerson & Clarke) There is an algorithm which given a transition system $\mathcal{T} = (S, R, L)$ and a CTL formula φ marks the states $s \in S$ such that $(\mathcal{T}, s) \models \varphi$ and takes time $O(|\mathcal{T}| \cdot |\varphi|)$

Proof: \mathcal{T} is a graph with n = |S| vertices and m = |R| edges. The number of subformulas of φ is less than $|\varphi|$. We now show that for each subformula γ of φ , we can recursively label all the states that satisfy γ , in time O(n + m).

base case: $\gamma \in AP$: *L* already gives the labeling.

 $\neg \alpha$: Label a state $\neg \alpha$ if it is not labeled α . Time: O(n).

 $\alpha \lor \beta$: Label a state $\alpha \lor \beta$ if it is labeled α , or β . Time: O(n).

EX α : For each state, s, go through its adjacency list and if any of s's successors is labeled α , then label s, **EX** α .

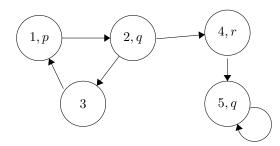
 $\mathbf{E}(\alpha \mathbf{U}\beta)$: Make a copy of the graph and delete all edges that satisfy neither α nor β . Now label each remaining state $\mathbf{E}(\alpha \mathbf{U}\beta)$ if it is reachable backwards from a state marked β . We can compute this by reversing the direction of the edges and doing a DFS, starting from all vertices labeled β . Time: O(n + m).

EG α : We want to label all states that have an infinite path all of whose states are labled α . First make a copy, A, of the graph in which we have deleted all the vertices not labelled α . A subgraph, C, of a graph is called a strongly connected component (SCC) if for every two vertices $a, b \in C$, there is a path from a to b. An SCC is called non-trivial, if it has a least one edge. (Trivial SCC's consist of single vertices without self-loops.) You should know from your Algorithms Course, that using DFS, we can compute all the SCC's in time O(n + m).

So, compute all the non-trivial SCC's in A. Now we should label a vertex $\mathbf{EG}\alpha$ if it is reachable in the reverse graph from a non-trivial SCC. We can compute this in time O(n + m) by doing a DFS of the reverse graph of A, starting at all vertices in a non-trivial SCC.

Some examples:

In the graph, \mathcal{T} , below we have $(\mathcal{T}, 2) \models \mathbf{AF}q$ and $(\mathcal{T}, 2) \models \mathbf{AGF}q$.



 $\begin{array}{ll} (\mathcal{T},s) \models \mathbf{EF}p & \Leftrightarrow & \text{there is some path from } s \text{ to a state which satisfies } p.\\ (\mathcal{T},s) \models \mathbf{EG}p & \Leftrightarrow & \text{there is some path from } s \text{ along which } p \text{ always holds.}\\ (\mathcal{T},s) \models \mathbf{AG}(p \rightarrow \mathbf{EX}q) & \Leftrightarrow & \text{Whenever } p \text{ holds along a path from } s, q \text{ holds at some next state.} \end{array}$

 $AG(Gr \rightarrow Fc) =$ weak fairness (expressible in CTL), "Always trying implies eventually succeeding." $A(GFr \rightarrow GFc) =$ strong fairness (not expressible in CTL, expressible in CTL^*), "Infinitely often trying implies infinitely often succeeding."

The running time for model checking LTL is $O(|\mathcal{T}|2^{|\varphi|})$. We are not going to do this proof, but the intuitive idea is that we can represent paths via the subset of the subformulas of φ that they satisfy.