
CS513: Lect. 16: CTL, CTL? and Efficient CTL Model Checking

16.1 CTL?

CTL? stands for Computation Tree Logic. This is sometimes called “branching-time logic” as opposed to LTL which
considers all possible linear paths from some initial state.

We will see that LTL and CTL are proper subsets of CTL?.

In CTL?, we have both path formulas and state formulas.

16.2 Syntax and Semantics of CTL?

Syntax of State Formulas:

base case: If p ∈ AP , then p is a state formula.

inductive cases: if α, β are state formulas and ϕ is a path formula, then the following are state formulas:

¬α, α ∨ β, Eϕ, Aϕ

Syntax of Path Formulas:

If α is a state formula and ϕ and ψ are path formulas, then the following are path formulas:

α, ¬ϕ, (ϕ ∨ ψ), Xϕ, Fϕ, Gϕ, (ϕUψ)

Semantics of State Formulas:

(T , s) |= p ⇔ p ∈ L(s)

(T , s) |= ¬α ⇔ (T , s) 6|= α

(T , s) |= (α ∨ β) ⇔ (T , s) |= α or (T , s) |= β

(T , s) |= Eϕ ⇔ there exists path π, π[0] = s, (T , π) |= ϕ

(T , s) � Aϕ ⇔ for all π such that π[0] = s, (T , π) � ϕ

For α a state formula, (T , π) � α ⇔ (T , π[0]) � α

Semantics of Path Formula : (same as in LTL)

(T , π) |= ¬α iff (T , π) 6|= α

(T , π) |= (α ∨ β) iff (T , π) |= α or (T , π) |= β

(T , π) |= Xα iff π1 |= α

(T , π) |= Gα iff ∀i ≥ 0 (T , πi) |= α

(T , π) |= Fα iff ∃i ≥ 0 (T , πi) |= α

(T , π) |= (αUβ) iff ∃i ≥ 0 ((T , πi) |= β ∧ ∀j < i (T , πj) |= α)

1

Some Temporal Logic Equivalence:

Fϕ ≡ ¬G¬ϕ
Fϕ ≡ >Uϕ
Aϕ ≡ ¬E¬ϕ
Eϕ ≡ ¬A¬ϕ

AXϕ ≡ ¬EX¬ϕ
AGϕ ≡ ¬EF¬ϕ

16.3 CTL

Emerson and Clarke defined CTL as the following subset of the state formulas of CTL?:

Syntax of CTL:

base case: If p ∈ AP , then p is a CTL formula.

inductive cases: if α, β are CTL formulas, then so are:

¬α, α ∨ β, EXα, EFα, EGα, E(αUβ), AXα, AFα, AGα, A(αUβ)

Thus, CTL formulas are formed by pairing path quantifiers: E,A, with temporal operators: X,F,G,U in all possible
ways.

Theorem 16.1 (Emerson & Clarke) There is an algorithm which given a transition system T = (S,R,L) and a CTL
formula ϕ marks the states s ∈ S such that (T , s) |= ϕ and takes time O(|T | · |ϕ|)

Proof: T is a graph with n = |S| vertices and m = |R| edges. The number of subformulas of ϕ is less than |ϕ|. We
now show that for each subformula γ of ϕ, we can recursively label all the states that satisfy γ, in time O(n+m).

base case: γ ∈ AP: L already gives the labeling.

¬α: Label a state ¬α if it is not labeled α. Time: O(n).

α ∨ β: Label a state α ∨ β if it is labeled α, or β. Time: O(n).

EXα: For each state, s, go through its adjacency list and if any of s’s succesors is labeled α, then label s, EXα.

E(αUβ): Make a copy of the graph and delete all edges that satisfy neither α nor β. Now label each remaining
state E(αUβ) if it is reachable backwards from a state marked β. We can compute this by reversing the direction of
the edges and doing a DFS, starting from all vertices labeled β. Time: O(n+m).

EGα: We want to label all states that have an infinite path all of whose states are labled α. First make a copy, A,
of the graph in which we have deleted all the vertices not labelled α. A subgraph, C, of a graph is called a strongly
connected component (SCC) if for every two vertices a, b ∈ C, there is a path from a to b. An SCC is called non-
trivial, if it has a least one edge. (Trivial SCC’s consist of single vertices without self-loops.) You should know from
your Algorithms Course, that using DFS, we can compute all the SCC’s in time O(n+m).

So, compute all the non-trivial SCC’s in A. Now we should label a vertex EGα if it is reachable in the reverse graph
from a non-trivial SCC. We can compute this in time O(n+m) by doing a DFS of the reverse graph of A, starting at
all vertices in a non-trivial SCC. �

2

Some examples:

In the graph, T , below we have (T , 2) |= AFq and (T , 2) |= AGFq.

1, p 2, q

3

4, r

5, q

(T , s) |= EFp ⇔ there is some path from s to a state which satisfies p.
(T , s) |= EGp ⇔ there is some path from s along which p always holds.
(T , s) |= AG(p→ EXq) ⇔ Whenever p holds along a path from s, q holds at some next state.

AG(Gr → Fc) = weak fairness (expressible in CTL), “Always trying implies eventually succeeding.”
A(GFr → GFc) = strong fairness (not expressible in CTL, expressible in CTL∗), “Infinitely often trying implies
infinitely often succeeding.”

The running time for model checking LTL is O(|T |2|ϕ|). We are not going to do this proof, but the intuitive idea is
that we can represent paths via the subset of the subformulas of ϕ that they satisfy.

3

	CTL
	Syntax and Semantics of CTL
	CTL

