CS250: Discrete Math for Computer Science

L6: CNF and Natural Deduction for PropCalc

$$(p
ightarrow q)
ightarrow ((q
ightarrow r) \wedge p) \quad \equiv$$

1. Get rid of \rightarrow 's using **def. of implication**.

$$egin{aligned} (p o q) o ((q o r) \wedge p) &\equiv (\sim p \lor q) o ((\sim q \lor r) \wedge p) \ &\equiv & \sim (\sim p \lor q) \lor ((\sim q \lor r) \wedge p) \end{aligned}$$

- 1. Get rid of \rightarrow 's using **def. of implication**.
- Push ~'s all the way inside using de Morgan. Now its in Negation Normal Form (NNF).

$$(p \to q) \to ((q \to r) \land p) \equiv (\sim p \lor q) \to ((\sim q \lor r) \land p)$$
$$\equiv \sim (\sim p \lor q) \lor ((\sim q \lor r) \land p)$$
$$\mathsf{NNF} \equiv (p \land \sim q) \lor ((\sim q \lor r) \land p)$$

- 1. Get rid of \rightarrow 's using **def. of implication**.
- Push ~'s all the way inside using de Morgan. Now its in Negation Normal Form (NNF).
- 3. Use distributive, associative, commutative to put in either Disjunctive Normal Form (DNF: ∨'s of ∧'s of literals)

A literal is a prop variable or its negation, e.g., p, $\sim q$.

$$(p o q) o ((q o r) \wedge p) \equiv (\sim p \lor q) o ((\sim q \lor r) \wedge p)$$

 $\equiv \sim (\sim p \lor q) \lor ((\sim q \lor r) \wedge p)$

- $\mathsf{NNF} \qquad \equiv \quad (p \land \sim q) \lor ((\sim q \lor r) \land p)$
- **NNF** \equiv $(p \land \sim q) \lor ((\sim q \land p) \lor (r \land p))$
- $\mathsf{DNF} \qquad \equiv \quad (p \land \sim q) \lor (p \land r)$

- 1. Get rid of \rightarrow 's using **def. of implication**.
- Push ~'s all the way inside using de Morgan. Now its in Negation Normal Form (NNF).
- Use distributive, associative, commutative to put in either Disjunctive Normal Form (DNF: ∀'s of ∧'s of literals) Conjunctive Normal Form (CNF: ∧'s of ∨'s of literals) A literal is a prop variable or its negation, e.g., p, ~q.

$$(p \rightarrow q) \rightarrow ((q \rightarrow r) \land p) \equiv (\sim p \lor q) \rightarrow ((\sim q \lor r) \land p)$$

$$\equiv \sim (\sim p \lor q) \lor ((\sim q \lor r) \land p)$$

- $\mathsf{NNF} \qquad \equiv \quad (p \land \sim q) \lor ((\sim q \lor r) \land p)$
- **NNF** \equiv $(p \land \sim q) \lor ((\sim q \land p) \lor (r \land p))$
- **DNF** $\equiv (p \wedge \sim q) \lor (p \wedge r)$

 $\mathsf{CNF} \qquad \equiv \quad p \land (\sim q \lor r)$

iClicker 6.1 Which of the following formulas is in CNF (conjunction of disjunctions of literals)?

- **A:** $(p \land \sim q \land r) \lor (\sim p \land q \land s) \lor (q \land r \land \sim s)$
- **B:** $(\sim p \lor q \lor \sim r) \land (p \lor \sim q \lor \sim s) \land (\sim q \lor \sim r \lor s)$
- **C:** $(p \land \sim q) \lor ((\sim q \lor p) \land (r \lor p))$
- **D:** \sim (\sim *p* \vee *q*) \vee ((\sim *q* \vee *r*) \wedge *p*)

R6: Our PropCalc proof rules are slightly different from Epp's proof rules.

	introduction	elimination	
^	$rac{p \ q}{p \wedge q}$	$rac{p\wedge q}{p} rac{p\wedge q}{q}$	
\vee	$\frac{p}{p \lor q} \frac{q}{p \lor q}$	$\frac{p \lor q \ p \vdash r \ q \vdash r}{r}$	
\rightarrow	$\begin{array}{c} p \vdash q \\ \hline p \rightarrow q \end{array}$	$\frac{p \to q \ p}{q} \frac{p \to q \sim q}{\sim p}$	
F	<u><i>p</i> ∼<i>p</i></u> F	$\frac{p \vdash \mathbf{F}}{\sim p} \frac{\sim p \vdash \mathbf{F}}{p}$	
~~	$\frac{p}{\sim \sim p}$	$\frac{\sim \sim p}{p}$	



Notation: $p \vdash q$ (*p* **proves** *q*): From assumption *p*, can prove *q*.

Notation: $p \vdash q$ (*p* **proves** *q*): From assumption *p*, can prove *q*.

Proposition: \rightarrow -i is sound, i.e., if from assumption p we can prove q, then every world satisfies $p \rightarrow q$.

Notation: $p \vdash q$ (*p* **proves** *q*): From assumption *p*, can prove *q*.

Proposition: \rightarrow -i is sound, i.e., if from assumption p we can prove q, then every world satisfies $p \rightarrow q$.

Proof.

Since $p \vdash q$, and by the soundness of the proof rules so far, we know that every world that satisfies p must also satisfy q. Thus every world satisfies $p \rightarrow q$.

Notation: $p \vdash q$ (*p* **proves** *q*): From assumption *p*, can prove *q*.

Proposition: \rightarrow -i is sound, i.e., if from assumption p we can prove q, then every world satisfies $p \rightarrow q$.

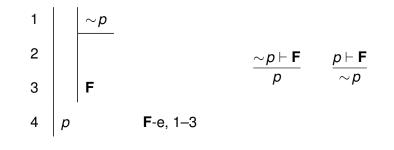
Proof.

Since $p \vdash q$, and by the soundness of the proof rules so far, we know that every world that satisfies p must also satisfy q. Thus every world satisfies $p \rightarrow q$.

More about this once we have studied inductive proofs.

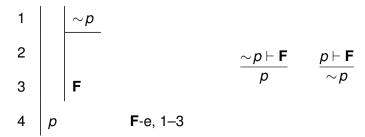
Thus, $\vdash p \rightarrow (r \lor p)$

Natural Deduction rule: F-e Proof by Contradiction



Natural Deduction rule: F-e Proof by Contradiction

Proposition: F-e is sound, i.e., if $\sim p \vdash F$ then every world satisfies p.



Proposition: F-e is sound, i.e., if $\sim p \vdash F$ then every world satisfies p.

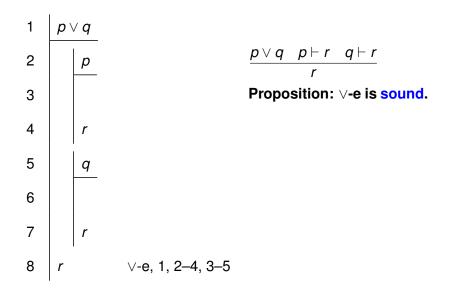
Proof.

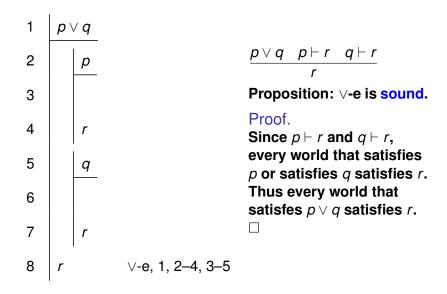
Since $\sim \rho \vdash F$, by the soundness of the proof rules so far, we know that every world that satisfies $\sim \rho$ must also satisfy F. But no world satisfies F. Thus every world satisfies ρ .

Natural Deduction rule: V-e

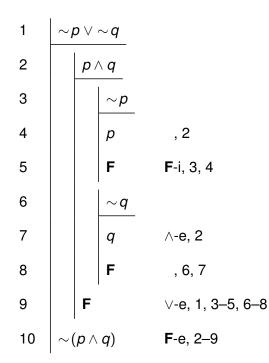


Natural Deduction rule: V-e





1	$\sim p \lor$	\sim q	
2	p	$\wedge q$	
3		\sim p	
4		p	, 2
5		F	F -i, 3, 4
6		$\sim q$	
7		q	∧-e, 2
8		F	, 6, 7
9	F		∨-e, 1, 3–5, 6–8
10	~(p∧	(q)	F -e, 2–9



iClicker 6.2 What is the justification for line 4 ?

∧-i

∧-e

V-I

∨**-e**

A:

B:

C:

D:

1	\sim) V	$\sim q$	i
2		p/	\ q	
3			~ <i>p</i>	
4			р	, 2
5			F	F -i, 3, 4
6			$\sim q$	i
7			q	∧-e, 2
8			F	, 6, 7
9		F		∨-e, 1, 3–5, 6–8
10	~((p ∧	q)	F -e, 2–9

iClicker 6.2 What is the justification for line 4 ?

A:	∧-i
B:	∧-e
C :	V-i
D:	∨ -e

A: ∧-i B: ∧-e C: F-i

D: F-e

iClicker 6.3 What is the justification for line 8 ?

R6: Our PropCalc proof rules are slightly different from Epp's proof rules.

	introduction	elimination	
^	$rac{p \ q}{p \wedge q}$	$rac{p\wedge q}{p} rac{p\wedge q}{q}$	
\vee	$\frac{p}{p \lor q} \frac{q}{p \lor q}$	$\frac{p \lor q \ p \vdash r \ q \vdash r}{r}$	
\rightarrow	$\begin{array}{c} \hline p \vdash q \\ \hline p \rightarrow q \end{array}$	$\frac{p \to q \ p}{q} \frac{p \to q \sim q}{\sim p}$	
F	<u><i>p</i> ∼<i>p</i></u> F	$\frac{p \vdash \mathbf{F}}{\sim p} \frac{\sim p \vdash \mathbf{F}}{p}$	
~~	$\frac{p}{\sim \sim p}$	$\frac{\sim \sim p}{p}$	

PropCalc formulas p and q are **equivalent** ($p \equiv q$) iff they agree on every row of their truth tables.

PropCalc formulas p and q are **equivalent** ($p \equiv q$) iff they agree on every row of their truth tables.

Observation: $p \equiv q$ iff $p \leftrightarrow q$ is a tautology.

PropCalc formulas p and q are **equivalent** ($p \equiv q$) iff they agree on every row of their truth tables.

Observation: $p \equiv q$ iff $p \leftrightarrow q$ is a tautology.

PropCalc formulas p and q are **equivalent** ($p \equiv q$) iff they agree on every row of their truth tables.

Observation: $p \equiv q$ iff $p \leftrightarrow q$ is a tautology.

Some Important Equivalences (worth memorizing):

double negation $p \equiv \sim p$

PropCalc formulas p and q are **equivalent** ($p \equiv q$) iff they agree on every row of their truth tables.

Observation: $p \equiv q$ iff $p \leftrightarrow q$ is a tautology.

double negation	р	≡	$\sim p$
de Morgan	\sim ($p \lor q$)	\equiv	$\sim\!p\wedge\sim\!q$
de Morgan	\sim ($p \wedge q$)	≡	$\sim p \lor \sim q$

PropCalc formulas p and q are **equivalent** ($p \equiv q$) iff they agree on every row of their truth tables.

Observation: $p \equiv q$ iff $p \leftrightarrow q$ is a tautology.

double negation	р	≡	$\sim p$
de Morgan	\sim ($p \lor q$)	\equiv	$\sim\! p \wedge \sim\! q$
de Morgan	\sim ($p \land q$)	\equiv	$\sim\! p \lor \sim\! q$
def. of implication	$oldsymbol{ ho} o oldsymbol{q}$	\equiv	$\sim\! p \lor q$

PropCalc formulas p and q are **equivalent** ($p \equiv q$) iff they agree on every row of their truth tables.

Observation: $p \equiv q$ iff $p \leftrightarrow q$ is a tautology.

double negation	р	\equiv	~~ <i>p</i>
de Morgan	\sim ($p \lor q$)	\equiv	$\sim\! p \wedge \sim\! q$
de Morgan	\sim ($p \wedge q$)	\equiv	$\sim\! p \lor \sim\! q$
def. of implication	${m ho} o {m q}$	≡	$\sim\! p \lor q$
contrapositive	$oldsymbol{ ho} o oldsymbol{q}$	≡	$\sim\!q$ $ ightarrow$ p

PropCalc formulas p and q are **equivalent** ($p \equiv q$) iff they agree on every row of their truth tables.

Observation: $p \equiv q$ iff $p \leftrightarrow q$ is a tautology.

double negation	р	≡	$\sim \rho$
de Morgan	\sim ($ ho \lor q$)	≡	$\sim\! p \wedge \sim\! q$
de Morgan	\sim ($ ho \wedge q$)	≡	$\sim\! p \lor \sim\! q$
def. of implication	$oldsymbol{ ho} o oldsymbol{q}$	≡	$\sim\! p \lor q$
contrapositive	$oldsymbol{ ho} o oldsymbol{q}$	≡	$\sim\!q ightarrow\!\sim\!p$
def. of iff	$oldsymbol{p} \leftrightarrow oldsymbol{q}$	\equiv	$(p ightarrow q) \wedge (q ightarrow p)$

commutative	$p \lor q$	≡	$q \lor p$
commutative	$p \wedge q$	\equiv	$\boldsymbol{q}\wedge \boldsymbol{p}$

commutative	$oldsymbol{p} ee oldsymbol{q}$	≡	$oldsymbol{q} ee oldsymbol{p}$
commutative	$oldsymbol{p}\wedgeoldsymbol{q}$	≡	$oldsymbol{q}\wedgeoldsymbol{p}$
associative	$p \wedge (q \wedge r)$	≡	$(p \land q) \land r$
associative	$p \lor (q \lor r)$	\equiv	$(p \lor q) \lor r$

commutative	$oldsymbol{ ho} ee oldsymbol{q}$	≡	$oldsymbol{q} ee oldsymbol{ ho}$
commutative	$oldsymbol{p}\wedgeoldsymbol{q}$	≡	$\boldsymbol{q}\wedge \boldsymbol{p}$
associative	$p \wedge (q \wedge r)$	≡	$(p \land q) \land r$
associative	$p \lor (q \lor r)$	≡	$(p \lor q) \lor r$
distributive	$p \lor (q \land r)$	≡	$(p \lor q) \land (p \lor r)$
distributive	$p \land (q \lor r)$	≡	$(p \land q) \lor (p \land r)$

More Important Equivalences (worth memorizing):

commutative	$oldsymbol{ ho}ee oldsymbol{q}$	≡	$oldsymbol{q} ee oldsymbol{ ho}$
commutative	$oldsymbol{p}\wedgeoldsymbol{q}$	≡	$oldsymbol{q}\wedgeoldsymbol{p}$
associative	$p \wedge (q \wedge r)$	≡	$(p \land q) \land r$
associative	$p \lor (q \lor r)$	≡	$(p \lor q) \lor r$
distributive	$p \lor (q \land r)$	≡	$(p \lor q) \land (p \lor r)$
distributive	$p \land (q \lor r)$	≡	$(p \land q) \lor (p \land r)$
excluded middle	$p \lor \sim p$	≡	т

But, if we are given a satisfying world *W* for *a*, we can check immediately that $W \models a$.

But, if we are given a satisfying world W for a, we can check immediately that $W \models a$.

This sort of search problem: exponentially many possibilities, each one easy to verify, corresponds to Nondeterministic Polynomial Time (NP).

But, if we are given a satisfying world W for a, we can check immediately that $W \models a$.

This sort of search problem: exponentially many possibilities, each one easy to verify, corresponds to Nondeterministic Polynomial Time (NP).

In fact, **SAT** is a hardest such problem: NP complete.

You will learn much more about this in CMPSCI 311.

Knights always truthful; Knaves always lie; $A, B \in \{Kt, Kv\}$

B : "A&B opposite types"

Knights always truthful; Knaves always lie; $A, B \in \{Kt, Kv\}$

A : "B is Kt" B : "A&B opposite types"

Knights always truthful; Knaves always lie; $A, B \in \{Kt, Kv\}$

- A : "B is Kt" B : "A&B opposite types"
- $T_1 \stackrel{\text{def}}{=} B$ is a Kt $T_2 \stackrel{\text{def}}{=} A\&B$ opposite types

Knights always truthful; Knaves always lie; $A, B \in \{Kt, Kv\}$ $S_1 \stackrel{\text{def}}{=} A : "B \text{ is } Kt"$ $S_2 \stackrel{\text{def}}{=} B : "A\&B \text{ opposite types"}$ $T_1 \stackrel{\text{def}}{=} B \text{ is a } Kt$ $T_2 \stackrel{\text{def}}{=} A\&B \text{ opposite types}$

Knights always truthful; Knaves always lie; $A, B \in \{Kt, Kv\}$

- $S_1 \stackrel{\text{def}}{=} A : "B \text{ is } Kt" \quad S_2 \stackrel{\text{def}}{=} B : "A\&B \text{ opposite types"}$
- $T_1 \stackrel{\text{def}}{=} B$ is a Kt $T_2 \stackrel{\text{def}}{=} A\&B$ opposite types
- $S_1 = T_1 \leftrightarrow A ext{ is Kt} \quad S_2 = T_2 \leftrightarrow B ext{ is Kt}$

Knights always truthful; Knaves always lie; $A, B \in \{Kt, Kv\}$

- $S_1 \stackrel{\text{def}}{=} A : "B \text{ is } Kt" \quad S_2 \stackrel{\text{def}}{=} B : "A\&B \text{ opposite types"}$
- $T_1 \stackrel{\text{def}}{=} B$ is a Kt $T_2 \stackrel{\text{def}}{=} A\&B$ opposite types
- $S_1 = T_1 \leftrightarrow A ext{ is Kt} \quad S_2 = T_2 \leftrightarrow B ext{ is Kt}$

W	A is Kt	<i>B</i> is Kt	T ₁	<i>T</i> ₂	$T_1 \leftrightarrow A$ is Kt	$T_2 \leftrightarrow B$ is Kt
<i>W</i> ₃	1	1	1	0	1	0
W_2	1	0	0	1	0	0
<i>W</i> ₁	0	1	1	1	0	1
W_0	0	0	0	0	1	1

Knights always truthful; Knaves always lie; $A, B \in \{Kt, Kv\}$

- $S_1 \stackrel{\text{def}}{=} A : "B \text{ is } Kt" \quad S_2 \stackrel{\text{def}}{=} B : "A\&B \text{ opposite types"}$
- $T_1 \stackrel{\text{def}}{=} B$ is a Kt $T_2 \stackrel{\text{def}}{=} A\&B$ opposite types
- $S_1 = T_1 \leftrightarrow A ext{ is Kt} \quad S_2 = T_2 \leftrightarrow B ext{ is Kt}$

W	A is Kt	<i>B</i> is Kt	T_1	<i>T</i> ₂	$T_1 \leftrightarrow A$ is Kt	$T_2 \leftrightarrow B$ is Kt
<i>W</i> ₃	1	1	1	0	1	0
W_2	1	0	0	1	0	0
<i>W</i> ₁	0	1	1	1	0	1
W_0	0	0	0	0	1	1

 W_0 is only world satisfying $S_1 \wedge S_2$.

Knights always truthful; Knaves always lie; $A, B \in \{Kt, Kv\}$

- $S_1 \stackrel{\text{def}}{=} A : "B \text{ is } Kt" \quad S_2 \stackrel{\text{def}}{=} B : "A\&B \text{ opposite types"}$
- $T_1 \stackrel{\text{def}}{=} B$ is a Kt $T_2 \stackrel{\text{def}}{=} A\&B$ opposite types
- $S_1 = T_1 \leftrightarrow A ext{ is Kt} \quad S_2 = T_2 \leftrightarrow B ext{ is Kt}$

W	A is Kt	<i>B</i> is Kt	T ₁	<i>T</i> ₂	$T_1 \leftrightarrow A \text{ is Kt}$	$T_2 \leftrightarrow B$ is Kt
<i>W</i> ₃	1	1	1	0	1	0
<i>W</i> ₂	1	0	0	1	0	0
<i>W</i> ₁	0	1	1	1	0	1
W_0	0	0	0	0	1	1

 W_0 is only world satisfying $S_1 \wedge S_2$.

Thus A and B are both Knaves.

R6 Quiz Answers: Match the Epp Proof Rules to the equivalent Natural Deduction Rules.

- 1. Modus Ponens: \rightarrow -e
- 2. Modus Tollens: \rightarrow -e
- 3. Generalization: V-i
- 4. Specialization: A-e
- 5. Conjunction: A-i

6, **7**. In the following proof, identify the natural deduction rules used in lines 2 and 3.

1
$$p \land q$$
2 q \land -e, 13 $(\sim r \lor q)$ \lor -i, 2

8. Is the following a sound proof rule ?

$$rac{m{
ho}
ightarrow m{q} \quad m{q}}{m{
ho}}$$

In answering this, you may consider the worlds shown in this truth table:

W	р	q
W_3	1	1
W_2	1	0
<i>W</i> ₁	0	1
W_0	0	0

Not valid: reasoning from the converse fails in world W_1 .

9. In Smullyan's Island of Knights and Knaves, two natives C and D approach you but only C speaks. C says: Both of us are knaves. What are C and D? C is a Knave and D is a Knight.
10. In Smullyan's Island of Knights and Knaves, you encounter natives E and F. E says: F is a knave. F says: E is a knave. How many knaves are there? 1