Despite Ladner’s Theorem, there are very few natural problems that are:

- Known to be in NP, and
- Not known to be NP-complete, and
- Not known to be in P

Examples:

- Factoring natural numbers
- Graph Isomorphism
- Model Checking the μ-Calculus

\[
\text{PRIME} = \{ m \in \mathbb{N} \mid m \text{ is prime}\}
\]

Proposition 36.1 \(\text{PRIME} \in \text{NP}\)

Proof:

\[
m \in \text{PRIME} \iff m < 2 \lor \exists xy (1 < x < m \land x \cdot y = m)
\]

\[\square\]

Question: Is \(\text{PRIME} \in \text{NP}\)?

Fact 36.2 (Fermat’s Little Thm) Let \(p\) be prime and \(0 < a < p\), then, \(a^{p-1} \equiv 1 \pmod{p}\).

\[
\mathbb{Z}_n^* = \{a \in \{1, 2, \ldots, n - 1\} \mid \text{GCD}(a, n) = 1\}
\]

\(\mathbb{Z}_n^*\) is the multiplicative group of integers mod \(n\) that are relatively prime to \(n\).

Euler’s phi function: \(\varphi(n) = \mid \mathbb{Z}_n^* \mid\)
Proposition 36.3 If \(n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k} \) is the prime factorization of \(n \), then
\[
\varphi(n) = n(p_1 - 1)(p_2 - 1) \cdots (p_k - 1) / (p_1p_2 \cdots p_k)
\]

Theorem 36.4 [Euler] For any \(n \) and any \(a \in \mathbb{Z}_n^* \), \(a^{\varphi(n)} \equiv 1 \pmod{n} \).

Fact 36.5 Let \(p > 2 \) be prime. Then \(\mathbb{Z}_p^* \) is a cyclic group of order \(p - 1 \). That is,
\[
\mathbb{Z}_p^* = \{ a, a^2, a^3, \ldots, a^{p-1} \}
\]

\(m \in \text{PRIME} \iff \exists a \in \mathbb{Z}_m^* \ (\text{ord}(a) = m - 1) \)

Theorem 36.6 [Pratt] \text{PRIME} \in \text{NP}.

Proof: Given \(m \),

1. Guess \(a, 1 < a < m \)
2. Check \(a^{m-1} \equiv 1 \pmod{m} \) by repeated squaring.
3. Guess prime factorization: \(m - 1 = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k} \)
4. Check for \(1 \leq i \leq k, \ a^{m-1/p_i} \not\equiv 1 \pmod{m} \)
5. Recursively check that \(p_1, p_2, \ldots, p_k \) are prime.

Divide and Conquer NP Algorithm:
\[
T(n) = O(n^2) + T(n - 1)
\]
\[
T(n) = O(n^3)
\]

Corollary 36.7 \text{PRIME} and \text{FACTORING} are in \text{NP} \cap \text{co-NP}.

Proof: \text{PRIME}: immediately from Pratt’s Thm.

\text{FACTORING} is the problem of given \(N \), find it’s prime factorization: \(N = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k} \).

Think of this as a decision problem by putting the factorization in a standard form, e.g., \(p_1 < p_2 < \cdots < p_k \), and asking if bit \(i \) of the factorization is “1”.

This is in \text{NP} \cap \text{co-NP} because an NP or co-NP machine can guess the unique prime factorization, check that it is correct, and then read bit \(i \).
More Primality Testing

\(a \in \mathbb{Z}_m^* \) is a \textbf{quadratic residue} \(\mod m \) \iff \(\exists b \ (b^2 \equiv a \ (\mod m)) \)

For \(p \) prime let,

\[
\left(\frac{a}{p} \right) = \begin{cases}
1 & \text{if } a \text{ is a quadratic residue } \mod p \\
-1 & \text{otherwise}
\end{cases}
\]

Generalize to \(\left(\frac{a}{m} \right) \) when \(m \) is not prime,

\[
\left(\frac{a}{mn} \right) = \left(\frac{a}{m} \right) \left(\frac{a}{n} \right) \\
\left(\frac{a}{m} \right) = \left(\frac{a \mod m}{m} \right)
\]

Fact 36.8 Quadratic Reciprocity [Gauss] \(\text{ For odd } a, m, \)

\[
\left(\frac{a}{m} \right) = \begin{cases}
\left(\frac{m}{a} \right) & \text{if } a \equiv 1 \ (\mod 4) \text{ or } m \equiv 1 \ (\mod 4) \\
- \left(\frac{m}{a} \right) & \text{if } a \equiv 3 \ (\mod 4) \text{ and } m \equiv 3 \ (\mod 4)
\end{cases}
\]

\[
\left(\frac{2}{m} \right) = \begin{cases}
1 & \text{if } m \equiv 1 \ (\mod 8) \text{ or } m \equiv 7 \ (\mod 8) \\
-1 & \text{if } m \equiv 3 \ (\mod 8) \text{ or } m \equiv 5 \ (\mod 8)
\end{cases}
\]

Thus, we can calculate \(\left(\frac{a}{m} \right) \) efficiently. For example,

\[
\left(\frac{107}{351} \right) = - \left(\frac{351}{107} \right) = - \left(\frac{30}{107} \right) = - \left(\frac{2}{107} \right) \left(\frac{15}{107} \right) = - \left(\frac{107}{15} \right) = - \left(\frac{2}{15} \right) = -1
\]

\(107 \equiv 351 \equiv 15 \equiv 3 \ (\mod 4) \)

\(107 \equiv 3 \ (\mod 8); \quad 15 \equiv 7 \ (\mod 8) \)
Fact 36.9 [Gauss] For p prime, $a \in \mathbb{Z}_p^*$, \[\left(\frac{a}{p}\right) \equiv a^{p-1} \pmod{p}.\]

Fact 36.10 If m not prime then,
\[\left|\left\{a \in \mathbb{Z}_m^* \mid \left(\frac{a}{m}\right) \equiv a^{m-1} \pmod{m}\right\}\right| < \frac{m - 1}{2}\]

Solovay-Strassen Primality Algorithm:

1. Input is odd number m
2. For $i := 1$ to k do {
3. choose $a < m$ at random
4. if $\text{GCD}(a, m) \neq 1$ return(“not prime”)
5. if $\left(\frac{a}{m}\right) \neq a^{m-1} \pmod{m}$ return(“not prime”)
6. }
7. return(“probably prime”)

Theorem 36.11

- If m is prime then Solovay-Strassen(m) returns “probably prime”.
- If m is not prime, then the probability that Solovay-Strassen(m) returns “probably prime” is less than $1/2^k$.

Corollary 36.12 PRIME \in “Truly Feasible”

Fact 36.13 [Agrawal, Kayal, and Saxena, 2002] PRIME \in P

Def: A decision problem S is in BPP (Bounded Probabilistic Polynomial Time) iff there is a probabilistic, polynomial-time algorithm A such that for all inputs w,

\[
\begin{align*}
\text{if } (w \in S) & \text{ then } \text{Prob}(A(w) = 1) \geq \frac{2}{3} \\
\text{if } (w \notin S) & \text{ then } \text{Prob}(A(w) = 1) \leq \frac{1}{3}
\end{align*}
\]
Proposition 36.14 If $S \in BPP$ then there is a probabilistic, polynomial-time algorithm A' such that for all n and all inputs w of length n,

\[
\begin{align*}
\text{if } (w \in S) & \text{ then } \Pr(A'(w) = 1) \geq 1 - \frac{1}{2^n} \\
\text{if } (w \notin S) & \text{ then } \Pr(A'(w) = 1) \leq \frac{1}{2^n}
\end{align*}
\]

Proof: Iterate A polynomially many times and answer with the majority. Probability the mean is off by $\frac{1}{3}$ decreases exponentially with n — Chernoff bounds. \Box

Is BPP equal to P???

Probably, because pseudo-random number generators are good.

Is randomness ever useful?

Colonel Kelly:

Which base to inspect?

If we randomize, then our opponent cannot know what we will do.
Fact 36.15 Consider a random walk in a connected undirected graph G. Let $T(i)$ be the expected number of steps until we have reached all vertices, assuming we start at vertex i. Then, $T(i) \leq 2m(n - 1)$, where $n = |V|$, $m = |E|$.

Corollary 36.16 \(\text{UREACH} \in \text{BPL} \).

Definition 36.17 A universal traversal sequence for graphs on n nodes, is a sequence of instructions, $q = a_1a_2a_3 \cdots a_t \in \{1, \ldots, n - 1\}^*$, such that for any undirected graph on n nodes, if we start at s in G and follow q, then we will visit every vertex in the connected component of s. \(\square\)

Fact 36.18 Undirected graphs with n vertices have universal traversal sequences of length $O(n^3)$.

Fact 36.19 (Reingold, 2004) \(\text{UREACH} \in \text{L} \)

Proof idea: derandomization of universal traversal sequences using expander graphs. \(\square\)

Corollary 36.20 Symmetric-$\text{L} = \text{L}$