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ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. Turine.
[Received 28 May, 1936.—Read 12 November, 1936.]

The ¢ computable” numbers may be described briefly as the real
numbers whose expressions as a decimal are caleulable by finite means.
Although the subject of this paper is ostensibly the computable numbers.
it is almost equally easy to define and investigate computable functions
of an integral variable or a real or computable variable, computable
predicates, and so forth. The fundamental problems involved are,
however, the same in each case, and T have chosen the computable numbers
for explicit treatment as involving the least cumbrous technique. I hope
shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will include a development
of the theory of functions of a real variable expressed in terms of com-
putable numbers.  Aceording to my definition, a number is computable
if its decimal can be written down by a machine.

In §§9. 10 I give some arguments with the intention of showing that the
computable numbers include all numbers which could naturally be
regarded as computable. TIn particular, T show that certain large classes
of numbers are computable. They include, for instance, the real parts of
all algebraic numbers, the real parts of the zeros of the Bessel functions.
the numbers =, e, ete. The computable numbers do not, however, include
all definable numbers, and an example is given of a definable number
which is not computable.

Although the class of computable numbers is so great, and in many
ways similar to the class of real numbers, it is nevertheless enumerable.
In §8 I examine certain arguments which would seem to prove the contrary.
By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of Gédelf. These results
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Hilbert [1901]: wanted complete axiomization of

mathematics!

Such a complete axiomization would have provided a
mechanical procedure to churn out exactly all true

statements in mathematics.

Effort in 1930’s to define: What is a mechanical procedure?

Church: Lambda calculus

Godel: Recursive function

Kleene: Formal system

Markov: Markov algorithm

Post: Post machine

Turing: Turing machine

Fact: The above models are all exactly equivalent And also
equivalent to what is computable by any appropriate formal
model of a real computer that has added to it a potentially
unbounded amount of storage.

Church’s Thesis: The intuitive idea of effectively computable

is equivalent to Turing computable and equivalently to
computable by any of the above models.
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Why is the Turing machine as powerful as any other
computational model?

Intuitive answer: Imagine any computational device. It has:

» Finitely many states

» Ability to scan limited amount per step: one page at a time

» Ability to print limited amount per step: one page at a time

» Next state determined by current state and page currently
being read

Without the potentially infinite supply of tape cells, paper, extra
disks, extra tapes, etc. we have just a (potentially huge) DFA.

Your laptop with 2 gigabytes of memory is a DFA with over
£16,000,000,000 gtateg

This is better modeled as a TM with a bounded number of
states, and a potentially infinite tape.
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Numbering Turing Machines

Turing machines can be encoded as character strings which
can be encoded as binary strings which can be encoded as
natural numbers.

™, 1 2 3 4

0 1,0,— | 3,u,— | 0,0,— | 0,0,—
1 1,1,— | 4,Uu,— | 0,1,— | 0,1,—
U [ 2,U,« | 0,u,— [ 1,0,« | 1,1,
> |10, ][ 0>—[0p>,— | 0> — |

ASCII: 1,0, —>;1,1, =2, U, 1,0, —;; -+ 0,p>,—
{0,1}*: w
N : n

Countable listing of all TM’s: My, My, M>, - - -
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Universal Turing Machine

Theorem (Turing, 1936)
There is a Universal Turing Machine U such that,

u((n,m)) = My(m)

proof: nis a binary string encoding the state table of TM M,,.
We can simulate M, on input m by keeping track of its state, its
tape, and looking at its state table, n, at each simulated step. [J

This is the key fact that makes computers important and useful:
One computer can run any program.

All programs: My, My, Ms, ...;  M;(x) is the output of program
i on input x.
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The Halting Problem

Unfortunately, some programs do not halt due to errors in
programming.

It would be very nice to have a program to automatically test if a
given program on a given input would eventually halt.

def 1 if My(y) eventually halts
H(x.y) = {0 otherwise



Theorem (Turing, 1936)
The halting problem is not computable.

Proof.

Assume for the sake of a contradiction that H(x, y) i

computable and consider the following program:

D(x) Lif H(x,x): My(x)+1 else:

S

0



Theorem (Turing, 1936)
The halting problem is not computable.

Proof.
Assume for the sake of a contradiction that H(x, y) is
computable and consider the following program:

D(x) Lif H(x,x): My(x)+1 else: 0
Since H is computable, so is D.

Let c be D’s program, i.e., Vx D(x) = Mg(x)



Theorem (Turing, 1936)
The halting problem is not computable.

Proof.
Assume for the sake of a contradiction that H(x, y) is
computable and consider the following program:

D(x) Lif H(x,x): My(x)+1 else: 0
Since H is computable, so is D.
Let c be D’s program, i.e., Vx D(x) = Mg(x)

By construction, D(x) halts on all inputs, therefore, so does
Mc(x).



Theorem (Turing, 1936)
The halting problem is not computable.

Proof.
Assume for the sake of a contradiction that H(x, y) is
computable and consider the following program:

D(x) Lif H(x,x): My(x)+1 else: 0
Since H is computable, so is D.
Let c be D’s program, i.e., Vx D(x) = Mg(x)

By construction, D(x) halts on all inputs, therefore, so does
Mc(x).



Theorem (Turing, 1936)
The halting problem is not computable.

Proof.
Assume for the sake of a contradiction that H(x, y) is
computable and consider the following program:

D(x) Lif H(x,x): My(x)+1 else: 0
Since H is computable, so is D.
Let c be D’s program, i.e., Vx D(x) = Mg(x)

By construction, D(x) halts on all inputs, therefore, so does
Mc(x).



co-te. complete Arithmetic Hierarchy FO(N)

r.e. complete

Hal Halt
L co-re. FOV(N) re. FOIN)
Recursive
Primitive Recursive
EXPTIME
SO(LFP)  so[2™"]
QSAT PSPACE complete
PSPACE
Fo[2**”]  FO(PFP) SO(TC) SO
co-NP complete PTIME Hierarchy SO NP complete
SAT SAT
co-NP SOV NP soOd
NP N co-NP
O(1) ,+*"*, P complete
FO[n~] ~"Horn-% P
FO(LFP)  SO(Hom) SAT
FO[(logn)°™)] Sostraly % NC
FO[log n] s feasible” E AC!
FO(CFL) ,-" SAC!
FO(TC)  SO(Krom):~254T NLeomp._—7— NL
FO(DTC) T 2COLOR L comp. ] L
FO(REGULAR) B NC!
FO(COUNT) : ThC?
FO ! LOGTIME Hierarchy  * ACY




P =

(o)
| DTIME[1/]
k=1

P is a good
mathematical
wrapper for “truly
feasible”.

co-r.e.

re.

complete co-r.e. re. complete
Recursive
co-NP NP
complete et
’ co-NP NP complete
NP N co-NP
. - P
"truly E
feasible"
FO(CFL)

FO(REGULAR)




NTIME[t(n)]:

input w
lw|=n
t(n)
—

t(n)

o oo o

© - o o o oo

ceeereebdl

o
[\8)

o 00 0 00
© oo o oo

L]
o




NP =

[e.9]
|J NTIME[n"]
k=1

Many optimization
problems we want
to solve are NP
complete.

co-r.e.

re.

complete co-r.e. re. complete
Recursive
co-NP NP
complete et
’ co-NP NP complete
NP N co-NP
. - P
"truly E
feasible"
FO(CFL)

FO(REGULAR)




NP =

[e.9]
|J NTIME[n"]
k=1

Many optimization
problems we want
to solve are NP
complete.

co-r.e.

re.

complete co-r.e. re. complete
Recursive
PSPACE
co-NP NP
et 1
complete co-NP NP complete
NP N co-NP
. s P
"truly E
feasible"
FO(CFL)
FO(REGULAR)

FO




NP =

o0
| NTIME[1/]
k=1

Many optimization
problems we want
to solve are NP
complete.

co-r.e. complete

Arithmetic Hierarchy
Halt

FO(N)
co-r.e.

r.e. complete

Halt
FOV(N) re. FO3(N)
Recursive
Primitive Recursive
: EXPTIME
SO(LFP)  sO[2"""]
QSAT  PSPACE complete
PSPACE
Fo[2"°”]  FO(PFP) SO(TC) N
co-NP complete PTIME Hierarchy SO NP complete
SAT . A SAT
co-NP SOV NP SO
NP N co-NP
FO[?LU(”] P complete
P
FO(LFP)  SO(Horn) 5
FO[(log n)°W) “ruly %, NC
FOllog n] : feasible” AC!
FO(CFL) i K SAC!
FO(TC)  SO(Krom);~25AT NLcomp_—7 =
FODTC) T—2COLOR Leomp —— L
FOREGULAR) H 5 NC!
FO(COUNT) R R ThC?
FO N

LOGTIME Hierarchy ~ *

AC?




Ry Arithmetic Hierarchy ~ FO(N) Te. complete
CS31 1 [ Halt
re.  FOV(N) re. FOI(N)
Algorithms Recursive
Primitive Recursive
EXPTIME
SO(LFP)  sO[2"""]
QSAT  PSPACE complete
PSPACE
0[2"""]  FO(PFP) SO(TC) SO
co-NP compleie PTIME Hierarchy SO NP complete
CS51 3 L ici AL NP SOV NP SO3 L
co- S :
oglc n NP N co-NP
CS FO[n°W) P complete

FO(LFP) SO(Horn)

P
FO[(log n)°)] “truly NC
FO[log n] i feasible” AC!
FO(CFL) i B ACH

FO(TC)  SO(Krom);~25AT NLcomp_—7 NL

FODTC) F—_2COLOR L comp. 1 L

CS501 Theory of FO(REGULAR) i T o
H FO(COUNT) : % The?

Computation ,
FO LOGTIME Hierarchy

AC?




