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Turing Machine: M = (Q,Σ, δ, s)

Q: finite set of states; start state s ∈ Q

Σ: finite set of symbols, e.g., Σ = {.,t,0,1}

δ: Q × Σ → (Q ∪ {h})× Σ× {←,→,−}

mvRt.tm s q q0 q1
0 s,0,→ q0,t,→
1 s,1,→ q1,t,→
t q,t,← s,0,← s,1,←
. s, .,→ h, .,−

comment find t memorize change change
& erase t to 0 t to 1

s . 1 1 0 1 t t · · ·
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Hilbert [1901]: wanted complete axiomization of
mathematics!

Such a complete axiomization would have provided a
mechanical procedure to churn out exactly all true
statements in mathematics.

Effort in 1930’s to define: What is a mechanical procedure?

Church: Lambda calculus Gödel: Recursive function

Kleene: Formal system Markov: Markov algorithm

Post: Post machine Turing: Turing machine

Fact: The above models are all exactly equivalent And also
equivalent to what is computable by any appropriate formal
model of a real computer that has added to it a potentially
unbounded amount of storage.

Church’s Thesis: The intuitive idea of effectively computable
is equivalent to Turing computable and equivalently to
computable by any of the above models.



Hilbert [1901]: wanted complete axiomization of
mathematics!

Such a complete axiomization would have provided a
mechanical procedure to churn out exactly all true
statements in mathematics.

Effort in 1930’s to define: What is a mechanical procedure?

Church: Lambda calculus Gödel: Recursive function
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Kleene: Formal system Markov: Markov algorithm

Post: Post machine Turing: Turing machine

Fact: The above models are all exactly equivalent

And also
equivalent to what is computable by any appropriate formal
model of a real computer that has added to it a potentially
unbounded amount of storage.

Church’s Thesis: The intuitive idea of effectively computable
is equivalent to Turing computable and equivalently to
computable by any of the above models.



Hilbert [1901]: wanted complete axiomization of
mathematics!

Such a complete axiomization would have provided a
mechanical procedure to churn out exactly all true
statements in mathematics.

Effort in 1930’s to define: What is a mechanical procedure?

Church: Lambda calculus Gödel: Recursive function
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Why is the Turing machine as powerful as any other
computational model?

Intuitive answer: Imagine any computational device. It has:

I Finitely many states
I Ability to scan limited amount per step: one page at a time
I Ability to print limited amount per step: one page at a time
I Next state determined by current state and page currently

being read

Without the potentially infinite supply of tape cells, paper, extra
disks, extra tapes, etc. we have just a (potentially huge) DFA.

Your laptop with 2 gigabytes of memory is a DFA with over
216,000,000,000 states
This is better modeled as a TM with a bounded number of
states, and a potentially infinite tape.
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Numbering Turing Machines

Turing machines can be encoded as character strings which
can be encoded as binary strings which can be encoded as
natural numbers.
TMn 1 2 3 4

0 1,0,→ 3,t,→ 0,0,− 0,0,−
1 1,1,→ 4,t,→ 0,1,− 0,1,−
t 2,t,← 0,t,− 1,0,← 1,1,←
. 1, .,→ 0, .,− 0, .,− 0, .,−

ASCII: 1,0,→; 1,1,→; 2,t,←; 1, .,→; ; · · · 0, .,−

{0,1}? : w

N : n

Countable listing of all TM’s: M0,M1,M2, · · ·
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Universal Turing Machine

Theorem (Turing, 1936)
There is a Universal Turing Machine U such that,

U((n,m)) = Mn(m)

proof: n is a binary string encoding the state table of TM Mn.
We can simulate Mn on input m by keeping track of its state, its
tape, and looking at its state table, n, at each simulated step. �

This is the key fact that makes computers important and useful:
One computer can run any program.

All programs: M0,M1,M2, . . .; Mi(x) is the output of program
i on input x .
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The Halting Problem

Unfortunately, some programs do not halt due to errors in
programming.

It would be very nice to have a program to automatically test if a
given program on a given input would eventually halt.

H(x , y)
def
=

{
1 if Mx (y) eventually halts
0 otherwise
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Theorem (Turing, 1936)
The halting problem is not computable.

Proof.
Assume for the sake of a contradiction that H(x , y) is
computable and consider the following program:

D(x)
def
= if H(x , x) : Mx (x) + 1 else : 0

Since H is computable, so is D.

Let c be D’s program, i.e., ∀x D(x) = Mc(x)

By construction, D(x) halts on all inputs, therefore, so does
Mc(x).

Mc(c) = D(c) = Mc(c) + 1

⇒⇐

�
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NTIME[t(n)]: a mathematical fiction

input w

|w | = n

2s

0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
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t(n)
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b1 b2 b3 · · · bt(n)
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