
CS250: Discrete Math for Computer Science

L6: CNF and Natural Deduction for PropCalc



How to Simplify a PropCalc Formula:

1. Get rid of→’s using def. of implication.
2. Push ∼’s all the way inside using de Morgan.

Now its in Negation Normal Form (NNF).
3. Use distributive, associative, commutative to put in either

Disjunctive Normal Form (DNF: ∨’s of ∧’s of literals)

Conjunctive Normal Form (CNF: ∧’s of ∨’s of literals)

A literal is a prop variable or its negation, e.g., p, ∼q.

(p → q)→ ((q → r) ∧ p) ≡

(∼p ∨ q)→ ((∼q ∨ r) ∧ p)

≡ ∼(∼p ∨ q) ∨ ((∼q ∨ r) ∧ p)

NNF ≡ (p∧ ∼q) ∨ ((∼q ∨ r) ∧ p)

NNF ≡ (p∧ ∼q) ∨ ((∼q ∧ p) ∨ (r ∧ p))

DNF ≡ (p∧ ∼q) ∨ (p ∧ r)

CNF ≡ p ∧ (∼q ∨ r)



How to Simplify a PropCalc Formula:
1. Get rid of→’s using def. of implication.

2. Push ∼’s all the way inside using de Morgan.
Now its in Negation Normal Form (NNF).

3. Use distributive, associative, commutative to put in either
Disjunctive Normal Form (DNF: ∨’s of ∧’s of literals)

Conjunctive Normal Form (CNF: ∧’s of ∨’s of literals)

A literal is a prop variable or its negation, e.g., p, ∼q.

(p → q)→ ((q → r) ∧ p) ≡ (∼p ∨ q)→ ((∼q ∨ r) ∧ p)

≡ ∼(∼p ∨ q) ∨ ((∼q ∨ r) ∧ p)

NNF ≡ (p∧ ∼q) ∨ ((∼q ∨ r) ∧ p)

NNF ≡ (p∧ ∼q) ∨ ((∼q ∧ p) ∨ (r ∧ p))

DNF ≡ (p∧ ∼q) ∨ (p ∧ r)

CNF ≡ p ∧ (∼q ∨ r)



How to Simplify a PropCalc Formula:
1. Get rid of→’s using def. of implication.
2. Push ∼’s all the way inside using de Morgan.

Now its in Negation Normal Form (NNF).

3. Use distributive, associative, commutative to put in either
Disjunctive Normal Form (DNF: ∨’s of ∧’s of literals)

Conjunctive Normal Form (CNF: ∧’s of ∨’s of literals)

A literal is a prop variable or its negation, e.g., p, ∼q.

(p → q)→ ((q → r) ∧ p) ≡ (∼p ∨ q)→ ((∼q ∨ r) ∧ p)

≡ ∼(∼p ∨ q) ∨ ((∼q ∨ r) ∧ p)

NNF ≡ (p∧ ∼q) ∨ ((∼q ∨ r) ∧ p)

NNF ≡ (p∧ ∼q) ∨ ((∼q ∧ p) ∨ (r ∧ p))

DNF ≡ (p∧ ∼q) ∨ (p ∧ r)

CNF ≡ p ∧ (∼q ∨ r)



How to Simplify a PropCalc Formula:
1. Get rid of→’s using def. of implication.
2. Push ∼’s all the way inside using de Morgan.

Now its in Negation Normal Form (NNF).
3. Use distributive, associative, commutative to put in either

Disjunctive Normal Form (DNF: ∨’s of ∧’s of literals)

Conjunctive Normal Form (CNF: ∧’s of ∨’s of literals)

A literal is a prop variable or its negation, e.g., p, ∼q.

(p → q)→ ((q → r) ∧ p) ≡ (∼p ∨ q)→ ((∼q ∨ r) ∧ p)

≡ ∼(∼p ∨ q) ∨ ((∼q ∨ r) ∧ p)

NNF ≡ (p∧ ∼q) ∨ ((∼q ∨ r) ∧ p)

NNF ≡ (p∧ ∼q) ∨ ((∼q ∧ p) ∨ (r ∧ p))

DNF ≡ (p∧ ∼q) ∨ (p ∧ r)

CNF ≡ p ∧ (∼q ∨ r)



How to Simplify a PropCalc Formula:
1. Get rid of→’s using def. of implication.
2. Push ∼’s all the way inside using de Morgan.

Now its in Negation Normal Form (NNF).
3. Use distributive, associative, commutative to put in either

Disjunctive Normal Form (DNF: ∨’s of ∧’s of literals)
Conjunctive Normal Form (CNF: ∧’s of ∨’s of literals)
A literal is a prop variable or its negation, e.g., p, ∼q.

(p → q)→ ((q → r) ∧ p) ≡ (∼p ∨ q)→ ((∼q ∨ r) ∧ p)

≡ ∼(∼p ∨ q) ∨ ((∼q ∨ r) ∧ p)

NNF ≡ (p∧ ∼q) ∨ ((∼q ∨ r) ∧ p)

NNF ≡ (p∧ ∼q) ∨ ((∼q ∧ p) ∨ (r ∧ p))

DNF ≡ (p∧ ∼q) ∨ (p ∧ r)

CNF ≡ p ∧ (∼q ∨ r)



iClicker 6.1 Which of the following formulas is in CNF
(conjunction of disjunctions of literals)?

A: (p ∧ ∼q ∧ r) ∨ (∼p ∧ q ∧ s) ∨ (q ∧ r∧ ∼s)

B: (∼p ∨ q∨ ∼ r) ∧ (p ∨ ∼q ∨ ∼s) ∧ (∼q ∨ ∼ r ∨ s)

C: (p ∧ ∼q) ∨ ((∼q ∨ p) ∧ (r ∨ p))

D: ∼(∼p ∨ q) ∨ ((∼q ∨ r) ∧ p)



Natural Deduction

R6: Our PropCalc proof rules are slightly different from Epp’s
proof rules.

introduction elimination

∧
p q
p ∧ q

p ∧ q
p

p ∧ q
q

∨ p
p ∨ q

q
p ∨ q

p ∨ q p ` r q ` r
r

→ p ` q
p → q

p → q p
q

p → q ∼q
∼p

F p ∼p
F

p ` F
∼p

∼p ` F
p

∼∼ p
∼∼p

∼∼p
p



Natural Deduction rule: →-introduction

1 p

2

3 q

4 p → q →-i, 1–3

p ` q
p → q

Notation: p ` q (p proves q): From assumption p, can prove q.

Proposition: →-i is sound, i.e., if from assumption p we
can prove q, then every world satisfies p → q.

Proof.
Since p ` q, and by the soundness of the proof rules so far,
we know that every world that satisfies p must also satisfy
q. Thus every world satisfies p → q. �

More about this once we have studied inductive proofs.



Natural Deduction rule: →-introduction

1 p

2

3 q

4 p → q →-i, 1–3

p ` q
p → q

Notation: p ` q (p proves q): From assumption p, can prove q.

Proposition: →-i is sound, i.e., if from assumption p we
can prove q, then every world satisfies p → q.

Proof.
Since p ` q, and by the soundness of the proof rules so far,
we know that every world that satisfies p must also satisfy
q. Thus every world satisfies p → q. �

More about this once we have studied inductive proofs.



Natural Deduction rule: →-introduction

1 p

2

3 q

4 p → q →-i, 1–3

p ` q
p → q

Notation: p ` q (p proves q): From assumption p, can prove q.

Proposition: →-i is sound, i.e., if from assumption p we
can prove q, then every world satisfies p → q.

Proof.
Since p ` q, and by the soundness of the proof rules so far,
we know that every world that satisfies p must also satisfy
q. Thus every world satisfies p → q. �

More about this once we have studied inductive proofs.



Natural Deduction rule: →-introduction

1 p

2

3 q

4 p → q →-i, 1–3

p ` q
p → q

Notation: p ` q (p proves q): From assumption p, can prove q.

Proposition: →-i is sound, i.e., if from assumption p we
can prove q, then every world satisfies p → q.

Proof.
Since p ` q, and by the soundness of the proof rules so far,
we know that every world that satisfies p must also satisfy
q. Thus every world satisfies p → q. �

More about this once we have studied inductive proofs.



Natural Deduction rule: →-introduction

1 p

2

3 q

4 p → q →-i, 1–3

p ` q
p → q

Notation: p ` q (p proves q): From assumption p, can prove q.

Proposition: →-i is sound, i.e., if from assumption p we
can prove q, then every world satisfies p → q.

Proof.
Since p ` q, and by the soundness of the proof rules so far,
we know that every world that satisfies p must also satisfy
q. Thus every world satisfies p → q. �

More about this once we have studied inductive proofs.



Example use of→-introduction

1 p

2 r ∨ p ∨-i, 1

3 p → (r ∨ p) →-i, 1–2

Thus, ` p → (r ∨ p)



Example use of→-introduction

1 p

2 r ∨ p ∨-i, 1

3 p → (r ∨ p) →-i, 1–2

Thus, ` p → (r ∨ p)



Natural Deduction rule: F-e Proof by Contradiction

1 ∼p

2

3 F

4 p F-e, 1–3

∼p ` F
p

p ` F
∼p

Proposition: F-e is sound, i.e., if ∼p ` F then every world
satisfies p.

Proof.
Since ∼p ` F, by the soundness of the proof rules so far,
we know that every world that satisfies ∼p must also
satisfy F. But no world satisfies F. Thus every world
satisfies p. �



Natural Deduction rule: F-e Proof by Contradiction

1 ∼p

2

3 F

4 p F-e, 1–3

∼p ` F
p

p ` F
∼p

Proposition: F-e is sound, i.e., if ∼p ` F then every world
satisfies p.

Proof.
Since ∼p ` F, by the soundness of the proof rules so far,
we know that every world that satisfies ∼p must also
satisfy F. But no world satisfies F. Thus every world
satisfies p. �



Natural Deduction rule: F-e Proof by Contradiction

1 ∼p

2

3 F

4 p F-e, 1–3

∼p ` F
p

p ` F
∼p

Proposition: F-e is sound, i.e., if ∼p ` F then every world
satisfies p.

Proof.
Since ∼p ` F, by the soundness of the proof rules so far,
we know that every world that satisfies ∼p must also
satisfy F. But no world satisfies F. Thus every world
satisfies p. �



Natural Deduction rule: ∨-e

1 p ∨ q

2 p

3

4 r

5 q

6

7 r

8 r ∨-e, 1, 2–4, 3–5

p ∨ q p ` r q ` r
r

Proposition: ∨-e is sound.

Proof.
Since p ` r and q ` r ,
every world that satisfies
p or satisfies q satisfies r .
Thus every world that
satisfes p ∨ q satisfies r .
�



Natural Deduction rule: ∨-e

1 p ∨ q

2 p

3

4 r

5 q

6

7 r

8 r ∨-e, 1, 2–4, 3–5

p ∨ q p ` r q ` r
r

Proposition: ∨-e is sound.

Proof.
Since p ` r and q ` r ,
every world that satisfies
p or satisfies q satisfies r .
Thus every world that
satisfes p ∨ q satisfies r .
�



Natural Deduction rule: ∨-e

1 p ∨ q

2 p

3

4 r

5 q

6

7 r

8 r ∨-e, 1, 2–4, 3–5

p ∨ q p ` r q ` r
r

Proposition: ∨-e is sound.

Proof.
Since p ` r and q ` r ,
every world that satisfies
p or satisfies q satisfies r .
Thus every world that
satisfes p ∨ q satisfies r .
�



1 ∼p ∨ ∼q

2 p ∧ q

3 ∼p

4 p , 2

5 F F-i, 3, 4

6 ∼q

7 q ∧-e, 2

8 F , 6, 7

9 F ∨-e, 1, 3–5, 6–8

10 ∼(p ∧ q) F-e, 2–9

iClicker 6.2 What is
the justification for line
4 ?

A: ∧-i
B: ∧-e
C: ∨-i
D: ∨-e

iClicker 6.3 What is
the justification for line
8 ?

A: ∧-i
B: ∧-e
C: F-i
D: F-e



1 ∼p ∨ ∼q

2 p ∧ q

3 ∼p

4 p , 2

5 F F-i, 3, 4

6 ∼q

7 q ∧-e, 2

8 F , 6, 7

9 F ∨-e, 1, 3–5, 6–8

10 ∼(p ∧ q) F-e, 2–9

iClicker 6.2 What is
the justification for line
4 ?

A: ∧-i
B: ∧-e
C: ∨-i
D: ∨-e

iClicker 6.3 What is
the justification for line
8 ?

A: ∧-i
B: ∧-e
C: F-i
D: F-e



1 ∼p ∨ ∼q

2 p ∧ q

3 ∼p

4 p , 2

5 F F-i, 3, 4

6 ∼q

7 q ∧-e, 2

8 F , 6, 7

9 F ∨-e, 1, 3–5, 6–8

10 ∼(p ∧ q) F-e, 2–9

iClicker 6.2 What is
the justification for line
4 ?

A: ∧-i
B: ∧-e
C: ∨-i
D: ∨-e

iClicker 6.3 What is
the justification for line
8 ?

A: ∧-i
B: ∧-e
C: F-i
D: F-e



Natural Deduction

R6: Our PropCalc proof rules are slightly different from Epp’s
proof rules.

introduction elimination

∧
p q
p ∧ q

p ∧ q
p

p ∧ q
q

∨ p
p ∨ q

q
p ∨ q

p ∨ q p ` r q ` r
r

→ p ` q
p → q

p → q p
q

p → q ∼q
∼p

F p ∼p
F

p ` F
∼p

∼p ` F
p

∼∼ p
∼∼p

∼∼p
p



Propositional Equivalence
PropCalc formulas p and q are equivalent (p ≡ q) iff
they agree on every row of their truth tables.

Observation: p ≡ q iff p ↔ q is a tautology.

Some Important Equivalences (worth memorizing):

double negation p ≡ ∼∼p

de Morgan ∼(p ∨ q) ≡ ∼p ∧ ∼q

de Morgan ∼(p ∧ q) ≡ ∼p ∨ ∼q

def. of implication p → q ≡ ∼p ∨ q

contrapositive p → q ≡ ∼q →∼p

def. of iff p ↔ q ≡ (p → q) ∧ (q → p)



Propositional Equivalence
PropCalc formulas p and q are equivalent (p ≡ q) iff
they agree on every row of their truth tables.

Observation: p ≡ q iff p ↔ q is a tautology.

Some Important Equivalences (worth memorizing):

double negation p ≡ ∼∼p

de Morgan ∼(p ∨ q) ≡ ∼p ∧ ∼q

de Morgan ∼(p ∧ q) ≡ ∼p ∨ ∼q

def. of implication p → q ≡ ∼p ∨ q

contrapositive p → q ≡ ∼q →∼p

def. of iff p ↔ q ≡ (p → q) ∧ (q → p)



Propositional Equivalence
PropCalc formulas p and q are equivalent (p ≡ q) iff
they agree on every row of their truth tables.

Observation: p ≡ q iff p ↔ q is a tautology.

Some Important Equivalences (worth memorizing):

double negation p ≡ ∼∼p

de Morgan ∼(p ∨ q) ≡ ∼p ∧ ∼q

de Morgan ∼(p ∧ q) ≡ ∼p ∨ ∼q

def. of implication p → q ≡ ∼p ∨ q

contrapositive p → q ≡ ∼q →∼p

def. of iff p ↔ q ≡ (p → q) ∧ (q → p)



Propositional Equivalence
PropCalc formulas p and q are equivalent (p ≡ q) iff
they agree on every row of their truth tables.

Observation: p ≡ q iff p ↔ q is a tautology.

Some Important Equivalences (worth memorizing):

double negation p ≡ ∼∼p

de Morgan ∼(p ∨ q) ≡ ∼p ∧ ∼q

de Morgan ∼(p ∧ q) ≡ ∼p ∨ ∼q

def. of implication p → q ≡ ∼p ∨ q

contrapositive p → q ≡ ∼q →∼p

def. of iff p ↔ q ≡ (p → q) ∧ (q → p)



Propositional Equivalence
PropCalc formulas p and q are equivalent (p ≡ q) iff
they agree on every row of their truth tables.

Observation: p ≡ q iff p ↔ q is a tautology.

Some Important Equivalences (worth memorizing):

double negation p ≡ ∼∼p

de Morgan ∼(p ∨ q) ≡ ∼p ∧ ∼q

de Morgan ∼(p ∧ q) ≡ ∼p ∨ ∼q

def. of implication p → q ≡ ∼p ∨ q

contrapositive p → q ≡ ∼q →∼p

def. of iff p ↔ q ≡ (p → q) ∧ (q → p)



Propositional Equivalence
PropCalc formulas p and q are equivalent (p ≡ q) iff
they agree on every row of their truth tables.

Observation: p ≡ q iff p ↔ q is a tautology.

Some Important Equivalences (worth memorizing):

double negation p ≡ ∼∼p

de Morgan ∼(p ∨ q) ≡ ∼p ∧ ∼q

de Morgan ∼(p ∧ q) ≡ ∼p ∨ ∼q

def. of implication p → q ≡ ∼p ∨ q

contrapositive p → q ≡ ∼q →∼p

def. of iff p ↔ q ≡ (p → q) ∧ (q → p)



Propositional Equivalence
PropCalc formulas p and q are equivalent (p ≡ q) iff
they agree on every row of their truth tables.

Observation: p ≡ q iff p ↔ q is a tautology.

Some Important Equivalences (worth memorizing):

double negation p ≡ ∼∼p

de Morgan ∼(p ∨ q) ≡ ∼p ∧ ∼q

de Morgan ∼(p ∧ q) ≡ ∼p ∨ ∼q

def. of implication p → q ≡ ∼p ∨ q

contrapositive p → q ≡ ∼q →∼p

def. of iff p ↔ q ≡ (p → q) ∧ (q → p)



Propositional Equivalence
PropCalc formulas p and q are equivalent (p ≡ q) iff
they agree on every row of their truth tables.

Observation: p ≡ q iff p ↔ q is a tautology.

Some Important Equivalences (worth memorizing):

double negation p ≡ ∼∼p

de Morgan ∼(p ∨ q) ≡ ∼p ∧ ∼q

de Morgan ∼(p ∧ q) ≡ ∼p ∨ ∼q

def. of implication p → q ≡ ∼p ∨ q

contrapositive p → q ≡ ∼q →∼p

def. of iff p ↔ q ≡ (p → q) ∧ (q → p)



More Important Equivalences (worth memorizing):

commutative p ∨ q ≡ q ∨ p

commutative p ∧ q ≡ q ∧ p

associative p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r

associative p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r

distributive p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

distributive p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

excluded middle p ∨ ∼p ≡ T



More Important Equivalences (worth memorizing):

commutative p ∨ q ≡ q ∨ p

commutative p ∧ q ≡ q ∧ p

associative p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r

associative p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r

distributive p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

distributive p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

excluded middle p ∨ ∼p ≡ T



More Important Equivalences (worth memorizing):

commutative p ∨ q ≡ q ∨ p

commutative p ∧ q ≡ q ∧ p

associative p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r

associative p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r

distributive p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

distributive p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

excluded middle p ∨ ∼p ≡ T



More Important Equivalences (worth memorizing):

commutative p ∨ q ≡ q ∨ p

commutative p ∧ q ≡ q ∧ p

associative p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r

associative p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r

distributive p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

distributive p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

excluded middle p ∨ ∼p ≡ T



SAT is an important class.

If formula a has n PVARs, p1, . . . ,pn, it would seem to require
about 2n time in the worst case to test if a ∈ SAT.

But, if we are given a satisfying world W for a, we can check
immediately that W |= a.

This sort of search problem: exponentially many possibilities,
each one easy to verify, corresponds to Nondeterministic
Polynomial Time (NP).

In fact, SAT is a hardest such problem: NP complete.

You will learn much more about this in CMPSCI 311.



SAT is an important class.

If formula a has n PVARs, p1, . . . ,pn, it would seem to require
about 2n time in the worst case to test if a ∈ SAT.

But, if we are given a satisfying world W for a, we can check
immediately that W |= a.

This sort of search problem: exponentially many possibilities,
each one easy to verify, corresponds to Nondeterministic
Polynomial Time (NP).

In fact, SAT is a hardest such problem: NP complete.

You will learn much more about this in CMPSCI 311.



SAT is an important class.

If formula a has n PVARs, p1, . . . ,pn, it would seem to require
about 2n time in the worst case to test if a ∈ SAT.

But, if we are given a satisfying world W for a, we can check
immediately that W |= a.

This sort of search problem: exponentially many possibilities,
each one easy to verify, corresponds to Nondeterministic
Polynomial Time (NP).

In fact, SAT is a hardest such problem: NP complete.

You will learn much more about this in CMPSCI 311.



SAT is an important class.

If formula a has n PVARs, p1, . . . ,pn, it would seem to require
about 2n time in the worst case to test if a ∈ SAT.

But, if we are given a satisfying world W for a, we can check
immediately that W |= a.

This sort of search problem: exponentially many possibilities,
each one easy to verify, corresponds to Nondeterministic
Polynomial Time (NP).

In fact, SAT is a hardest such problem: NP complete.

You will learn much more about this in CMPSCI 311.



Knights and Knaves [Smullyan, What Is the Name of This Book?]

Knights always truthful; Knaves always lie; A,B ∈ {Kt,Kv}

S1
def
= A : “B is Kt” S2

def
=

B : “A&B opposite types”

T1
def
= B is a Kt T2

def
= A&B opposite types

S1 = T1 ↔ A is Kt S2 = T2 ↔ B is Kt

W A is Kt B is Kt T1 T2 T1 ↔ A is Kt T2 ↔ B is Kt
W3 1 1 1 0 1 0
W2 1 0 0 1 0 0
W1 0 1 1 1 0 1
W0 0 0 0 0 1 1

W0 is only world satisfying S1 ∧ S2.

Thus A and B are both Knaves.



Knights and Knaves [Smullyan, What Is the Name of This Book?]

Knights always truthful; Knaves always lie; A,B ∈ {Kt,Kv}

S1
def
=

A : “B is Kt”

S2
def
=

B : “A&B opposite types”

T1
def
= B is a Kt T2

def
= A&B opposite types

S1 = T1 ↔ A is Kt S2 = T2 ↔ B is Kt

W A is Kt B is Kt T1 T2 T1 ↔ A is Kt T2 ↔ B is Kt
W3 1 1 1 0 1 0
W2 1 0 0 1 0 0
W1 0 1 1 1 0 1
W0 0 0 0 0 1 1

W0 is only world satisfying S1 ∧ S2.

Thus A and B are both Knaves.



Knights and Knaves [Smullyan, What Is the Name of This Book?]

Knights always truthful; Knaves always lie; A,B ∈ {Kt,Kv}

S1
def
=

A : “B is Kt”

S2
def
=

B : “A&B opposite types”

T1
def
= B is a Kt T2

def
= A&B opposite types

S1 = T1 ↔ A is Kt S2 = T2 ↔ B is Kt

W A is Kt B is Kt T1 T2 T1 ↔ A is Kt T2 ↔ B is Kt
W3 1 1 1 0 1 0
W2 1 0 0 1 0 0
W1 0 1 1 1 0 1
W0 0 0 0 0 1 1

W0 is only world satisfying S1 ∧ S2.

Thus A and B are both Knaves.



Knights and Knaves [Smullyan, What Is the Name of This Book?]

Knights always truthful; Knaves always lie; A,B ∈ {Kt,Kv}

S1
def
= A : “B is Kt” S2

def
= B : “A&B opposite types”

T1
def
= B is a Kt T2

def
= A&B opposite types

S1 = T1 ↔ A is Kt S2 = T2 ↔ B is Kt

W A is Kt B is Kt T1 T2 T1 ↔ A is Kt T2 ↔ B is Kt
W3 1 1 1 0 1 0
W2 1 0 0 1 0 0
W1 0 1 1 1 0 1
W0 0 0 0 0 1 1

W0 is only world satisfying S1 ∧ S2.

Thus A and B are both Knaves.



Knights and Knaves [Smullyan, What Is the Name of This Book?]

Knights always truthful; Knaves always lie; A,B ∈ {Kt,Kv}

S1
def
= A : “B is Kt” S2

def
= B : “A&B opposite types”

T1
def
= B is a Kt T2

def
= A&B opposite types

S1 = T1 ↔ A is Kt S2 = T2 ↔ B is Kt

W A is Kt B is Kt T1 T2 T1 ↔ A is Kt T2 ↔ B is Kt
W3 1 1 1 0 1 0
W2 1 0 0 1 0 0
W1 0 1 1 1 0 1
W0 0 0 0 0 1 1

W0 is only world satisfying S1 ∧ S2.

Thus A and B are both Knaves.



Knights and Knaves [Smullyan, What Is the Name of This Book?]

Knights always truthful; Knaves always lie; A,B ∈ {Kt,Kv}

S1
def
= A : “B is Kt” S2

def
= B : “A&B opposite types”

T1
def
= B is a Kt T2

def
= A&B opposite types

S1 = T1 ↔ A is Kt S2 = T2 ↔ B is Kt

W A is Kt B is Kt T1 T2 T1 ↔ A is Kt T2 ↔ B is Kt
W3 1 1 1 0 1 0
W2 1 0 0 1 0 0
W1 0 1 1 1 0 1
W0 0 0 0 0 1 1

W0 is only world satisfying S1 ∧ S2.

Thus A and B are both Knaves.



Knights and Knaves [Smullyan, What Is the Name of This Book?]

Knights always truthful; Knaves always lie; A,B ∈ {Kt,Kv}

S1
def
= A : “B is Kt” S2

def
= B : “A&B opposite types”

T1
def
= B is a Kt T2

def
= A&B opposite types

S1 = T1 ↔ A is Kt S2 = T2 ↔ B is Kt

W A is Kt B is Kt T1 T2 T1 ↔ A is Kt T2 ↔ B is Kt
W3 1 1 1 0 1 0
W2 1 0 0 1 0 0
W1 0 1 1 1 0 1
W0 0 0 0 0 1 1

W0 is only world satisfying S1 ∧ S2.

Thus A and B are both Knaves.



Knights and Knaves [Smullyan, What Is the Name of This Book?]

Knights always truthful; Knaves always lie; A,B ∈ {Kt,Kv}

S1
def
= A : “B is Kt” S2

def
= B : “A&B opposite types”

T1
def
= B is a Kt T2

def
= A&B opposite types

S1 = T1 ↔ A is Kt S2 = T2 ↔ B is Kt

W A is Kt B is Kt T1 T2 T1 ↔ A is Kt T2 ↔ B is Kt
W3 1 1 1 0 1 0
W2 1 0 0 1 0 0
W1 0 1 1 1 0 1
W0 0 0 0 0 1 1

W0 is only world satisfying S1 ∧ S2.

Thus A and B are both Knaves.



R6 Quiz Answers: Match the Epp Proof Rules to the
equivalent Natural Deduction Rules.

1. Modus Ponens: →-e
2. Modus Tollens: →-e
3. Generalization: ∨-i
4. Specialization: ∧-e
5. Conjunction: ∧-i

6, 7. In the following proof, identify the natural deduction rules
used in lines 2 and 3.

1 p ∧ q

2 q ∧-e, 1

3 (∼ r ∨ q) ∨-i, 2



8. Is the following a sound proof rule ?

p → q q
p

In answering this, you may consider the worlds shown in this
truth table:

W p q
W3 1 1
W2 1 0
W1 0 1
W0 0 0

Not valid: reasoning from the converse fails in world W1.

9. In Smullyan’s Island of Knights and Knaves, two natives C
and D approach you but only C speaks. C says: Both of us are
knaves. What are C and D? C is a Knave and D is a Knight.
10. In Smullyan’s Island of Knights and Knaves, you encounter
natives E and F. E says: F is a knave. F says: E is a knave.
How many knaves are there? 1


