
CS250: Discrete Math for Computer Science

L34: Turing Machines & Unsolvability of Halting





Turing Machine: M = (Q,Σ, δ, s)

Q: finite set of states; start state s ∈ Q

Σ: finite set of symbols, e.g., Σ = {.,t,0,1}

δ: Q × Σ → (Q ∪ {h})× Σ× {←,→,−}

mvRt.tm s q q0 q1
0 s,0,→ q0,t,→
1 s,1,→ q1,t,→
t q,t,← s,0,← s,1,←
. s, .,→ h, .,−

comment find t memorize change change
& erase t to 0 t to 1

s . 1 1 0 1 t t · · ·



Turing Machine: M = (Q,Σ, δ, s)

Q: finite set of states; start state s ∈ Q

Σ: finite set of symbols, e.g., Σ = {.,t,0,1}

δ: Q × Σ → (Q ∪ {h})× Σ× {←,→,−}

mvRt.tm s q q0 q1
0 s,0,→ q0,t,→
1 s,1,→ q1,t,→
t q,t,← s,0,← s,1,←
. s, .,→ h, .,−

comment find t memorize change change
& erase t to 0 t to 1

s . 1 1 0 1 t t · · ·



Turing Machine: M = (Q,Σ, δ, s)

Q: finite set of states; start state s ∈ Q

Σ: finite set of symbols, e.g., Σ = {.,t,0,1}

δ: Q × Σ → (Q ∪ {h})× Σ× {←,→,−}

mvRt.tm s q q0 q1
0 s,0,→ q0,t,→
1 s,1,→ q1,t,→
t q,t,← s,0,← s,1,←
. s, .,→ h, .,−

comment find t memorize change change
& erase t to 0 t to 1

s . 1 1 0 1 t t · · ·



mvRt.tm
s q

0 s,0,→ q0,t,→
1 s,1,→ q1,t,→
t q,t,←
. s, .,→ h, .,−

q0 q1
0
1
t s,0,← s,1,←
.

s . 1 1 0 1 t t · · ·

s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
q . 1 1 0 1 t t · · ·
q1 . 1 1 0 t t t · · ·
s . 1 1 0 t 1 t · · ·



mvRt.tm
s q

0 s,0,→ q0,t,→
1 s,1,→ q1,t,→
t q,t,←
. s, .,→ h, .,−

q0 q1
0
1
t s,0,← s,1,←
.

s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·

s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
q . 1 1 0 1 t t · · ·
q1 . 1 1 0 t t t · · ·
s . 1 1 0 t 1 t · · ·



mvRt.tm
s q

0 s,0,→ q0,t,→
1 s,1,→ q1,t,→
t q,t,←
. s, .,→ h, .,−

q0 q1
0
1
t s,0,← s,1,←
.

s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·

s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
q . 1 1 0 1 t t · · ·
q1 . 1 1 0 t t t · · ·
s . 1 1 0 t 1 t · · ·



mvRt.tm
s q

0 s,0,→ q0,t,→
1 s,1,→ q1,t,→
t q,t,←
. s, .,→ h, .,−

q0 q1
0
1
t s,0,← s,1,←
.

s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·

s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
q . 1 1 0 1 t t · · ·
q1 . 1 1 0 t t t · · ·
s . 1 1 0 t 1 t · · ·



mvRt.tm
s q

0 s,0,→ q0,t,→
1 s,1,→ q1,t,→
t q,t,←
. s, .,→ h, .,−

q0 q1
0
1
t s,0,← s,1,←
.

s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·

s . 1 1 0 1 t t · · ·
q . 1 1 0 1 t t · · ·
q1 . 1 1 0 t t t · · ·
s . 1 1 0 t 1 t · · ·



mvRt.tm
s q

0 s,0,→ q0,t,→
1 s,1,→ q1,t,→
t q,t,←
. s, .,→ h, .,−

q0 q1
0
1
t s,0,← s,1,←
.

s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·

q . 1 1 0 1 t t · · ·
q1 . 1 1 0 t t t · · ·
s . 1 1 0 t 1 t · · ·



mvRt.tm
s q

0 s,0,→ q0,t,→
1 s,1,→ q1,t,→
t q,t,←
. s, .,→ h, .,−

q0 q1
0
1
t s,0,← s,1,←
.

s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
q . 1 1 0 1 t t · · ·

q1 . 1 1 0 t t t · · ·
s . 1 1 0 t 1 t · · ·



mvRt.tm
s q

0 s,0,→ q0,t,→
1 s,1,→ q1,t,→
t q,t,←
. s, .,→ h, .,−

q0 q1
0
1
t s,0,← s,1,←
.

s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
q . 1 1 0 1 t t · · ·
q1 . 1 1 0 t t t · · ·

s . 1 1 0 t 1 t · · ·



mvRt.tm
s q

0 s,0,→ q0,t,→
1 s,1,→ q1,t,→
t q,t,←
. s, .,→ h, .,−

q0 q1
0
1
t s,0,← s,1,←
.

s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
s . 1 1 0 1 t t · · ·
q . 1 1 0 1 t t · · ·
q1 . 1 1 0 t t t · · ·
s . 1 1 0 t 1 t · · ·



mvRt.tm
s q

0 s,0,→ q0,t,→
1 s,1,→ q1,t,→
t q,t,←
. s, .,→ h, .,−

q0 q1
0
1
t s,0,← s,1,←
.

s . 1 1 0 1 t t · · ·
...

...
...

...

s . 1 1 0 1 t t · · ·
q . 1 1 0 1 t t · · ·
q1 . 1 1 0 t t t · · ·
s . 1 1 0 t 1 t · · ·
q . 1 1 0 t 1 t · · ·
q0 . 1 1 t t 1 t · · ·
s . 1 1 t 0 1 t · · ·
q . 1 1 t 0 1 t · · ·

q1 . 1 t t 0 1 t · · ·
s . 1 t 1 0 1 t · · ·
q . 1 t 1 0 1 t · · ·
q1 . t t 1 0 1 t · · ·
s . t 1 1 0 1 t · · ·
q . t 1 1 0 1 t · · ·
h . t 1 1 0 1 t · · ·



mvRt.tm
s q

0 s,0,→ q0,t,→
1 s,1,→ q1,t,→
t q,t,←
. s, .,→ h, .,−

q0 q1
0
1
t s,0,← s,1,←
.

s . 1 1 0 1 t t · · ·
...

...
...

...

s . 1 1 0 1 t t · · ·
q . 1 1 0 1 t t · · ·
q1 . 1 1 0 t t t · · ·
s . 1 1 0 t 1 t · · ·
q . 1 1 0 t 1 t · · ·
q0 . 1 1 t t 1 t · · ·
s . 1 1 t 0 1 t · · ·
q . 1 1 t 0 1 t · · ·
q1 . 1 t t 0 1 t · · ·

s . 1 t 1 0 1 t · · ·
q . 1 t 1 0 1 t · · ·
q1 . t t 1 0 1 t · · ·
s . t 1 1 0 1 t · · ·
q . t 1 1 0 1 t · · ·
h . t 1 1 0 1 t · · ·



mvRt.tm
s q

0 s,0,→ q0,t,→
1 s,1,→ q1,t,→
t q,t,←
. s, .,→ h, .,−

q0 q1
0
1
t s,0,← s,1,←
.

s . 1 1 0 1 t t · · ·
...

...
...

...

s . 1 1 0 1 t t · · ·
q . 1 1 0 1 t t · · ·
q1 . 1 1 0 t t t · · ·
s . 1 1 0 t 1 t · · ·
q . 1 1 0 t 1 t · · ·
q0 . 1 1 t t 1 t · · ·
s . 1 1 t 0 1 t · · ·
q . 1 1 t 0 1 t · · ·
q1 . 1 t t 0 1 t · · ·
s . 1 t 1 0 1 t · · ·

q . 1 t 1 0 1 t · · ·
q1 . t t 1 0 1 t · · ·
s . t 1 1 0 1 t · · ·
q . t 1 1 0 1 t · · ·
h . t 1 1 0 1 t · · ·



mvRt.tm
s q

0 s,0,→ q0,t,→
1 s,1,→ q1,t,→
t q,t,←
. s, .,→ h, .,−

q0 q1
0
1
t s,0,← s,1,←
.

s . 1 1 0 1 t t · · ·
...

...
...

...

s . 1 1 0 1 t t · · ·
q . 1 1 0 1 t t · · ·
q1 . 1 1 0 t t t · · ·
s . 1 1 0 t 1 t · · ·
q . 1 1 0 t 1 t · · ·
q0 . 1 1 t t 1 t · · ·
s . 1 1 t 0 1 t · · ·
q . 1 1 t 0 1 t · · ·
q1 . 1 t t 0 1 t · · ·
s . 1 t 1 0 1 t · · ·
q . 1 t 1 0 1 t · · ·

q1 . t t 1 0 1 t · · ·
s . t 1 1 0 1 t · · ·
q . t 1 1 0 1 t · · ·
h . t 1 1 0 1 t · · ·



mvRt.tm
s q

0 s,0,→ q0,t,→
1 s,1,→ q1,t,→
t q,t,←
. s, .,→ h, .,−

q0 q1
0
1
t s,0,← s,1,←
.

s . 1 1 0 1 t t · · ·
...

...
...

...

s . 1 1 0 1 t t · · ·
q . 1 1 0 1 t t · · ·
q1 . 1 1 0 t t t · · ·
s . 1 1 0 t 1 t · · ·
q . 1 1 0 t 1 t · · ·
q0 . 1 1 t t 1 t · · ·
s . 1 1 t 0 1 t · · ·
q . 1 1 t 0 1 t · · ·
q1 . 1 t t 0 1 t · · ·
s . 1 t 1 0 1 t · · ·
q . 1 t 1 0 1 t · · ·
q1 . t t 1 0 1 t · · ·

s . t 1 1 0 1 t · · ·
q . t 1 1 0 1 t · · ·
h . t 1 1 0 1 t · · ·



mvRt.tm
s q

0 s,0,→ q0,t,→
1 s,1,→ q1,t,→
t q,t,←
. s, .,→ h, .,−

q0 q1
0
1
t s,0,← s,1,←
.

s . 1 1 0 1 t t · · ·
...

...
...

...

s . 1 1 0 1 t t · · ·
q . 1 1 0 1 t t · · ·
q1 . 1 1 0 t t t · · ·
s . 1 1 0 t 1 t · · ·
q . 1 1 0 t 1 t · · ·
q0 . 1 1 t t 1 t · · ·
s . 1 1 t 0 1 t · · ·
q . 1 1 t 0 1 t · · ·
q1 . 1 t t 0 1 t · · ·
s . 1 t 1 0 1 t · · ·
q . 1 t 1 0 1 t · · ·
q1 . t t 1 0 1 t · · ·
s . t 1 1 0 1 t · · ·

q . t 1 1 0 1 t · · ·
h . t 1 1 0 1 t · · ·



mvRt.tm
s q

0 s,0,→ q0,t,→
1 s,1,→ q1,t,→
t q,t,←
. s, .,→ h, .,−

q0 q1
0
1
t s,0,← s,1,←
.

s . 1 1 0 1 t t · · ·
...

...
...

...

s . 1 1 0 1 t t · · ·
q . 1 1 0 1 t t · · ·
q1 . 1 1 0 t t t · · ·
s . 1 1 0 t 1 t · · ·
q . 1 1 0 t 1 t · · ·
q0 . 1 1 t t 1 t · · ·
s . 1 1 t 0 1 t · · ·
q . 1 1 t 0 1 t · · ·
q1 . 1 t t 0 1 t · · ·
s . 1 t 1 0 1 t · · ·
q . 1 t 1 0 1 t · · ·
q1 . t t 1 0 1 t · · ·
s . t 1 1 0 1 t · · ·
q . t 1 1 0 1 t · · ·

h . t 1 1 0 1 t · · ·



mvRt.tm
s q

0 s,0,→ q0,t,→
1 s,1,→ q1,t,→
t q,t,←
. s, .,→ h, .,−

q0 q1
0
1
t s,0,← s,1,←
.

s . 1 1 0 1 t t · · ·
...

...
...

...

s . 1 1 0 1 t t · · ·
q . 1 1 0 1 t t · · ·
q1 . 1 1 0 t t t · · ·
s . 1 1 0 t 1 t · · ·
q . 1 1 0 t 1 t · · ·
q0 . 1 1 t t 1 t · · ·
s . 1 1 t 0 1 t · · ·
q . 1 1 t 0 1 t · · ·
q1 . 1 t t 0 1 t · · ·
s . 1 t 1 0 1 t · · ·
q . 1 t 1 0 1 t · · ·
q1 . t t 1 0 1 t · · ·
s . t 1 1 0 1 t · · ·
q . t 1 1 0 1 t · · ·
h . t 1 1 0 1 t · · ·



Hilbert [1901]: wanted complete axiomization of
mathematics!

Such a complete axiomization would have provided a
mechanical procedure to churn out exactly all true
statements in mathematics.

Effort in 1930’s to define: What is a mechanical procedure?

Church: Lambda calculus Gödel: Recursive function

Kleene: Formal system Markov: Markov algorithm

Post: Post machine Turing: Turing machine

Fact: The above models are all exactly equivalent And also
equivalent to what is computable by any appropriate formal
model of a real computer that has added to it a potentially
unbounded amount of storage.

Church’s Thesis: The intuitive idea of effectively computable
is equivalent to Turing computable and equivalently to
computable by any of the above models.



Hilbert [1901]: wanted complete axiomization of
mathematics!

Such a complete axiomization would have provided a
mechanical procedure to churn out exactly all true
statements in mathematics.

Effort in 1930’s to define: What is a mechanical procedure?

Church: Lambda calculus Gödel: Recursive function

Kleene: Formal system Markov: Markov algorithm

Post: Post machine Turing: Turing machine

Fact: The above models are all exactly equivalent And also
equivalent to what is computable by any appropriate formal
model of a real computer that has added to it a potentially
unbounded amount of storage.

Church’s Thesis: The intuitive idea of effectively computable
is equivalent to Turing computable and equivalently to
computable by any of the above models.



Hilbert [1901]: wanted complete axiomization of
mathematics!

Such a complete axiomization would have provided a
mechanical procedure to churn out exactly all true
statements in mathematics.

Effort in 1930’s to define: What is a mechanical procedure?

Church: Lambda calculus Gödel: Recursive function

Kleene: Formal system Markov: Markov algorithm

Post: Post machine Turing: Turing machine

Fact: The above models are all exactly equivalent And also
equivalent to what is computable by any appropriate formal
model of a real computer that has added to it a potentially
unbounded amount of storage.

Church’s Thesis: The intuitive idea of effectively computable
is equivalent to Turing computable and equivalently to
computable by any of the above models.



Hilbert [1901]: wanted complete axiomization of
mathematics!

Such a complete axiomization would have provided a
mechanical procedure to churn out exactly all true
statements in mathematics.

Effort in 1930’s to define: What is a mechanical procedure?

Church: Lambda calculus Gödel: Recursive function

Kleene: Formal system Markov: Markov algorithm

Post: Post machine Turing: Turing machine

Fact: The above models are all exactly equivalent And also
equivalent to what is computable by any appropriate formal
model of a real computer that has added to it a potentially
unbounded amount of storage.

Church’s Thesis: The intuitive idea of effectively computable
is equivalent to Turing computable and equivalently to
computable by any of the above models.



Hilbert [1901]: wanted complete axiomization of
mathematics!

Such a complete axiomization would have provided a
mechanical procedure to churn out exactly all true
statements in mathematics.

Effort in 1930’s to define: What is a mechanical procedure?

Church: Lambda calculus Gödel: Recursive function

Kleene: Formal system Markov: Markov algorithm

Post: Post machine Turing: Turing machine

Fact: The above models are all exactly equivalent

And also
equivalent to what is computable by any appropriate formal
model of a real computer that has added to it a potentially
unbounded amount of storage.

Church’s Thesis: The intuitive idea of effectively computable
is equivalent to Turing computable and equivalently to
computable by any of the above models.



Hilbert [1901]: wanted complete axiomization of
mathematics!

Such a complete axiomization would have provided a
mechanical procedure to churn out exactly all true
statements in mathematics.

Effort in 1930’s to define: What is a mechanical procedure?

Church: Lambda calculus Gödel: Recursive function

Kleene: Formal system Markov: Markov algorithm

Post: Post machine Turing: Turing machine

Fact: The above models are all exactly equivalent And also
equivalent to what is computable by any appropriate formal
model of a real computer that has added to it a potentially
unbounded amount of storage.

Church’s Thesis: The intuitive idea of effectively computable
is equivalent to Turing computable and equivalently to
computable by any of the above models.



Hilbert [1901]: wanted complete axiomization of
mathematics!

Such a complete axiomization would have provided a
mechanical procedure to churn out exactly all true
statements in mathematics.

Effort in 1930’s to define: What is a mechanical procedure?

Church: Lambda calculus Gödel: Recursive function

Kleene: Formal system Markov: Markov algorithm

Post: Post machine Turing: Turing machine

Fact: The above models are all exactly equivalent And also
equivalent to what is computable by any appropriate formal
model of a real computer that has added to it a potentially
unbounded amount of storage.

Church’s Thesis: The intuitive idea of effectively computable
is equivalent to Turing computable and equivalently to
computable by any of the above models.



Why is the Turing machine as powerful as any other
computational model?

Intuitive answer: Imagine any computational device. It has:

I Finitely many states
I Ability to scan limited amount per step: one page at a time
I Ability to print limited amount per step: one page at a time
I Next state determined by current state and page currently

being read

Without the potentially infinite supply of tape cells, paper, extra
disks, extra tapes, etc. we have just a (potentially huge) DFA.

Your laptop with 2 gigabytes of memory is a DFA with over
216,000,000,000 states
This is better modeled as a TM with a bounded number of
states, and a potentially infinite tape.



Why is the Turing machine as powerful as any other
computational model?

Intuitive answer: Imagine any computational device. It has:

I Finitely many states
I Ability to scan limited amount per step: one page at a time
I Ability to print limited amount per step: one page at a time
I Next state determined by current state and page currently

being read

Without the potentially infinite supply of tape cells, paper, extra
disks, extra tapes, etc. we have just a (potentially huge) DFA.

Your laptop with 2 gigabytes of memory is a DFA with over
216,000,000,000 states
This is better modeled as a TM with a bounded number of
states, and a potentially infinite tape.



Why is the Turing machine as powerful as any other
computational model?

Intuitive answer: Imagine any computational device. It has:

I Finitely many states

I Ability to scan limited amount per step: one page at a time
I Ability to print limited amount per step: one page at a time
I Next state determined by current state and page currently

being read

Without the potentially infinite supply of tape cells, paper, extra
disks, extra tapes, etc. we have just a (potentially huge) DFA.

Your laptop with 2 gigabytes of memory is a DFA with over
216,000,000,000 states
This is better modeled as a TM with a bounded number of
states, and a potentially infinite tape.



Why is the Turing machine as powerful as any other
computational model?

Intuitive answer: Imagine any computational device. It has:

I Finitely many states
I Ability to scan limited amount per step: one page at a time

I Ability to print limited amount per step: one page at a time
I Next state determined by current state and page currently

being read

Without the potentially infinite supply of tape cells, paper, extra
disks, extra tapes, etc. we have just a (potentially huge) DFA.

Your laptop with 2 gigabytes of memory is a DFA with over
216,000,000,000 states
This is better modeled as a TM with a bounded number of
states, and a potentially infinite tape.



Why is the Turing machine as powerful as any other
computational model?

Intuitive answer: Imagine any computational device. It has:

I Finitely many states
I Ability to scan limited amount per step: one page at a time
I Ability to print limited amount per step: one page at a time

I Next state determined by current state and page currently
being read

Without the potentially infinite supply of tape cells, paper, extra
disks, extra tapes, etc. we have just a (potentially huge) DFA.

Your laptop with 2 gigabytes of memory is a DFA with over
216,000,000,000 states
This is better modeled as a TM with a bounded number of
states, and a potentially infinite tape.



Why is the Turing machine as powerful as any other
computational model?

Intuitive answer: Imagine any computational device. It has:

I Finitely many states
I Ability to scan limited amount per step: one page at a time
I Ability to print limited amount per step: one page at a time
I Next state determined by current state and page currently

being read

Without the potentially infinite supply of tape cells, paper, extra
disks, extra tapes, etc. we have just a (potentially huge) DFA.

Your laptop with 2 gigabytes of memory is a DFA with over
216,000,000,000 states
This is better modeled as a TM with a bounded number of
states, and a potentially infinite tape.



Why is the Turing machine as powerful as any other
computational model?

Intuitive answer: Imagine any computational device. It has:

I Finitely many states
I Ability to scan limited amount per step: one page at a time
I Ability to print limited amount per step: one page at a time
I Next state determined by current state and page currently

being read

Without the potentially infinite supply of tape cells, paper, extra
disks, extra tapes, etc. we have just a (potentially huge) DFA.

Your laptop with 2 gigabytes of memory is a DFA with over
216,000,000,000 states
This is better modeled as a TM with a bounded number of
states, and a potentially infinite tape.



Why is the Turing machine as powerful as any other
computational model?

Intuitive answer: Imagine any computational device. It has:

I Finitely many states
I Ability to scan limited amount per step: one page at a time
I Ability to print limited amount per step: one page at a time
I Next state determined by current state and page currently

being read

Without the potentially infinite supply of tape cells, paper, extra
disks, extra tapes, etc. we have just a (potentially huge) DFA.

Your laptop with 2 gigabytes of memory is a DFA with over
216,000,000,000 states

This is better modeled as a TM with a bounded number of
states, and a potentially infinite tape.



Why is the Turing machine as powerful as any other
computational model?

Intuitive answer: Imagine any computational device. It has:

I Finitely many states
I Ability to scan limited amount per step: one page at a time
I Ability to print limited amount per step: one page at a time
I Next state determined by current state and page currently

being read

Without the potentially infinite supply of tape cells, paper, extra
disks, extra tapes, etc. we have just a (potentially huge) DFA.

Your laptop with 2 gigabytes of memory is a DFA with over
216,000,000,000 states
This is better modeled as a TM with a bounded number of
states, and a potentially infinite tape.



Numbering Turing Machines

Turing machines can be encoded as character strings which
can be encoded as binary strings which can be encoded as
natural numbers.
TMn 1 2 3 4

0 1,0,→ 3,t,→ 0,0,− 0,0,−
1 1,1,→ 4,t,→ 0,1,− 0,1,−
t 2,t,← 0,t,− 1,0,← 1,1,←
. 1, .,→ 0, .,− 0, .,− 0, .,−

ASCII: 1,0,→; 1,1,→; 2,t,←; 1, .,→; ; · · · 0, .,−

{0,1}? : w

N : n

Countable listing of all TM’s: M0,M1,M2, · · ·



Numbering Turing Machines

Turing machines can be encoded as character strings which
can be encoded as binary strings which can be encoded as
natural numbers.
TMn 1 2 3 4

0 1,0,→ 3,t,→ 0,0,− 0,0,−
1 1,1,→ 4,t,→ 0,1,− 0,1,−
t 2,t,← 0,t,− 1,0,← 1,1,←
. 1, .,→ 0, .,− 0, .,− 0, .,−

ASCII: 1,0,→; 1,1,→; 2,t,←; 1, .,→; ; · · · 0, .,−

{0,1}? : w

N : n

Countable listing of all TM’s: M0,M1,M2, · · ·



Universal Turing Machine

Theorem (Turing, 1936)
There is a Universal Turing Machine U such that,

U((n,m)) = Mn(m)

proof: n is a binary string encoding the state table of TM Mn.
We can simulate Mn on input m by keeping track of its state, its
tape, and looking at its state table, n, at each simulated step. �

This is the key fact that makes computers important and useful:
One computer can run any program.

All programs: M0,M1,M2, . . .; Mi(x) is the output of program
i on input x .



Universal Turing Machine

Theorem (Turing, 1936)
There is a Universal Turing Machine U such that,

U((n,m)) = Mn(m)

proof: n is a binary string encoding the state table of TM Mn.
We can simulate Mn on input m by keeping track of its state, its
tape, and looking at its state table, n, at each simulated step. �

This is the key fact that makes computers important and useful:
One computer can run any program.

All programs: M0,M1,M2, . . .; Mi(x) is the output of program
i on input x .



Universal Turing Machine

Theorem (Turing, 1936)
There is a Universal Turing Machine U such that,

U((n,m)) = Mn(m)

proof: n is a binary string encoding the state table of TM Mn.
We can simulate Mn on input m by keeping track of its state, its
tape, and looking at its state table, n, at each simulated step. �

This is the key fact that makes computers important and useful:
One computer can run any program.

All programs: M0,M1,M2, . . .; Mi(x) is the output of program
i on input x .



Universal Turing Machine

Theorem (Turing, 1936)
There is a Universal Turing Machine U such that,

U((n,m)) = Mn(m)

proof: n is a binary string encoding the state table of TM Mn.
We can simulate Mn on input m by keeping track of its state, its
tape, and looking at its state table, n, at each simulated step. �

This is the key fact that makes computers important and useful:
One computer can run any program.

All programs: M0,M1,M2, . . .; Mi(x) is the output of program
i on input x .



The Halting Problem

Unfortunately, some programs do not halt due to errors in
programming.

It would be very nice to have a program to automatically test if a
given program on a given input would eventually halt.

H(x , y)
def
=

{
1 if Mx (y) eventually halts
0 otherwise



The Halting Problem

Unfortunately, some programs do not halt due to errors in
programming.

It would be very nice to have a program to automatically test if a
given program on a given input would eventually halt.

H(x , y)
def
=

{
1 if Mx (y) eventually halts
0 otherwise



The Halting Problem

Unfortunately, some programs do not halt due to errors in
programming.

It would be very nice to have a program to automatically test if a
given program on a given input would eventually halt.

H(x , y)
def
=

{
1 if Mx (y) eventually halts
0 otherwise



Theorem (Turing, 1936)
The halting problem is not computable.

Proof.
Assume for the sake of a contradiction that H(x , y) is
computable and consider the following program:

D(x)
def
= if H(x , x) : Mx (x) + 1 else : 0

Since H is computable, so is D.

Let c be D’s program, i.e., ∀x D(x) = Mc(x)

By construction, D(x) halts on all inputs, therefore, so does
Mc(x).

Mc(c) = D(c) = Mc(c) + 1

⇒⇐

�



Theorem (Turing, 1936)
The halting problem is not computable.

Proof.
Assume for the sake of a contradiction that H(x , y) is
computable and consider the following program:

D(x)
def
= if H(x , x) : Mx (x) + 1 else : 0

Since H is computable, so is D.

Let c be D’s program, i.e., ∀x D(x) = Mc(x)

By construction, D(x) halts on all inputs, therefore, so does
Mc(x).

Mc(c) = D(c) = Mc(c) + 1

⇒⇐

�



Theorem (Turing, 1936)
The halting problem is not computable.

Proof.
Assume for the sake of a contradiction that H(x , y) is
computable and consider the following program:

D(x)
def
= if H(x , x) : Mx (x) + 1 else : 0

Since H is computable, so is D.

Let c be D’s program, i.e., ∀x D(x) = Mc(x)

By construction, D(x) halts on all inputs, therefore, so does
Mc(x).

Mc(c) = D(c) = Mc(c) + 1

⇒⇐

�



Theorem (Turing, 1936)
The halting problem is not computable.

Proof.
Assume for the sake of a contradiction that H(x , y) is
computable and consider the following program:

D(x)
def
= if H(x , x) : Mx (x) + 1 else : 0

Since H is computable, so is D.

Let c be D’s program, i.e., ∀x D(x) = Mc(x)

By construction, D(x) halts on all inputs, therefore, so does
Mc(x).

Mc(c) = D(c) = Mc(c) + 1

⇒⇐

�



Theorem (Turing, 1936)
The halting problem is not computable.

Proof.
Assume for the sake of a contradiction that H(x , y) is
computable and consider the following program:

D(x)
def
= if H(x , x) : Mx (x) + 1 else : 0

Since H is computable, so is D.

Let c be D’s program, i.e., ∀x D(x) = Mc(x)

By construction, D(x) halts on all inputs, therefore, so does
Mc(x).

Mc(c) = D(c) = Mc(c) + 1

⇒⇐ �





P =

∞⋃
k=1

DTIME[nk ]

P is a good
mathematical

wrapper for “truly
feasible”.

feasible"
"truly

P complete

FO(REGULAR)

FO(CFL)

co−r.e.
complete

r.e.
completer.e.co−r.e.

NP
complete

co−NP
complete

co−NP NP 

NP co−NP

P

Recursive



NTIME[t(n)]: a mathematical fiction

input w

|w | = n

2s

0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

1

t(n)

t(n)

b1 b2 b3 · · · bt(n)



NP =

∞⋃
k=1

NTIME[nk ]

Many optimization
problems we want

to solve are NP
complete.

feasible"
"truly

P complete

FO(REGULAR)

FO(CFL)

co−r.e.
complete

r.e.
completer.e.co−r.e.

NP
complete

co−NP
complete

co−NP NP 

NP co−NP

P

Recursive



NP =

∞⋃
k=1

NTIME[nk ]

Many optimization
problems we want

to solve are NP
complete.

feasible"
"truly

P complete

FO(REGULAR)

FO(CFL)

co−r.e.
complete

r.e.
completer.e.co−r.e.

NP
complete

co−NP
complete

co−NP NP 

NP co−NP

P

FO

PSPACE

Recursive



NP =

∞⋃
k=1

NTIME[nk ]

Many optimization
problems we want

to solve are NP
complete.



CS311
Algorithms

CS513 Logic in
CS

CS501 Theory of
Computation


