1. Your two primes are 11 and 13. You publish your public modulus \(n = 143 \) and your public encrypting key \(e = 7 \). But you keep the factorization of \(n \) secret.

1a. \(\varphi(11 \cdot 13) = 10 \cdot 12 = 120 \)

1b. Use Euclid’s algorithm to compute your secret decryption key, \(d \), the multiplicative inverse of \(e \) mod \(\varphi(n) \).

\[
1 = 120 \cdot 1 + 7 \cdot (-17). \quad d = 7^{-1} \mod 120 = (-17) \mod 120 = 103.
\]

1c. Showing your work, compute the encryption of 98 using your public key. (Note you should use the algorithm in Epp, Example 8.4.5.) Call this encrypted message \(a \).

\[
a = 98^7 \mod 143 = 32.
\]

Note that 7 = 111 base 2. The powers of 98 (mod 143) are as follows: \(98^2 \mod 143 = 23 \), \(98^4 \mod 143 = 100 \).

Thus, \(98^7 \mod 143 = (98^4 \cdot 98^2 \cdot 98^1) \mod 143 = (98 \cdot 23 \cdot 100) \mod 143 = 32 \).

1d. \(32^{103} \mod 143 = 98 \). To see this note that 103 = 1100111 base 2.

The powers of 32 mod 143 are: 32, 23, 100, 133, 100, 133, 100.

\[
32^{103} \mod 143 = (32^{64} \cdot 32^{32} \cdot 32^4 \cdot 32^2 \cdot 32^1) \mod 143 = (100 \cdot 133 \cdot 100 \cdot 23 \cdot 32) \mod 143 = 98.
\]

1e. To sign the message, “25”, raise 25 to the power \(d \) mod \(n \). Call the answer \(c \), your signed contract.

\[
25^{103} \mod 143 = 38.
\]

The powers of 25 mod 143 are: 25, 53, 92, 27, 14, 53, 92.

\[
25^{103} \mod 143 = (25^{64} \cdot 25^{32} \cdot 25^4 \cdot 25^2 \cdot 25^1) \mod 143 = (92 \cdot 53 \cdot 92 \cdot 53 \cdot 25) \mod 143 = 38.
\]

1f. The powers of 38 mod 143 are: 38, 14, 53.

\[
38^7 \mod 143 = (38^4 \cdot 38^2 \cdot 38^1) \mod 143 = (53 \cdot 14 \cdot 38) \mod 143 = 25.
\]
2. We will prove the CRT. Please make sure that you understand what this says:

\[
\forall a, b > 1 \quad (\gcd(a, b) = 1 \rightarrow \forall x \in \mathbb{Z}/a\mathbb{Z} \quad \forall y \in \mathbb{Z}/b\mathbb{Z} \quad \exists! z \in \mathbb{Z}/ab\mathbb{Z} \quad (z \equiv x \pmod{a} \land z \equiv y \pmod{b}))
\]

2a. In order to prove the CRT, let \(a > 1, b > 1 \) with \(\gcd(a, b) = 1 \). Define the function, \(f : \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z} \rightarrow \mathbb{Z}/ab\mathbb{Z} \) as follows:

\[
f(x, y) \overset{\text{def}}{=} (x \cdot b \cdot (b^{-1} \pmod{a}) + y \cdot a \cdot (a^{-1} \pmod{b})) \mod (a \cdot b)
\]

Show that \(f(x, y) \equiv x \pmod{a} \) and \(f(x, y) \equiv y \pmod{b} \). First note that \((n\%ab)\%a = n\%a\). Thus, we have to show that
\[
(x \cdot b \cdot (b^{-1} \pmod{a}) + y \cdot a \cdot (a^{-1} \pmod{b})) \mod a = x.
\]
This is an easy calculation: the first term is \(x \) since \(b \cdot (b^{-1} \pmod{a}) \equiv 1 \pmod{a} \) and the second term is 0 \(\pmod{a} \). A similar argument shows that \(f(x, y) \mod b = y \).

2b. Argue that it follows that \(f \) is 1:1. From 2a, we know that \(f(x, y) \mod a = x \) and \(f(x, y) \mod b = y \). Thus, from \(f(x, y) \) we can uniquely determine \(x \) and \(y \). Thus \(f \) is 1:1.

2c. \(|\mathbb{Z}/n\mathbb{Z}| = n \). Thus both the domain and co-domain of the function \(f \) have cardinality \(ab \).

2d. \(f \) is a 1:1 function from a set of size \(ab \) to a set of size \(ab \). Since every element of the co-domain is hit at most once, and \(ab \) elements of the co-domain are hit, all the elements of the co-domain must be hit. Thus \(f \) is onto. (Any function from a finite set of size \(n \) to a set of the same size, \(n \), is 1:1 if and only if it is onto. Note this is not true in general, just with these finite and same size conditions.) Thus, we have proved the CRT.

2e. Now let \(f' = f \cap (\mathbb{Z}_a^* \times \mathbb{Z}_b^*) \) be the restriction of \(f \) to \(\mathbb{Z}_a^* \times \mathbb{Z}_b^* \). Argue that \(f' : f \cap (\mathbb{Z}_a^* \times \mathbb{Z}_b^*) \rightarrow \mathbb{Z}_{ab}^* \) and that \(f' \) is 1 : 1 and onto.

\(f' \) is 1:1 because any restriction of a 1:1 function is still 1:1. (Since \(f \) never hits the same item in the co-domain twice, neither can \(f' \).) Let \(n \in \mathbb{Z}_{ab}^* \) be arbitrary. By the CRT, we know that \(n = f(x, y) \) for some \(x \in \mathbb{Z}/a\mathbb{Z} \) and \(y \in \mathbb{Z}/b\mathbb{Z} \). Observe that \(\gcd(x, a) = 1 \) because from the definition of \(f \), if \(x \) had a divisor in common with \(a \), then \(f(x, y) \) would have that same divisor in common with \(ab \). For the same reason, \(\gcd(y, b) = 1 \). It follows that \(f' \) is onto.

2f. Since \(f' \) is a 1:1 and onto function, it’s domain and co-domain have the same size. It thus follows that \(\varphi(ab) = \varphi(a) \cdot \varphi(b) \).