Thm: For every n-state NFA, $N = (Q, \Sigma, \Delta, s, F)$, there is an equivalent 2^n-state DFA.

proof: We may assume that N has no ϵ moves. Let $D = (P(Q), \Sigma, \delta, \{s\}, \{T \subseteq Q | T \cap F \neq \emptyset\})$

$$\delta(T, a) = \bigcup q \in T \Delta(q, a)$$

Claim: $\forall w \in \Sigma^\star (\delta^\star (\{s\}, w)) = \Delta^\star (s, w)$

state D is in after w = the set of states N can be in after w

pf: by induction on $|w|$

base case:

$\delta^\star (\{s\}, \epsilon) = \{s\} = \Delta^\star (s, \epsilon)$

inductive case: IndHyp: for $|w| = n_0$,

$$\delta^\star (\{s\}, w) = \Delta^\star (s, w).$$

Let $|x| = n_0 + 1$. Then $x = wa$ for some $w \in \Sigma^{n_0}, a \in \Sigma$

$$\delta^\star (\{s\}, xa) = \delta(\delta^\star (\{s\}, w), a) = \bigcup q \in \Delta^\star (s, w) \Delta(q, a) = \Delta^\star (s, xa) \Box$$
Thm: For every n-state NFA, $N = (Q, \Sigma, \Delta, s, F)$, there is an equivalent 2^n-state DFA.

proof: We may assume that N has no ϵ moves. Let

$$D = (P(Q), \Sigma, \delta, \{s\}, \{ T \subseteq Q \mid T \cap F \neq \emptyset \})$$

$$\delta(T, a) = \bigcup_{q \in T} \Delta(q, a)$$
Thm: For every n-state NFA, $N = (Q, \Sigma, \Delta, s, F)$, there is an equivalent 2^n-state DFA.

proof: We may assume that N has no ϵ moves. Let

$$D = (P(Q), \Sigma, \delta, \{s\}, \{T \subseteq Q \mid T \cap F \neq \emptyset\})$$

$$\delta(T, a) = \bigcup_{q \in T} \Delta(q, a)$$

Claim: $\forall w \in \Sigma^* (\delta^*(\{s\}, w) = \Delta^*(s, w))$

state D is in after w = the set of states N can be in after w
Thm: For every n-state NFA, $N = (Q, \Sigma, \Delta, s, F)$, there is an equivalent 2^n-state DFA.

proof: We may assume that N has no ϵ moves. Let

$$D = (P(Q), \Sigma, \delta, \{s\}, \{T \subseteq Q \mid T \cap F \neq \emptyset\})$$

$$\delta(T, a) = \bigcup_{q \in T} \Delta(q, a)$$

Claim: $\forall w \in \Sigma^* (\delta^*({s}, w) = \Delta^*(s, w))$

state D is in after w = the set of states N can be in after w

pf: by induction on $|w|$

base case: $\delta^*({s}, \epsilon) = {s} = \Delta^*(s, \epsilon)$
Thm: For every n-state NFA, $N = (Q, \Sigma, \Delta, s, F)$, there is an equivalent 2^n-state DFA.

proof: We may assume that N has no ϵ moves. Let

$$D = (P(Q), \Sigma, \delta, \{s\}, \{ T \subseteq Q \mid T \cap F \neq \emptyset \})$$

$$\delta(T, a) = \bigcup_{q \in T} \Delta(q, a)$$

Claim: $\forall w \in \Sigma^* \left(\delta^*(\{s\}, w) = \Delta^*(s, w) \right)$

state D is in after w = the set of states N can be in after w

pf: by induction on $|w|$

base case: $\delta^*(\{s\}, \epsilon) = \{s\} = \Delta^*(s, \epsilon)$

inductive case: indHyp: for $|w| = n_0$, $\delta^*(\{s\}, w) = \Delta^*(s, w)$.
Thm: For every n-state NFA, $N = (Q, \Sigma, \Delta, s, F)$, there is an equivalent 2^n-state DFA.

proof: We may assume that N has no ϵ moves. Let

$$D = (P(Q), \Sigma, \delta, \{s\}, \{T \subseteq Q \mid T \cap F \neq \emptyset\})$$

$$\delta(T, a) = \bigcup_{q \in T} \Delta(q, a)$$

Claim: $\forall w \in \Sigma^* (\delta^*(\{s\}, w) = \Delta^*(s, w))$

state D is in after w = the set of states N can be in after w

pf: by induction on $|w|$

base case: $\delta^*(\{s\}, \epsilon) = \{s\} = \Delta^*(s, \epsilon)$

inductive case: **indHyp:** for $|w| = n_0$, $\delta^*(\{s\}, w) = \Delta^*(s, w)$. Let $|x| = n_0 + 1$. Then $x = wa$ for some $w \in \Sigma^{n_0}, a \in \Sigma$
Thm: For every \(n \)-state NFA, \(N = (Q, \Sigma, \Delta, s, F) \), there is an equivalent \(2^n \)-state DFA.

proof: We may assume that \(N \) has no \(\epsilon \) moves. Let

\[
D = (P(Q), \Sigma, \delta, \{s\}, \{T \subseteq Q \mid T \cap F \neq \emptyset\})
\]

\[
\delta(T, a) = \bigcup_{q \in T} \Delta(q, a)
\]

Claim: \(\forall w \in \Sigma^* \ (\delta^*(\{s\}, w) = \Delta^*(s, w)) \)

state D is in after w = the set of states N can be in after w

pf: by induction on \(|w|\)
base case: \(\delta^*(\{s\}, \epsilon) = \{s\} = \Delta^*(s, \epsilon) \)

inductive case: \(\text{indHyp}: \) for \(|w| = n_0, \delta^*(\{s\}, w) = \Delta^*(s, w). \)

Let \(|x| = n_0 + 1\). Then \(x = wa \) for some \(w \in \Sigma^{n_0}, a \in \Sigma \)

\[
\delta^*(\{s\}, wa) = \delta(\delta^*(\{s\}, w), a) = \delta(\Delta^*(s, w), a)
\]
Thm: For every \(n \)-state NFA, \(N = (Q, \Sigma, \Delta, s, F) \), there is an equivalent \(2^n \)-state DFA.

proof: We may assume that \(N \) has no \(\epsilon \) moves. Let
\[
D = (P(Q), \Sigma, \delta, \{s\}, \{ T \subseteq Q \mid T \cap F \neq \emptyset \})
\]
\[
\delta(T, a) = \bigcup_{q \in T} \Delta(q, a)
\]

Claim: \(\forall w \in \Sigma^* \ (\delta^*(\{s\}, w) = \Delta^*(s, w)) \)

state \(D \) is in after \(w \) = the set of states \(N \) can be in after \(w \)

pf: by induction on \(|w| \) base case: \(\delta^*(\{s\}, \epsilon) = \{s\} = \Delta^*(s, \epsilon) \)

inductive case: indHyp: for \(|w| = n_0 \), \(\delta^*(\{s\}, w) = \Delta^*(s, w) \).

Let \(|x| = n_0 + 1 \). Then \(x = wa \) for some \(w \in \Sigma^{n_0}, a \in \Sigma \)
\[
\delta^*(\{s\}, wa) = \delta(\delta^*(\{s\}, w), a) = \delta(\Delta^*(s, w), a)
\]
\[
= \bigcup_{q \in \Delta^*(s, w)} \Delta(q, a) = \Delta^*(s, wa) \quad \square
\]
\[\mathcal{L}(N_2) = \mathcal{L}(D_2) \]
$\mathcal{L}(N_2) = \mathcal{L}(D_2)$